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Part I. Embedding an ordered group in a division ring
1. Introduction. The investigation of geometries with certain incidence

and order properties but lacking others(0 leads to the study of (fully)
ordered division rings. The best-known example of such a division ring is that
due to Hubert [6, §33 ](2). The problem of constructing more general types
of ordered division rings was attacked by Moufang [8], who embeds the
group algebra of the free metabelian group of two generators in a division
ring and shows this can be ordered ; and then constructs a variety of related
division rings. Moufang also raises the question whether the group algebra of
the free group of two generators can be embedded in a division ring(3). We
shall obtain, as a by-product of the first part of this paper, an affirmative
answer to this question.

The semigroup algebra of the semigroup G over the ring(4) P is an algebra

Presented to the Society, February 28, 1948; received by the editors March 26, 1948.
(') Satisfying "Desargues" but not "Pappus."
(2) Numbers in brackets refer to the bibliography at the end of the paper.
(3) Ordered or not [8, pp. 203, 208].
(4) Usually the ring P of coefficients is assumed to be a division ring or even a field ; and G is

commonly assumed as a group.
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ON ORDERED DIVISION RINGS 203

over P whose base elements are (in 1-1 correspondence to, or identified with)
the elements of G in such a way that their multiplication in the algebra coin-
cides with their multiplication in the semigroup. The elements of the algebra
can then be written as finite sums

22 giPi Si G G, pi G P,i
with addition defined in the obvious manner, and multiplication by(6)

( 22 gipAi 22 *i»n = 22 k( 22 p.ff»)•
V     » /   \      f / i,i \   Qihj=k /

Here the coefficient of any one k is a finite sum in the coefficient ring because
there are only a finite number of g; and h¡, thus a fortiori only a finite number
of pairs of them, for which gjij = k.

Hence if we wish to embed the semigroup algebra in a ring in which cer-
tain infinite sums 22g¡Pi are a's0 admitted, we have to take care that the
equation gji¡=k has always only a finite number of solutions g¿, h¡. This can
be done, provided the semigroup is (fully) ordered, by means of an idea due
to Hahn [4]: one admits only such infinite sums 22g*P> in which the g„
taken in their semigroup order, are well-ordered(6). In this way one obtains
an extension of the semigroup algebra which is called a ring of formal power
series.

If P is a field and G an abelian (ordered) group, then this ring is itself a
field (Hahn, loe. cit.) ; and if moreover P is ordered, then the formal power
series field can also be ordered. The case of a noncommutative ordered group
G has received some attention recently. Schilling [ll] sketches a proof that
the formal power series ring is then a division ring; but this sketch omits to
establish the existence of an inverse to every nonzero element(7). It has been
remarked that Hahn's original proof can be adapted to the noncommutative
case; but nobody seems to have done it yet, and it is a formidable proof even
in the commutative case.

[Added in proof, July 1949.] Dr. Daniel Zelinsky has, however, kindly
communicated to me a formal proof along the lines of Hahn's proof, using
neither commutativity nor associativity.

In the first part of the present paper we give, therefore, an independent
proof that the formal power series ring of an ordered group over a division
ring is itself a division ring; this can be ordered if the coefficient division

(6) More generally one can introduce factor sets, and so on, into this multiplication.
(6) Following Hahn [4] one can restrict the cardinal of these sums to be less than some

arbitrarily given infinite cardinal.
(r) Cf. [il, p. 302]: "Observe that each sequence . . . has a limit. ..." The essence of this

observation occupies §§2, 3 of the present paper. Cf., however, also footnote 8.
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204 B. H. NEUMANN [July

ring is ordered. The central fact is the existence of an inverse to every nonzero
element ; and it suffices to establish the existence of an inverse to every formal
power series beginning with e-1 (e the group unit, 1 the coefficient unit(8)),
and thus involving after this first element only a sum of g.pi with gi>e in G.
The elements g>e in G form an ordered semigroup G+, and it is with this
rather than with G that we operate in the first three sections. There is a
certain gain in generality, because we do not at first assume G+ embedded or
even embeddable in a group; but all the same connect a group with it, cor-
responding to that of the formal power series beginning with el.

The proof then that every ordered group can be embedded in ah ordered
division ring presents no further difficulty. Now it has been shown else-
where^) that the free group (of any number of generators) can be ordered,
thus Moufang's question (cf. above) finds its answer.

The division ring in which we thus embed a free group of, let us say, two
generators is a formal power series ring and therefore of the cardinal of the
continuum even if the coefficient field is denumerable(10) ; it is, in a sense,
wastefully large. The group ring of the free group over the field of rationals,
say, is denumerable; and so then is the division ring generated by this group
ring, in any division ring in which it may be embedded. It is, therefore, nat-
ural to ask if a different construction would not embed the group ring, less
wastefully, in the division ring it generates. It is also natural to look to the
known sufficient criteria which tell one what rings possess a division ring of
(left or right) quotients (Ore [lO], Dubreil [3, chap. 5]).

But these criteria fail in our case; and we end the first part of this paper
by showing that there are elements in the group ring of a free group which
have no common left multiple. This provides an illustration of the fact(u)
that Ore's sufficient criterion is not necessary (12).

2. Archimedean classification in an ordered semigroup. Let G+ be a
semigroup, that is, a system which is closed with respect to an associative
multiplication. Elements of G+ will be denoted throughout by r, s, t, u, with
affixes where required. Let G+ be fully ordered, so that for any r, s either
r <s or r=s or r>s, and no two of these take place simultaneously. We further
postulate:

(2.1) For all r, s, t, if r<s, then rt<st and lr<ts.

(8) I should like to emphasize that the argument in §§2-5 of the present paper follows closely
the pattern of Schilling's proof sketch referred to above.

(9) [9] and the reference to G. Birkhoff and A. Tarski there.
(10) The last sentence of [6, §33] is erroneous. A similar error occurs in [12, top of p. 36].
(u) Probably well known.
(l2) I learn from the referee that the results of this part have been "batted around in

conversation on this side of the Atlantic." I wish, therefore, to disclaim any originality in this
part. [Added in proof, July 1949.] A recent paper in Russian [17] appears to anticipate results
and methods of this part. Also [18], [19] contain the result for which [9] is here quoted. Other
references in [20].
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(2.2) For all r, r<t*.
The first of these entails the cancellation laws: if rt = st, then r = s; if tr = ts,
then r = s. The second condition excludes idempotent elements from G+; in
fact it does more: it ensures that a product always exceeds each factor.

(2.3) Lemma. For all r, s,

r < rs    and    s < rs.

Proof. If r^rs then rs^rs2 by (2.1); but s<s2 by (2.2) and rs<rs2 by
(2.1). Hencer^rs is impossible. Similarly, if s = rs then rs = r2s; but r<r2 and
rs<r2s. Hence s — rs is also impossible, and the lemma follows.

We now classify the elements of G+ according to their "Archimedean"
character. If rn<s for n = l, 2, • ■ ■ , we call r infinitely smaller than s and
write r<5Cs. We also call í infinitely greater than r.

(2.4) Lemma, (i) If r<Cs then r<s, and r^s.
(ii) // r<£s and s<K/ then r<Kt.
(iii) 2/ r<Cs but not t<Ks, then r<5C/.

The proof is obvious and omitted.
If r is neither infinitely smaller nor infinitely greater than 5, we call r and 5

"relative Archimedean." This is an equivalence relation. The set of all ele-
ments relative Archimedean to r is called the Archimedean class of r and
denoted by r;(r).

(2.5) Lemma, (i) The statements _£?7(r), »"£17(5), r¡ir) =r¡is) are equivalent.
(ii) If r<s<t and vir) = vit) then ?/(r) =í?(í).
(iii) 17 (rn) =t)ir) for all r, and « = 1,2, • •

The proof is obvious and omitted.
The Archimedean classes can themselves be fully ordered. We put 17(r)

<r\is) if and only if r<3Cs. The usual order properties are confirmed without
difficulty.

(2.6) Lemma. The Archimedean class of a product is the class of the greatest
factor:

(2.61) nirs) = max (77(r), 17(5)) = r¡(max (r, s));

(2.62) lili/») = max vi*') = íjfmax r,).

Proof. The lemma is obviously true for any finite number of factors if it
is true for two factors. Now if r~s then s<rs=^s2 by (2.3) and (2.1), hence
virs) =vis) by (2.5). Similarly if r>s then r<rs<r2 and yirs) =77(7). In any
case the lemma is established.

We may therefore look upon the Archimedean classification as a valua-
tion of the semigroup.
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206 B. H. NEUMANN [July

3. Well-ordered sequences in an ordered semigroup. We consider sets
of elements of G+ which in the order of G+ are well-ordered ; such sets we shall
call WO-series.

Definition. A set S — G+ is called a WO-series if every non-null subset of
5 contains a least element.

If G+ is nondenumerable one can modify this definition by admitting
only subsets whose cardinal does not exceed a given X„. The null-set N is a
WO-series, and all results we prove for WO-series apply in particular to N.
But to avoid trivial distinctions we shall tacitly assume non-null series where
convenient.

(3.1) Lemma, (i) S is a WO-series if and only if every sequence si, S2, • ■ ■ of
elements of S contains a nondecreasing subsequence s,m _=£„«) _=•••.

(ii) 5 is a WO-series if and only if every nonincreasing sequence si~= S2=_ ■ • •
of elements of S is ultimately constant, that is, for some n, sn = s„+i= ■ ■ • .

The proof is obvious and omitted.

(3.2) Lemma. If S, T are WO-series then U = ST is a WO-series.

Proof. Let
«i = sih, u2 = J2/2, • • • (s,£S;í,£ T)

be an arbitrary sequence of elements of U. There is a nondecreasing sub-
sequence of 5i, S2, ■ • ■ , let us say sßm = s„(2) _l • • • . The corresponding se-
quence /,,(!), /M(2), • • • in T also contains a nondecreasing subsequence, let
us say /^(»(d)_b//í(»(2))_3 • • • . Then -„(„a» _=m^(»(2)> _l • • • is a nondecreasing
subsequence of the sequence u\, U2, • • • . Hence, by 3.1, U is a WO-series.

(3.21) Corollary. If S, T are WO-series then for any fixed uÇzST the
equation u = st has only a finite number of solutions, s(£S, /£7".

(3.22) Corollary. If Su S2, • • ■ , S„ are WO-series then SiSi ■ ■ ■ Sn is
a WO-series.

(3.23) Corollary. If S is a WO-series then so is Sn for any ».

Í3.3) Lemma. The union of a finite set of WO-series is a WO-series. Any
subset of a WO-series is a WO-series.

The proof is obvious and omitted. Note that the union of an infinite set of
WO-series is not necessarily again a WO-series.

(3.4) Theorem. Let S be a WO-series and denote by S" the semigroup gen-
erated by S, that is, the union of all S", « = 1, 2, ■ • • . Then S" is a WO-series.

Proof. Assume 5" is not a WO-series. Then :
(3.41) There is a properly decreasing infinite sequence „i>„2> • • • of

elements of S".
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1949] ON ORDERED DIVISION RINGS 207

Let
«1 = J11J12.Si\(i),

«2  =  S21S22.í2X(2)7

Uß  —  SMlSM2.¿mX(m)>

where all v(_S. Denote by s* the greatest sß„ v = l, • • • , X(m):

s* = max sßr-
(»)

Then by (2.6)

7j(„i) = t;(_i*)f

l(«î)   =  Vis 2*),

viuß) = nisf),

Amongst s*, Si*, • • ■ there is a smallest; hence amongst vis*), 77(52*), • • ■
there is a smallest.   But as Ui>Ui> ■ ■ -, we have  f?(~0 _:t7(„2) _: • • • .
Hence from a certain term on all 77 („0 are equal; let us say

riiun) = i7(«7»+i) = • • •  = "">.

If we consider different decreasing sequences

»/>«_■>•••; u{' > ul' > ■ • •

we are led to possibly different classes ~~~rf', ̂~n", ■ • • . But amongst all these
there must be a smallest; for ^77, "~V, ^77", • • • are Archimedean classes be-
longing to certain elements of S, amongst which there must be a least. We
may therefore assume, without loss of generality, that:

(3.42) The sequence Ui, „2, • • • in (3.41) is chosen so that "^77 is as small
as possible.

Possibly omitting a finite number of terms from the infinite sequence, we
may also assume that already UiÇz^n, and therefore

»j(mO = 1(1*2) = • • •  = ^7J.

There are elements of 5 in the class "77, for example s*, s2*, • • •; denote by
^s the least element of S in ^77. Then

«i è s* =; ^s.

But as 77 („0 =77(^5), there is a natural number p such that
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208 B. H. NEUMANN [July

Ml  =  ~SP,

and as uß<Ui for all u,

Uy. < ~~~sv.

We may assume that :
(3.43) The sequence „i, m2, • • • in (3.41) is chosen so that, subject to

(3.42), p is as small as possible. Then

(3.44) -s?-1 < m„ < -s', p = 1, 2, • • •

(as u^^s^ — ̂ s, ¿>_:2: hence ^sp-1 in (3.44) has a meaning in G+). We now
represent each „„ in one of four forms, namely,

(3.45) m„ = s*,
(3.46) »„ = */*„*, u¿ ES",
(3.47) uß = s*ui', «;'e5»,
(3.48) «, = »„' *„*«„" , «; ,u-' G S".

Only a finite number of uß can be of the first form, for the s* lie in 5 and
can not form a properly descending infinite sequence. There is then an infi-
nite sequence of uß of one of the other three types; let us assume they are all
of the form (3.48). Then amongst the u'm or amongst the u", there must be a
properly decreasing infinite subsequence. But from (3.44) and sf^^s we
see that

«„' < -^s*-1,       u¿' < "-s"-1.

Thus this new decreasing sequence has the same ^¡7 but a smaller p in
(3.44), contrary to (3.43); or a smaller ^77, contrary to (3.42). In any case
(3.41) leads to a contradiction, and the theorem follows.

(3.5) Theorem. With the notation of (3.4), any element of S" lies in only a
finite number of the sets S, S2, S3, ■ • • .

Proof. Let U denote the set of all elements mG5" which lie in an infinite
number of sets S, S2, S3, • ■ ■ . If U is not the null-set it has (as subset of the
WO-series S") a least element ~^u, say. ^u has an infinity of product repre-
sentations, of increasing lengths:

*~~U = SuSii.SiX(l)

= SiiSa.Í2X(2)

— SßiSß2.S/iXOO
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with X(l) <X(2) < • • • and all j„G5. Put
(3.51) "~u = SuUi = S21U2 = • ■ ■ = sßiuß = • • •

where

(3.52) u„ = s„2.sAM G &<>>-+.

The sequence Su, S21, ■ • ■ contains a nondecreasing subsequence sßa),i
__^m(2).1 = ' " ' (by 3.1), and the corresponding subsequence ußm, mm(2>, • • •
must be nonincreasing. But as all its terms belong to the WO-series 5", this
subsequence is ultimately constant. There is, therefore, an element

M    =   Uß(n)   =   Uß(n+1)   =   •  •   •   .

From (3.52) we see that u' lies in an infinite number of sets 5", and thus in U;
but (3.51) shows that m'<"m contrary to the assumption that ^u is the
smallest element of U. Hence U must be the null-set, and the theorem is
established.

4. Formal power series over a ring. Now let P be a ring with a set
fl of operators. Elements of P are denoted by p, a, r, with affixes where re-
quired; the zero of P is denoted by 0; the unit element, if P has a unit ele-
ment, by 1. The operators are denoted generically by _-, the identical oper-
ator by e; operators are written as exponents.

Definition. A function <p defined on G+ with values in P will be called a
FP-series (formal power series) if there is a WO-series 5 = 5(0) such that
(pis) 9^0 implies 5G5(0). The set of all FP-series will be denoted by II.

In II we define addition and (right) scalar multiplication in the obvious
manner: if #GIL xGII, pGP, then

^ = <i> +  X,        V = <t>P,
where

(4.11) *(-) =<fiis)+  xis),
(4.12) *'(*) = *f»P.

(4.2) Lemma. II is closed with respect to this addition and scalar multiplica-
tion. IT is a ^-module with respect to this addition and scalar multiplication.

The proof is obvious and omitted.
In order to define a multiplication in II we first introduce factor sets.
(4.3) Definition. A pair of functions y, co is called a factor set on

{G+, P, 0} if 7 is defined on G+, G+ with values in P and w is defined on G+
with values in fí, and if they satisfy

(4.31) yir, s)p"C-)»(») = 0»<.**>y(r, s),
(4.32) yirs, /)7(/, s)u(i> = yir, st)yis, t)
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210 B. H. NEUMANN [July

identically in r, s, t iÇzG+) and p (GP)(13). If 7 = 0 we call the factor set de-
generate.

We now choose a factor set(14), and define a multiplication in II.
(4.4) Definition. If 0GIT, xGIT, we define the product \p=(px by

(4.41) vKO = 22 yir, s)4>ir)"Mxis).
rs=t

The usual power notation is used for iterated multiplication^6) :

00 = (p2,        00"-1 = (f>n.

Observe that if 5(0) =R, _*(x)«5, RS= T, then \pit)=0 unless tÇ±t; and
when /GjT, then the right-hand side of (4.41) has only a finite number of
nonzero terms (cf. 3.21). Hence we have the following lemmas.

(4.5) Lemma. II is closed with respect to the multiplication (4.4).

(4.6) Lemma. IT is a ring with respect to addition and multiplication as de-
fined.

Associativity of multiplication follows as usual from the factor set identi-
ties (4.31)-(4.32). Distributivity is obvious. The zero element of IT is the FP-
series which vanishes identically on G+. We denote it by 0. There is no unit
element in II.

(4.7) Theorem. If 0GIT and p„GP, n = l, 2, ■ • • , then the power series

(4.71) 4>* = 22<t>nPn
i

is meaningful and GIL The power series
00

(4.72) 0~ = __.±0"i
iwith an arbitrary sequence of signs) is also meaningful and GII(18).

Proof. If Si(p)=S, then clearly 0*(/)=O unless tES". By (3.5), if /G5<",
then 0n(O =0 except for a finite number of values of n. Hence for any /GG+
the right-hand side of (4.71) is a finite sum of nonzero terms only; thus 0*
has an obvious meaning. By (3.4), 5" is a WO-series; hence 0* is a FP-series;

(13) Note that three different multiplications enter (4.31), (4.32): those in G+, P, and Q.
They are all denoted by juxtaposition.

(") We shall later assume it nondegenerate. If P contains the unit element 1, and if O
contains the identical operator «, then there certainly is the trivial (nondegenerate) factor set
•y = l. a = (.

(16) Functional iteration does not apply to elements of n, as they have different domain and
range.

(16) (4.72) is a special case of (4.71) if P contains a unit element.
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similarly for 0.
(4.8) Definition. With each element 0GIT we associate a symbol

1+0.
The set of all 1+0, for 0GII, is denoted by T. In T we define a multipli-
cation by

(4.81) (l + 0)(l + x) = l + (0 + x + 0x)
(where addition and multiplication in the brackets on the right-hand side
refer to the ring operations in II).

(4.9) Theorem. T is a group.

Proof. T is obviously closed with respect to multiplication. One confirms
easily that multiplication is associative. The neutral element of multiplica-
tion is 1+0 which we shall abbreviate to 1. If

$ - 22 (- 0)"i
then 1+0" is the inverse of 1+0, and by (4.7) is contained in T.

(4.91) Corollary. 7/P contains (a subring isomorphic to the field of) all
rationals, and if the factor set y, « is triviali17), then T is a complete group,
that is, every element of T is an nth power in T for every positive integer n.

This follows from (4.7), using the binomial expansion for roots.
5. Formal power series division rings. We now have all the tools to carry

out the construction of the formal power series division ring.
Let G be a fully ordered group with order relation < and unit element 1.

Denote by G+ the semigroup of all elements r with Kr. Then G+ satisfies the
assumptions of §2. Let P now be a division ring. The operators _ are then
automorphisms of P(18).

The definitions of WO-series, factor sets(19),FP-series, addition and multi-
plication of FP-series can be extended without difficulty to apply to G instead
of G+. We now assume that the factor set entering the definition of multipli-
cation is nondegenerate, and that for all rEG,

(5.1) 7(1, r) = yir, 1) = 1, _(1) = É(2»).

The analogues of (4.2), (4.5), (4.6) are again proved without difficulty.

(17) That is, y si, _se.
(18) We exclude the degenerate operator which maps all P on 0.
(19) Not every factor set on {G+, P, O) can be extended to a factor set on ¡ G, P, Í2 j. Thus,

for example, if y vanishes for any arguments in G it must vanish identically.
(20) This entails no loss of generality, as one can show without difficulty; and it cuts out

some unnecessary complications.
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We denote by 7rr the special FP-series defined by

(5.2) itrir) = 1, iTris) = 0 when s ?¿ r.

Their multiplication is described by

(5.3) Tr7r, = 7rr8y(r, s).

7Ti is the unit element of multiplication, and the scalar multiples of in form a
division ring isomorphic to P(21)- If 0 is a FP-series we further introduce 0s by

(5.4) 07T,  =   7TS0\

One can easily calculate 0s explicitly:

(5.5) 0S(O = y is, t^yists-1, 5)0(s/j-1)"c*).

Now any nonzero FP-series on G can be related to the FP-series on G+, or
rather to the elements of the group V, by representing it in the form

(5.61) $ = 7rrP(l + 0), rGG, pG P, 1 + 0GT.

If similarly
* = 7rí£r(l + \¡>),

then their product is found to be

(5.62) $-• = T„7(r, s)p"Mail + a'tya + ^ + a-tyaif/).

By choosing s = r~\ a = iyir, s)p"M)~\ and 1+^ = (l+r-tyv)-1 in G, P, T
respectively, we obtain the inverse of -•. Hence we have the following
theorem.

(5.7) Theorem. The FP-series on G with coefficients in P form a division
ring 2.

It may be remarked that the mapping

4> —» r

is a valuation(22) of 2. We now assume further that P is an ordered division
ring, with order relation < ; that the operators w apply to the order of P as
well as to the algebraic operations; and that the factor set is positive valued:

yir, s) > 0 for all r, s G G.

Then we can order the FP-series by putting
(5.81) <i>>0 if and only if p>0.
One easily satisfies oneself that in this way S becomes on ordered division

(21) If Ttp is identified with p then p7r, = irrp"(r); in conjunction with (5.3) this determines
the multiplication completely. In (5.62) (below) we write o-^'o- instead of (xio-)-1^"?), and so
on.

(M) Noncommutative if G is noncommutative. Cf. Schilling [ll].
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ring. It is also seen without difficulty that
(5.82) 7Tr<ir, in 2 if and only if r>s in G.
Finally we observe that if the trivial factor set 7 = 1, u = e is chosen, then

the mapping
r *-* Tr

is an isomorphism (cf. 5.3). Thus we have the following theorem.

(5.9) Theorem. Every ordered group can be embedded in an ordered division
ringi2*).

6. Appendix. A theorem on the group ring of a free group. We have as a
corollary of our results that the group ring of a free group can be embedded
in an ordered division ring. We now show that the Ore criterion (Ore [10])
does not apply to the group ring of a free group of, let us say, two generators.

Let F then be the free group generated by two elements a, b; for the pur-
pose of this section it need not be ordered. We use the "length" of an
element of F (and thus a partial order) : if

n

g = II «"'**' («» * 0, * - 1, • * • , n;ß, t* 0, v - 0, • • • , » - 1)
1—0

then

Hi) = El «»I + 22\ßA
is called the length of g. The unit element has zero length. We denote it here
by e. We denote complexes (that is, subsets of F) by X, Y, and so on. X+ Y
denotes the set theoretical sum of X and Y; XY the complex formed of all
products xy, x(EX, y£F; and the element x and the complex whose only
element is x will not here be distinguished.

(6.1) Lemma. Let X, Y be complexes in F, not both empty, and let

(6.11) X + Xa-XC\Xa = Y+ Yb,
(6.12) Y + Yb - Y C\Yb = X + Xa.

Then X or Y is infinite (24).

Proof. We may assume X finite but not empty. Then X+Xa is also
finite and not empty. Let g he an element in X+Xa of maximal length, and
consider the elements

(23) vVe have actually reversed the order of the group in the embedding process: but that
is obviously immaterial.

(24) In other words: if every element in X or in Xa but not in both is also in Y or in Yb,
possibly in both; and if every element in Y or in Yb but not in both is also in X or in Xa,
possibly in both; then both X and Fare empty, or else at least one of them has infinitely many
elements.
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(6.13) gi = ga,       gi = ga~l.

As g lies in X or in Xa, gi lies in Xa, or g2 lies in X: in any case one of the two
lies in X+Xa. Hence

x(gi) _; X(g)    or   X(g2) ;_ A(g).

However, the definition (6.13) shows that X(g.) =X(g) ±1, the negative sign
applying only when the last generator of g is cancelled by the a±l. Hence g
must end in a (positive or negative) power of a.

Also either

X(gi) = X(g) + 1    or    X(g2) = X(g) + 1,

so that either gi or g2 does not lie in X+Xa. Hence g cannot lie in both X and
Xa, and we see that

g G X + Xa - X C~\ Xa;

thus by (6.11) also
g G F + Yb.

Therefore any element of maximal length in X+Xa ends in a±l and also lies
in F+ Yb. The symmetry of the assumptions then shows that such an ele-
ment cannot be of maximal length in F+ Yb, because it does not end in
b±l; and no longer element can be of maximal length in F+ Yb because it
could not lie in X+Xa; Y+ Yb has no element of maximal length, but is not
empty either. Therefore F+ Yb is infinite, and so then is F.

(6.2) Theorem. Let P be a field, F the free group of two generators a, b,
and VF the group ring of F over P(25). Then the elements

(6.21) a = el + a-1    and    ß = e 1 + bl

have no common inontrivial) left multiple in P/?.

Proof. Assume that

(6.22) ¡:a = r,ß = C,

where

£ = glPl + • • •  + gmPm, V =  haï + • • •  + hnan

are elements of the group ring, and so is

? = ¿in + • • • + kpTp.

We may here assume all p, a, tj^O. Denote the sets of components of £, 77, f by

(K) The theorem can be considerably generalised by weakening the assumptions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1949] ON ORDERED DIVISION RINGS 215

X = igi, ■ ■ ■ , gm),        Y = ihi, ■ ■■ , hn),        Z = iki, ■ ■ ■ , kp).

Then clearly
X + Xa - X H Xa ^ Z ^ X + Xa

and also
Y + Yb - Y C\ Yb = Z ¿ Y + Yb.

Hence Lemma (6.1) applies; and as X and Fare finite, they must be empty.
Then ¿ = 77 = 0, and (6.22) can only be trivially satisfied. This proves the
theorem, and shows that the Ore criterion does not apply to the group ring
(over any coefficient ring) of the free group.

Thus we see that if we introduce quotients into the group ring Pf(26), the
resulting system will be closed with respect to multiplication and division
(by elements 5^0), but not with respect to addition; if we now introduce
(finite) sums, we presumably lose again the multiplicative group property.
Thus we can alternately close the system with respect to multiplication and
(nonzero) division, and with respect to addition(27). In this way we get a
"tower" of systems, all in any division ring which contains the group ring.
Adaptation of the classical Steinitz argument (Steinitz [13]) shows that the
union of the tower systems is the division ring generated by Pp. It is still an
open question whether the tower is finite or not; but it seems reasonable to
conjecture that the tower must be infinite.

Part II. Embedding the real numbers in an ordered division ring
7. Introduction. The second part is independent of the first, and deals with

a different problem. It is well known that every ordered field can be embedded
in an ordered field enjoying certain completeness or continuity properties(28) ;
in particular every ordered field can be so extended as to contain (a subfield
order-isomorphic to) the field of all real numbers(29). The main result we
prove here is that this remains true for ordered division rings. The methods
required to establish this are, however, much more elaborate than in the
commutative case.

Following the classical Steinitz procedure we adjoin elements singly. The
elements we adjoin are characterised by their algebraic relationships to "real

(26) This is certainly legitimate, Ore criterion or no, as the group ring can be embedded in
a division ring.

(2r) Subtraction looks after itself, because — 1 is already present in P.
(28) Cf. Hahn [4] for a discussion of Hubert completeness and Veronese continuity; Artin

and Schreier [2 ] for the algebraical theory of ordered fields.
(29) This latter fact is not well known. Completion of an ordered field (for example, by

means of Cauchy filter bases) does not in general complete a subfield with respect to the order
topology of the subfield. This fact has been repeatedly overlooked. The result quoted in the
text follows, for example, from results of MacLane [l6]; his method is not available in the non-
commutative case.
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numbers" already present in the division ring, and by their order relations
with respect to them(30). Accordingly we have to prove two things: Firstly,
that the adjunction of a certain element is algebraically possible; secondly,
that then the resulting extension can be ordered so as to continue the order
of the given division ring and at the same time allocate to the newly ad-
joined element just the "right" order relations with respect to the real
numbers already present.

After some preliminaries (§8) we prove (§9) that the adjunction of every
element required in the process is algebraically possible. The adjunction of
elements which are transcendent over the field P of real numbers already
present is almost trivial. Not so the adjunction of algebraic elements over P;
for it is well known that in the case of division algebras of finite degree over
their centre certain algebraic extensions of the centre are impossible (31).

In §10 we show that a simple transcendent extension of an ordered divi-
sion ring can be ordered so as to place the adjoined transcendent in its
"proper" place relative to the real numbers already present. This can in
general be done in many different ways; only the "macroscopic order"—
placing rational functions of the transcendent in relation to real numbers—is
uniquely prescribed.

Ordering a simple algebraic extension requires very elaborate preparation ;
at any rate if the element 6 to be adjoined is going to be "infinitely near" to
elements f already present in the division ring(32). The fundamental idea—
very roughly speaking and under certain restrictions—is to show that a poly-
nomial which does not vanish at 9 does not change sign in a sufficiently small
neighbourhood of 6; so that its sign at 6 can be defined as its sign near 6. But
"a sufficiently small neighbourhood of 6" has no obvious meaning before 6
has been placed relative to the elements f ; and the idea here sketched will
be hardly recognisable when the details are filled in (§§11-16, especially
§15).

Once all transcendent elements and all algebraic elements infinitely near
to elements already present have been adjoined, and the resulting extensions
ordered, there remain only algebraic elements which are not going to be infi-
nitely near to any elements already present in the division ring. They pre-

(30) What we mean by the real numbers already present in the given division ring will be
described more precisely in §8. Amongst them are in particular the rational numbers, that is,
the elements of the prime field of the given division ring; and all real numbers can of course
be distinguished from each other (though not necessarily from other elements of the division
ring) by their order relations relative to the rational numbers.

(31) That is, introduce proper zero divisors; cf. Jacobson [7]. Of course such division alge-
bras can not be ordered (cf. Wagner's Theorem 18.7). This then is the point where the fact
that our division rings are ordered has algebraic consequences.

C2) By this we mean that there are (of necessity infinitely many) elements f in the divi-
sion ring which have precisely the same order relations to the real numbers as 8 will have to
have.
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sent no further problem, macroscopic order being all that is required in their
case (§17).

8. Preliminaries and notation. We denote by """P* the field of real num-
bers in their natural order; by T0 the prime field of rational numbers con-
tained in it. Subfields of ^P* and elements of "T* (that is, real numbers) will
be marked by the same accent "*\ where they are used for purposes of com-
parison. Thus "~0, """1 are the zero and unit element of T*; but suffixes, ex-
ponents, and so on, are written without accents.

Let 2 be an ordered division ring, Z its centre, P0 the prime field of 2.
Then P0_=Z, and P0 is order-isomorphic(33) to T0. The aim of this part is
to show that 2 can be extended to an ordered division ring 2*^2 which
contains in its centre Z* a subfield P* order-isomorphic to ^P*.

Following the method of Steinitz [13] we adjoin new elements one at a
time, first the transcendent elements, then the algebraic elements. In fact
we describe only simple extensions: the usual well-order and "tower"
arguments are omitted.

The order-isomorphism(34) between P0 and To sets up a "natural" map-
ping

a —► ~^a

of 2 into the compact system obtained from T* by adding two elements
+ "~a> and — ̂ oo with the usual algebraic and order conventions. Thus if
(rG2 and if a>po for all poGPo, then we put ^<r=+^o° ; if <r<p0 for all
PoGPo, then we put "V» — ̂ ». If neither of these two cases obtains, then
those PoGPo which are greater than er on the one hand, and those which are
smaller than a on the other hand, define a Dedekind section in P0, and thus
a Dedekind section in To. This in its turn defines a unique real number
'VGT*. This mapping will be used throughout.

(8.1) Lemma. If a>r then "V^^r.

(8.2) Lemma. If criGZ, <r2G2, ">iGT*, ~o-2GT*, and ffi+c_«ri,
-"i<r2=r2, then

^tj G ^P*   and   ^t% = ^ai + ^~<r2;

"~T2 G "^P*    and    "^t2 = ^ai^vt.

The proofs are obvious and omitted.
It follows that those elements of 2 which are mapped onto elements of

"T* (that is, the elements not infinitely large compared with the unit ele-
ment of 2) form a ring, which we denote by 9Î. The mapping of 9Î into T*
is a homomorphism. The kernel of this homomorphism consists of the ele-

(M) We distinguish between "isomorphism," relating to the algebraic operations, and
"order-isomorphism," relating to the order as well.

C) There is only one.
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ments mapped onto the zero T of T* (that is, the elements infinitely small
compared with the unit element of 2) ; it is a (two-sided) maximal prime ideal
in ÍR which will be denoted by $. We shall sometimes refer to the elements
of 2 — 9?, 9?, $ simply as "infinite," "finite," "infinitely small" elements.

(8.3) Lemma. The map ~9î of 9Î in T* is afield.

The proof is obvious and omitted. ^9Î may, of course, coincide with ^P*
or with "TV

We denote by P an arbitrary subfield of ZP\9t. That there are subfields of
ZP\9î is obvious: P0 is one of them. The mapping $R—>""9î maps P onto a sub-
field T of T*. This mapping, being a homomorphism between two fields,
must be an isomorphism ; we shall repeatedly use the fact that the step from
elements of T back to elements of P is unique.

Amongst the subfields P of ZA9Î there are maximal subfields ; for the union
of an increasing chain of such fields is again a field, and again in the centre
Z, and again in 9Î. The maximal subfields of Zf~\dt are not in general uniquely
determined; they need not even be isomorphic. We denote one of these
maximal subfields by Pma_.

We may of course assume that Tma.^T*'—otherwise no extension
would be required. It is then possible to adjoin to T-a* an element ^f?GT*
— Tmax; the corresponding adjunction of an element 6 to Pmax, and thus to
2, forms the subject of the following paragraphs. We have to distinguish
various cases, for example, according as ^~8 is transcendent or algebraic over
Tmax. In much of what follows the maximality of Pmax is not essential, and
we operate with an arbitrary P.

We shall make extensive use of the polynomial domains 2[x], SRf.r],
fy[x], P[x], T[^„]. The variable will throughout be assumed commutative
with the coefficients. Following Albert [l] we call a polynomial "monic" if its
highest coefficient is 1.

Finally we mention two simple facts which will be found useful:

(8.4) Lemma. 7/pG9î, cG2, p'=<r-1p<r, then "p' = ">.

Proof. The mapping p—*p' is an order-automorphism of 2. Elements of the
centre, and in particular elements of P0, are left invariant by it. Hence p and
p' define the same Dedekind section in P0, '"p and ^~~p' define the same Dede-
kind section in TV and are therefore the same real number.

(8.5) Corollary. If pE?R[x], <rG2, p' = a~lpa, then ">'= ^p.

9. Algebraic adjunction of an element. The process of adjoining an ele-
ment 6 to 2 naturally divides into two parts: Adjoining 6 algebraically, that
is, forming a division ring 2(0), not yet ordered, which contains, and is gen-
erated by, 2 and 8; and then ordering 2(0). In this paragraph we deal with
the first step.
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We say that "8 can be adjoined to 2" or that the adjunction of 8 to 2 is
"possible" if the result of such an adjunction is again a division ring. If the
division ring of real quaternions is extended by the algebraic adjunction of
(_l)i/210 t[je centre, the extension which results (namely, quaternions with
complex coefficients) is no longer a division ring; we should, therefore, say
that ( —1)1/2 cannot be adjoined to the real quaternions (so as to lie in the
centre).

Let ^~8 be chosen in T* but not in T(8S). If ^6 is transcendent over T,
we have to adjoin a transcendent 8 to P: we do this by adjoining a transcend-
ent to 2.

(9.1) Lemma. A icommutative) transcendent 8 can be adjoined to anyi36)
division ring 2.

Proof. We first form the polynomial ring 2 [8] of a variable 8, commutative
with all coefficients, and then the left-quotient division ring 2(0). That this
exists follows directly from results of Ore [10](37).

Now let "~8 be algebraic over T, and let

(9.21) "7(~„) = ~x* + -an-i^x"-1 + ■ ■ ■ + ~«0, ~<~„GT

be the irreducible monic polynomial with coefficients in ^P of which ^8 is a
root:

(9.22) TT0) = T.
Then correspondingly

(9.23) /(*) = as" + a„_i„"-1 H-+ a0, a, G P,

is the irreducible monic polynomial with coefficients in P a root of which we
have to adjoin to P(38). Note that (9.23) is uniquely determined by the iso-
morphism between P and T(39).

(9.3) Lemma. If fix) is irreducible over 2, then a root 8 of /=0 can be ad-
joined to 2.

Proof. In the polynomial ring 2[x] (of the commutative variable x),
fix) generates a two-sided principal ideal without right-ideal divisors; the
residue class ring with respect to this ideal is the division ring 2(0)(40). Note
incidentally that 8 lies in the centre of 2(0).

f36) Not assumed maximal.
(M) Not necessarily ordered.
(") Alternatively one can form the power series division ring by means of the free abelian

group of one generator 9 in the obvious order (cf. first part of this paper), then pick out the
division ring generated by 6. Cf. also Dubreil [3, chap. 5] and Jacobson [7, chap 3].

(3S) Such a root may or may not be present in _ already.
(39) The notation (9.2), especially (9.23), will remain in use throughout.
(40) Cf., for example, Jacobson [7, chap. 3]. _ need not be ordered for this.
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(9.4) Lemma. If fix) is reducible over 2

(9.41) fix) = gix)-hix)

and if g and h are monic, then all coefficients of g and h lie in 9t(41).

Proof. Let

(9.42) g(„) = ** + pVix*-1 + • • • + ßo,
(9.43) *(*) = x' + yi-ix1-* + ... +70}

and assume that not all i-,G9î- Let k be the greatest suffix for which ßK is
not in 9Î (that is, infinite). Consider the coefficient aK+i of x'+l infix)

a«+i = & + PV¡-i7í-i + ßK+iyi-i + • • • -

As aK+i is finite, and so are ßK+i, p\+2, • • • , at least one of the 7x must be
infinite.

Now let

ß = max (| 0o|, | ßi\, ■ • ■ , | ßk-i\ ), y = max (| 7o|, | 7i|, • • • ,| Yi-i| ),

and put

g' = y-^gy,        h' = y~lh.

Then the coefficients of g' and h' all lie between —1 and +1, and therefore
certainly in dt. Also both g' and h' have at least one coefficient equal to+1,
so neither of them lies in ty[x]. Hence their product g'h' does not lie in
^ß [x] either(42). But then, as ß and 7 are infinite,

/(*) - ßyg'ixWix)
has at least one infinite coefficient, which is absurd. Hence g can have no
infinite coefficient; similarly for h, and the lemma is proved.

(9.44) Corollary. 7/ÖG2 is algebraic over afield P^Zn$ then 0G9Î.

For/(x) (given by (9.23)) then has x—8 as left factor in 2[„] (cf. Jacob-
son [7, chap. 3]):

fix) = ix- 8)hix),

and the lemma applies.

(9.5) Lemma. If fix) is factorised in two ways into monic factors

(9.51) f=gh = g'h'

(4X) This is analogous to Gauss' lemma. The absence of commutativity is seen to make
little difference to the proof.

(tí) Mapping <R[*] onto ""9i['"\e] we have ^g'p^O, ^*V^0, hence ""(g'A') j^O. Or
else: as $ is a prime ideal in 9Î, ty[x] is a prime ideal in 9í[ac].
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and if g and g' differ infinitely little:
(9.52) g=.g'(mod^[„])

then they are identical:

(9.53) g = g',        h=h'.

Proof. Let g, h be given by (9.42), (9.43) and

(9.54) g'ix) = x» + ßLix"-1 + ■ ■ ■ + ß'Q,

(9.55) *'(*) = x' + 7I-1*'-1 + • • • + 7o.

By (9.4) all coefficients ßK, y\, ßl, y{ are in 9î. Now by (9.51)

(9.56) gh - g'h' = (g - g')h + g'ih - h') = 0,

identically in x. Here g — g' is a polynomial of degree at most/% — 1. Assume
now that it is not identically 0, and let

5 = max ( | j8o - ß'o |, • • • , | ßk-i - ßi-i | ) ^ 0.

Put

g" = ig- g')ô~\       h" = ôhô~\       h'" - (A - *0*~*-
Then (9.56) leads to

(9.57) g" h" + g'h'" = 0.

From its definition, g" has coefficients between —1 and +1; at least one of
them is equal to ± 1 ; hence

-g" * T.

Also h" is a transform of h; hence (by 8.5)
Ä*w =  -Â.

Moreover, from (9.52)
~g' = ~g.

Finally, as g", h", g' all have finite coefficients and g' is monic, one sees
from (9.57) that h'" also has finite coefficients, and T"' is meaningful in
T*[T]. Thus, mapping (9.57) into T*[T], we obtain

(9.58) ~g"~h + ~g~h'" = -0.

But the degree of ^g" is at most k — 1, that is, less than the degree k of ^g.
Hence ^g and T must have a nonconstant common factor, and ^/=^"gT
has a multiple factor. But this it cannot have, as it is irreducible over a
(trivially) separable field. Thus the assumption that g — g' is not zero leads
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to a contradiction, and the lemma is proved.

(9.6) Theorem. If f factorises in 2[x] into monic factors, then these factors
lie in Z[x].

Proof. Let/ = gA, g and h monic, and let aÇL 2 be arbitrary. Then

/ = a~lfa = a~lgaa~lha.

Putting <r-1go- = g', o—lho- = h', we see from (9.3) that g, h, g', h' all lie in 9î[x],
then that g' and h' are also monic, from (8.5) that g' differs infinitely little
from g, from (9.5) that g and g' are identical. Hence (rg = ga, that is, g is a
centre polynomial. So then is h, and the theorem is proved.

(9.71) Corollary. J/0G2 is algebraic over a field PgZPi9t, then 8ÇZ.

For fix) (given by (9.23)) then has x-8 as left factor in 2[x](43):

fix) = ix-6)hix),

and the theorem applies. This fact should be contrasted with the situation in
division algebras (of finite degree) over a real number field; it illustrates the
(well known) transcendental character of ordered properly noncommutative
division rings. One naturally expects that the restriction to a field in ZC\dt is
too stringent, and that in fact every algebraic element over the centre lies in
the centre. This is indeed true, and can be proved very simply and ele-
gantly^) by an argument used by Albert [15] to prove a theorem of
Wagner [14].

(9.72) Corollary, If 0G2 is algebraic over a field P^ZnSK, then P(0)
=zr\<ft.

For every element of P(0) is algebraic over P; so (9.44) and (9.71) apply.

(9.73) Corollary. If Pmax is maximal in ZP\9Î, then 2 contains no alge-
braic elements over Pma- outside Pmax.

(9.8) Theorem. ///GPmax [x] is irreducible there then f is irreducible in
2[x].

Proof. If/ factorises in2[x] then by (9.6) it factorises in Z[x]; hence
commutative algebra applies. In particular the coefficients of any factor of/
in Z[x] are algebraic over Pmax, hence lie in Pmax by (9.73). But then / fac-
torises already in Pmax [„]. Thus the theorem is established.

(9.9) Corollary. If Y is chosen as a maximal subfield Pmax_=ZP\8î, then
no algebraic element over Pmax is contained in 2 ; but the adjunction of any such
element to 2 iand so to Pmax) is possible.

(48) Cf. (9.44) above.
(44) The author wishes to thank the referee for pointing this out.
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This follows immediately from (9.73), (9.8), (9.3).
10. Ordering a simple transcendent extension. We now have to show

how an extension 2(0) of 2 can be ordered. We are interested only in such
orderings of 2(0) which continue the given order of 2 and at the same time
allot the same order relations to 8 with respect to elements <r6_ as ""0 has
with respect to the corresponding '"V; and this is implied when we say that
2(0) can be ordered. In fact the requirements upon the order relations of
0 and the elements <rG2 will evidently be satisfied as soon as 0 has the
"correct" order relations with respect to the rationals, that is, if

(10.1) ^>i < ^0 < ">2 implies pi < 6 < pi

when pi, P2GP0, and "pi, "~p2 are the corresponding elements in T0.
In this section we deal with the case that ~~~8 is transcendent over T

or, what amounts to the same (§9), that 0 is transcendent over 2. The ele-
ments of 2(0) are of the form (cf. (9.1)) Q^P where P£_[i], _G2[0] are
polynomials in 0. We first order 2[0]; the ordering of 2(0) will then follow
easily. In fact we begin by ordering only those polynomials whose coefficients
are finite but not all infinitely small.

Let

(10.21) p = ¿p,0'G9l[0]-<B[0]
0

be a polynomial in 0, and put
n

(10.22) ~pi~ x) = 22 ~prx\
0

Then "p("0) is the element of T* onto which p is to be mapped by the map-
ping 0—>"0(46). Hence we define (as we have to, by (10.1))

(10.31) p > 0 when ~pi~8) > T,

and correspondingly

(10.32) p < 0 when ~pi~0) < T.

This we shall refer to as the "macroscopic ordering" (4S) ; it allocates a sign to p
whenever ^(^0)5^^0.

If ""0 is algebraic over "9Î(47), denote by

(10.41) ~gi~x) = ~x* + ~ßk-i~xk~i + • • • + ~ßo

Í,45) Observe that to any £G$R[#] —fy[s] there corresponds a unique polynomial p(
and a unique real number ^p(~~6).

(4e) It is (in general) a partial ordering only.
(4?) 8 is transcendent over P, but may be algebraic over 9Î ( _; P). In fact #G

is not excluded. In this case *~~g is linear.
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the monic irreducible polynomial in "9î[T] of which "0 is a root:

(10.42) ~gi~B) = T,
Then to ^p(T) (given by (10.22)) we can find a number X_:0 and another
polynomial "^g(T) G "9î[T] such that

(10.43) ~pi~x) = rgi-x)y-qrx), -qi-d) ^ T.
We now define

(10.51) p>0 if~?r-0)>T,
(10.52) p < 0 if ~qi~8) < "O.

This contains the macroscopic ordering (10.3) as a special case, namely, X = 0.
There is a certain arbitrariness in this definition. Thus, for example, if

g = 6" + pVi0*-1 + ■■• +ßo

is any polynomial^8) in 0 whose coefficients map onto those of "^g(T), then
(10.5) decrees that g>0. One could equally well make g<0 by defining

p ^ 0    according as (-T)x~ç("0) ^ "0;

and other, more complicated, ordering conventions can also be devised,
unless "0 is transcendent over "9Î, when the macroscopic ordering already
exhausts all possibilities.

The ordering of 2[0] and 2(0) is now automatic. If PG2[0] is any non-
zero polynomial, denote by ir the greatest of the absolute values of its coeffi-
cients, and put

P = irp.

Then the coefficients of p are finite because they lie between — 1 and +1, and
they are not all infinitely small because at least one of them is ±1. Hence
(10.5) applies to p, and we put

(10.61) P ^ 0 according as p ^ 0.

Finally if Q~1P is any element of 2(0), we define

(10.62) QrlP ^ 0 according as QP ^ 0(49).

We now have to show that we have in fact defined an order in 2 [0]. For
the remainder of this section p, pi, ■ • • , q, q\, • • • are polynomials with
finite coefficients not all infinitely small(60), that is, in$[0]— $[0];P, Pi, • • -,
Q, Qi, ■ ■ ■ are polynomials with arbitrary coefficients, that is, in 2[0], and

(4B) g is not uniquely determined by (10.22), but only modulo Ç[fl].
(49) It is evidently sufficient to define what is to be positive and what negative; then any

two elements can be compared by the sign of their difference.
(") Except in the proof of (10.83).
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the elements of 2(0) are represented in the form Q-1P.

(10.71) Lemma. If pi>0, p2>0, then pi+pi>0 and pip2>0.

Proof. Introduce (as in (10.43)) X, p, ^qi (T), "g2(T) by

ir«) = (~_(~*))x~?i(~*), ~_i(~0) > T,
"riM - i~gi~%)y~qii~x), ~q*i~e) > T,

and similarly v, "_(T) by

Tir*) + ~MT*) = (~_(~*))'~_(~*).      ~qi~6) * T.
Then j< = min (X, p) and

~qi~8) = -qii-6)  or ~?(~0) = ~g,(~0)   or ~?(~0) = ~gi(~0) + ~?î(~0),

according as X <p or p <X or X =p. Hence in any case ^qi^O) >T, and pi+pi
>0 follows. Moreover

~_-(~*)Ti(~») = (~s(~*))x+m~$i(~*)~Çî(~*)

and

~qii~o)~qÁ~Q) > "0.
Thus also pip2>0, and the lemma follows.

(10.72) Lemma. If pi=p2 (mod $[0]), andpi>0, thenp2>0.

Proof. As corresponding coefficients of pi and £2 differ only infinitely
little, the corresponding real polynomials coincide:

~P\<Tx) = ^Pti^x).
Hence also

~_iC"*) = ">¡(~*).
and

~?»(~0) = ~?i(~») > "0.
(10.73) Corollary. 7/<rG2, and p>0, then o-1pa>0.

This follows from (10.72) and (8.5).

(10.74) Lemma. 7/ pG$K[0]-'i(3[0] /Aew either p>0 and -p<0, or p<0
and —p>0, but not both.

The proof is obvious and omitted.

(10.81) Lemma. If PG2[0] then either P = 0, or P>0 and -P<0, or
P<0 and —P>0, and these three cases are mutually exclusive.
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The proof is obvious and omitted.

(10.82) Lemma. 7/<tG2, and <r>0, then aP^O according as P^O.

For if the maximum of the absolute values of the coefficients of P is v,
then that of aP is air.

(10.83) Lemma. If Pi>0, P2>0, then Pi+P2>0.

Proof. Denote by tr the maximum of the absolute values of all the co-
efficients of Pi, P2, and P1+P2, and put

Pi = irpi,       Pi = irp2.

Then also

Pi + Pi = iripi + pi).

Now pi>0 and p2>0 by (10.82), and it suffices to show that pi+pi>0. Also
pi, pi, and pi+pi all have finite coefficients, and at least two of them have
coefficients not all infinitely small. If piG9î[0]-^[0] and p2G9î[0]-^[0],
then (10.71) shows that pi+p2>0; if iiG9î[0]-^3[0] but /_€$[<?], then
(10.72) applies, and the lemma follows.

(10.84) Lemma. J/crG2, and P>0, then a~1Pa>0.

Proof. Let P = 7rp, tt>0, pG3f[0]-^[0]- Then o-lPo- = o-1ircro-1pa'
<r-17rer>0and o-lp<rE.^.[8] -ty[8]. Hence (10.73) and (10.82) apply, and the
lemma follows.

(10.85) Lemma. If Pi>0, P2>0, then PiP2>0.

Proof. Let again

Pi = iripi, xi>0,ii G «[»]-?[»],

and

Pi = iT2p2, "2 > 0, Pi G 9t[e] - Ç[9].

Then PiP2 = 7ri7r2-7r_~1pi7r2-p2, iri'jr2>0, and ff2-1/>i-2• P2>0 by (10.73) and
(10.71), hence PiP2>0 by (10.82).

(10.86) Corollary. // PiP2?¿0, then of Pi, P2, PiP2 just one or all three
are positive.

(10.91) Lemma. If Qr1Pi = Q2~1P2 and <?i-1Pi>0 then Ö2-1P2>0(51).

Proof. As Qi-1Pi = (?2-1P2, there are two polynomials Ru P2 G2[0] such

(5I) The order convention (10.62) does not depend on the element of _(0) only, but also on
its representation as a left-quotient of polynomials. The lemma shows that the ordering is in
fact independent of the representation.
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that
RiPi = R2P2,        R1Q1 = R2Q2,       R1R2 ^ 0.

As Pi(?i>0 by assumption, Px and Ci are both >0 or both <0 by (10.86);
hence P1P1 and R1Q1 are both >0 or both <0, and P2 and Q2 are both >0
or both <0, all by (10.86). Thus again P2<22>0, and the lemma follows.

(10.92) Lemma. 7/<2-1Pi>0, Q~1Pí>0, then Q-^Pi+Q^PiX).
(10.93) Lemma. If QrlPi>Q, QrlPi>0, then Qr1Pi+Q2~1P2>0.

The proofs are obvious and omitted.

(10.94) Lemma. If <?i-1Pi>0, Q2-1P2>0, then iQr1Pi)iQi-1P*)>0.

Proof. There are polynomials Pi, P2 such that

(10.941) P1P1 = R2Q2

and with any such pair Pi, P2

(10.942) iQï'PùiQï'Pi) = (tfiÖi)-1(#2P2).

By assumption Pi(X_>0, P2Q2>0; hence Pi and Qi are simultaneously ^0,
and so are P2 and Q2; then also P1P1 and R1Q1 are simultaneously ^0, and
so RiPi and R2Q2. Then, because of (10.941), R1Q1 and R2P2 are simultane-
ously ^0, and thus (P1Ç1) (P2P2) >0. This combines with (10.942) and (10.62)
to give the lemma.

(10.95) Lemma. If Q-1PG2(0), QE2[8], PG2[0], then either P = 0, or
<2-1P>0, or Q-1P<0, and these three cases are mutually exclusive.

The proof is obvious and omitted.
Combining all these facts we have now the following theorem.

(10.10) Theorem. The transcendent extension 2(0) is ordered by the con-
ventions (10.5), (10.6); its order continues that of 2, and (10.1) is satisfied.

We have given the proof in some detail here; in §17 we shall meet with
an analogous situation and shall then refer back to this argument. We note
that all lemmas (10.8) follow from (10.61) and (10.7) without further refer-
ence to (10.5), and all lemmas (10.9) follow from (10.62) and (10.8) without
further reference to (10.5), (10.61), or (10.7). One easily shows in the same
way:

(10.11) Corollary. If a ring is ordered and if any two elements have a
inontrivial) common left multiple, then the division ring A of its left quotients^2)
can be ordered uniquely so as to continue the order of the given ring.

(52) An ordered ring can have no proper divisors of zero ; hence the existence of A follows
from Ore [l0].
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11. Relative orders of magnitude and alternators. Ordering an algebraic
extension of 2 requires rather more preparation(53). It is convenient to intro-
duce a sort of Bachman-Landau notation(54) : If a, tG2, we write

(11.11) a = Oir) if a = pr with p G 91,
(11.12) a = o(t) if a = vT with tt G ?;

and we use these symbols in conjunction with addition and multiplication in
the customary manner. We also use as abbreviations

(11.13) 0(nVr2) =0(max( |n |, |r,|)),
(11.14) 0(ri&r2) =0(min(|T1|,  |i_|))f

and similarly o(tiVt2) and o(ri & t2). Thus, for example, <r = o(riVr2) means
that (7 = o(ti) or a = ÍTi); and all the following formulae are equivalent:

(11.21) ri - r2 = oin V r2),

(11.22) T2=ri + oin),

(11.23) r2 = n(l + o(l)),
(11.24) r2 = (1 + o(l))n,
(11.25) ri = r2 + oin) = r2(l + o(l)) = (1 + o(l))r2,

(11.26) ri- r2= o(n&T2)(55).

We also use the "alternator" (56)

(11.31) A,r = ar — Ta.

The following (familiar) properties of the alternator are easily confirmed.

(11.32) Ara = - A.T,

(11.33) A.in + Tt) - A.Ti + A,n,
(11.34) -4„(tiTS)   =   iA.T^T-t +  TlA,Ti,

(11.35) A.t™=    22    t"ÍA,t)t>.

(11.4) Lemma. If a = Oil), t = 0(1), /Ac«
ylar = o(<r & t).

Proof. Because of the antisymmetry (11.32)  it suffices to show that

(53) if -^gt the algebraic element to be adjoined, does not lie in ^9{, the procedure can
be very considerably simplified. §§11-15 pave the way for ordering 2(0) when     flG'^3?.

(H) Cf. Hardy [5, p. S ] for the references.
(K) The whole symbolism of "orders of infinity" can be easily, and not unprofitably, ap-

plied to any non-Archimedean ordering. Thus, for example, one could add ti~t2 as another equiv-
alent formulation.

(") "Inner derivation"—Jacobson [7, p. 102]. Many of the formulae derived here and
later are well known.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1949] ON ORDERED DIVISION RINGS 229

-¡4„t = o(t). If t = 0, then the result is trivial; so we may assume r^O. As
(7 = 0(1), a defines a Dedekind section of the rationals. If pi, piGP2 and
Pi<(T<p2, then also pi<T-1<rr<p2; hence T~lar defines the same Dedekind
section of the rationals as a. Thus

T-1<rr — a = o(l),

whence ar — ja = oij), and the lemma follows.

(11.51) Lemma. If a = 0(1), r =0(1), m a positive integer, then

-77. _ Tm _     ^p    a"T"ia — t) + oia — r).
H+v=m~ 1

Proof. One has
am   _    _77l   _     -77.   _    am-lT   _|_   (jTTl-l-   _    0-771-2-2   _j_   0-77.-2-2-1_    .    .    .     _j_    --77.-1    _    -77.

= am-\a — t) + am-\a — t)t + ■ ■ ■ + (<r — ^r"1-1

= (a"1-1 + o-m-2T + • • • + aTm~2 + Tm-X)ia — t)

+ <Tm-2^„_TT + ./»'-M^r2 +   •   •  •   + i.-rT"1"1.

But all the alternator terms are oia—r) by (11.4), and the lemma follows.
When a and r are infinitely close to each other, one can say more.

(11.52) Lemma. 7/<r = 0(l), T=<r+o(o-), then

-77. _ --T. = w-,7.-i(-- _T)_|_ 0(- _ T)

Proof. We may assume a 5*0. Put

7T = rcr-1 —  1.

Then ir = o(l) and r=o-(l+7r); also

T> = (<r(l + t))' = a'-a-^^il + »Vf » •*-*"■»(- 4- x)<r-2.(1 + t)
o

= tr'II (1 + o-"7T<r«).
»-1

But or-"ir<7' = o(l) and II (l+o(l)) = l+o(l); hence T' = a"(l+_(1)). (11.51)
then gives

-m _  -77.  _  nyjm-l^  _j_  0(l))(,j —  t)  +  o((T —   t)

and the desired result follows immediately(67).

(11.53) Lemma. If a = 0(1), r = 0(1), and a and r are permutable with each
other, then

iii) when <7 = o(l), both (11.51) and (11.52) become trivial and useless. For then both
terms on the right-hand side are o(<r —t), and the second term may not be negligible com-
pared with the first.
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_-__-_ m<rm-i/a — T) -)- Oiia — r)2).

The proof is obvious and omitted. The fact is, of course, quite useless
unless T=o- + o(a).

12. Rate of change of a polynomial and approximations of roots. We now
study a polynomial with coefficients in 9Î for arguments in 9Î; and in particu-
lar for "infinitely small changes of argument." Let

(12.11) pix) = ¿P„*"'G9?[*]-
0

We then define, when £G2,

(12.12) PÍZ) = Í2p¿'-
o

This notation should not be looked upon as a trivial application of the custom-
ary convention; for in (12.11) x commutes with the coefficients : x is by defini-
tion in the centre of 9î[x]. But in (12.12), £ need not commute with the coeffi-
cients: neither £ nor the p, need be in the centre of 2. Thus we do not have to
distinguish between px and xp; they are the same element of 9c[x]. But p£
and £p may well be different. It should be observed then that (12.12) is not
the most general polynomial expression in £ (though (12.11) is the most
general polynomial expression in x)(68).

We further introduce the "derivative"
k

(12.21) p'ix) = J2 "P'X'-1,
i

and correspondingly

(12.22) p'iO = 22 «P.Ç-1.i
Obviously then ^p'i^x) is the derivative of ^p(^x) in ^Dî[^x].

(12.31) Lemma. J/£i = 0(1), ^ = 0(1), then

Piïù - Pih) = 0(ii-£2).
This is an obvious corollary of (11.51). Similarly (11.52) and (11.53) give

immediately:

(12.32) Lemma. J/£i = 0(1), £2 = £i+o(£i), then

í(íi) - Pih) = />'(£i)(£i - fc) + oi$i - £2).

(*») In §§9, 10 we have sometimes substituted an element 8 of 2, or of an extension 2(0)
of 2, for a; in a polynomial />(*)Gs[s]- But then we either knew (§10) that the element 8 was
in the centre of 2(0), or we knew (§9) that the coefficients of p(x) were in the centre of 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1949] ON ORDERED DIVISION RINGS 231

(12.33) Lemma. If ^ = 0(1), £2 = 0(1), and £t and £2 are permutable with
each other, then

pito - pit») = p'ièùib - to + o((£i - to')-
Note that we need not here assume £i or £2 permutable with the coefficients

of the polynomial.

(12.4) Corollary. If £i = 0(l), £2 = £i+o(£i), and p'ito^oil), then

(12.41) pito - pito = P'itoiïi - toil + oil)),
and also

(12.42) £i - £2 = Oipito - Pito).
(12.32) and (12.33) suggest some simple applications of Newton's ap-

proximation method:

(12.5) Lemma. If pG9î[x],£ = 0(1)

(12.51) £^0(1)(69),
(12.52) piQ = oil),
(12.53) p'iS) ft oil),

then there is a £iG9t such that

(12.54) Pito = oipi!;)),
(12.55) P'ito^oil).

Proof. We put

(12.56) gi - . - fiD-ipiS).
Then £i = £+o(£) and we can apply (12.32). Thus

pit) - Pito = p'ío-p'ío-'pío + oip'o-yip®) = pa) + oipiQ),
and (12.54) follows. (12.55) follows easily from (12.31) (applied to p' instead
oip).

(12.6) Lemma. 7/pGZ[x]n5î[x], that is, if p is a polynomial with finite
centre coefficients, and i/£ = 0(l),

(12.61) tt*AU,
(12.62) piQ = o(l),
(12.63) P,(&*oil),

then there is a &G9Î with £i =|+o(£) and

(*•) One can omit the assumption £^0(1) if one strengthens the next one to p(t) =o(f).
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(12.64) pito - oipim,
(12.65) p'ito * o(l).

Proof. We again define £i by (12.56) and notice that it is then permutable
with £. Hence we can apply (12.33) to give us (12.64). (12.65) follows as
(12.55) before.

13. Product polynomials and higher alternators. We now study the con-
nection between the value of a product of two polynomials for an argument
£G2, and the product of the values of the polynomials for the same argument.

Let pix), g(x) be two polynomials in 9î[x] and put

(13.11)
Pix) + qix) = r(x),

pix)qix) = six).

Then we define

(13.12) (_> + _)«) = r(Ö.
(13.13) ipq)i& « .({).
Obviously then

(13.14) (_> + _)(*)= Pit) + _(Ö.
but (pg)(£) may be different from p(£)_(£). How much (or how little) is shown
by the following lemma.

(13.2) Lemma. If £ = 0(1) then

(_»?)«) = Í(8.(0+ *(_(€)& Ö-
Proof. If pix) = 22* P'X', qix) = 22* o"x*\ tQen

ipq)ix) = 22 pKa\xK+x.
«.X

Thus

_>(Ö_(Ö - (_»?)({) =  ( 22 P«£")( Ç *x£x) -  Z P,<rx£^

= 22 (P«£VX£X - p«<rx£'i+x)

- Ep«(Z(£Vxe-<rx8£"))

= __P<(l>{«(<^))

= _C P<At*( 22 *x£xJ = I. Mf«î(£),
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or

(13.21) (pq)iQ = piQqiQ - 22 P«4«._(0,
K

and the lemma follows from (11.4).
The lack of symmetry in (13.2) is not fortuitous. It arises from the un-

symmetry of the definition (12.12). It is not difficult to show by an example
that p(£)g(£) — (_>_)(£) need not even be an 0(p(£)). We shall, however, re-
quire a better estimate later, under more stringent assumptions. To obtain
this estimate we first elaborate our alternator technique (§11) (see footnote
56).

The alternator -4„r is used as left operator, and its iterates are written as
powers

(13.31) A?T = A,iAlr).
Then (11.33) leads immediately to

(13.32) _1.(ti + r2) = Aln + a",t2,

and (11.34) leads to a "Leibnitz formula" for higher alternators of products,
which we shall not require. We only need that (60)

(13.33) AÎia'r) = <t_4*t.

The definition (11.31) of the alternator can be rewritten as

(13.34) ra = ia - A.)r.

Repeated application gives

(13.35) ra' = ia- A,)'t.

The power on the right-hand side can be evaluated by the commutative
binomial formula, because of (13.33). Then

(13.36) ra' = (a'-22 (~sf^C^jT*^ r,

which gives (directly or on comparison with (13.34))

(13.37) A,*r = (J2 (-ir1C«.„<r"_'XV.

Now let again

Pix) = 22 p'X",     qix) = 22 «rxxN
< x

(«o) <r" can be replaced by any p which is permutable with a; and right-multiplication by
p also permutes with alternation.
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so that (see (13.21))

(_>?)(0 = _>(0_(0-Ep.¿í«.(8.
Expanding the alternators by means of (13.37), this gives

ipq)it) = pit)qit) - Ep<(-i)'"1C.n¡?(9.

The coefficient of -4£g(£) is easily seen to be (apart from a numerical factor)
a higher derivative of p at £. With the usual notation, p<") for the pth deriva-
tive, we have then the following identity.

(13.4) Lemma(61). If the degree of p is k, then

ipq)it) = Pi&qi& + 22 i-i)"^pMiOA"(qiO.

(13.41) Corollary. If p, gG9i[x], £ = 0(1), then

(13.42) ipq)iQ = piOqiO - p'iQA^iQ + 0(_Jo(£)).
or more simply

(13.43) ipq)il) = piQqiQ + 0(_.fo(£)).
We get better extensions of (13.2) by comparing with a finite centre

polynomial.

(13.5) Lemma. 7//GZ[x]n9î[x], £, r = 0(l), then

Amr = f'iOA(r + Oía]t).
Proof. In (13.41) we assume p in the centre so that it is permutable with q

(13.51) pq = qp.
Also p(£) is then permutable with £, so that -4{p(£) =0 and by (13.4)

(13.52) iqp)iH) = qiQpiQ.
Combining (13.51), (13.52), and (13.42), we obtain

(13.53) piQqiQ - qiOpiO = p'iOAtfiO + 0(^^(0).
Here we identify p with /, and specialise q to be the constant t, and the
lemma results.

(13.6) Corollary. J//GZ[x]n9î[x], £,t = 0(1), a«_/'(£)^o(l), then

(61) This identity is true in any ring which contains the rationals; or in any ring whatsoever
if (l/p.\)p(l¿> is understood as a single, integrally defined symbol.
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(13.6.1) A(r = 0iAHi)r).

For A\r = oiAgr) by (11.4).
The significance of the following refinement of 13.2 will not become ap-

parent until later (§16).

(13.7) Lemma. Let p, <zG9t[x], £ = 0(1), and assume the existence of a
finite centre polynomial

(13.71) /GZ[x]H9î[x]
with the properties

(13.72) /(£) = 0iipq)im,
(13.73) /'(£)?* 0(1).

Then

(13.74) ipq)iQ = piQqi&il + o(l)).
Proof. We apply (13.6) with g(£) in the place of r to obtain first

a ait) = 0(_i/(t,î(8).
then (11.4) to the right-hand side of this to see that

Atqit) = «(/(I)).
Then    (13.72)    gives

AiqiS) = oiipq)®),

and this in conjunction with (13.43) gives

(_>?)«) = PiOqiS) + oiipqxm,
from which the lemma is obvious.

14. Degree of approximation to a root. We have seen in §12 that if we can
solve an algebraic equation (with coefficients in 9Î, or in 9ÎP\Z) approxi-
mately (in 9Î), then we can improve the approximation; in this paragraph
we investigate (roughly speaking) just how near one can get to an exact solu-
tion.

Let ^0G^9l (cf. footnote 53) be algebraic over "T, of degree n> 1. There
are then elements in 9t which map onto ^8. We denote them by f, with suf-
fixes where required (62) :

(14.11) ~r = ~0.
Denote by "/ the irreducible monic polynomial G^P[^x] of which ""<? is a

(ra) \ye reserve the letter 0 for the element corresponding to 6 and algebraic over P
which we wish to adjoint to 2; it will not come into this section at all.
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zero; and by/ the polynomial GP[x] which corresponds to ""/ (uniquely)
by virtue of the order-isomorphism of ^P and P. Then / is also irreducible
over P, and monic. Translating from "~9l into 9Î, we see that for all f,

(14.12) f j¿ oil) because ~0 ^ ~0,
(14.13) fit) = oil) because   ~/(~.) = ~0,
(14.14) /'(f) 5-0(1) because  "7'(~0) ?¿ ~0.

Also:
(14.15) If gGP[*] and git) =o(l), then g=/gi, giGP[*].
For ^gi^~6) =^0, hence ""/ divides "~g in ^P[^x], and the isomorphism

between T and P does the rest.

(14.2) Theorem. Let p(^0) denote the set of those iand only those) elements
irG9i which satisfy

(14.21) - = 0(g(f))
for all gGP[x], g 5^0, and all f idefined by (14.11)). Let pi( Ö) denote the set of
those iand only those) iriG9î which satisfy

(14.22) in = 0(/(f))
for f and all f defined by (14.1). Then

(14.23) pire) = p(~0);
(14.24) pC~#) is a two-sided prime ideal in 9Î.
Proof. If 7TGPP0) kiGpiPÖ) ] and rr' = 0(ir) [ir[ = O(in) ], then ir' = 0(g(f))

k' = 0(/(f))] for all g^O [for/] and all f, hence ir'Gp(^)k'Gpirß)]-
Therefore pC^Ö) [pi(^0) ] is a two-sided ideal in 9?.

Next let pG9î, pp^O (mod pi(~0)). Then there is a f which satisfies
(14.11)-(14.14) and

/(f) = oip).

We apply (12.6) to / and f, and see that there is a Çx which also satisfies
(14.11)-(14.14), and

/(fi) = oifim = oip2).
Hence alsop2^O(modpi(-0)). If now<rG9i,--p-0 (mod piP0)), and \p\ _S|cr|,
say, then p2g |p<r|, hence p2 = Oipa), hence p<r^0 (mod pi(^"0)); thus pi(~0)
is a prime ideal in 9Î.

The elements of p(^0) have to satisfy, inter alia, (14.22) ; obviously then

(14.25) pr0) = Pii-6).

Now let pG9i, pf^O (mod p(^0)). Then there is a gGP[x] and a f such that

giO = oip).
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By (14.15) g is divisible by/. Let
g=fx-h,       *6P[4

h not divisible by/. Then A(f)?¿o(l). Also(63)

giï) = ifiï)y-Hï).
Hence if we put/(f) =a, then

(7X = oip).

Thus p = 0  (mod  pi(^0))  would  lead  to i;k-0  (mod  pi(""0)),  hence a = Q
(mod pi("^0)); but this is impossible, as for suitable fi

/(fO = *(/(r)) = »w.
We see therefore that p^O (mod p(^0)) entails p?éQ (mod pi(^0)), in other
words

(14.26) Pi(T0) á pr0).
This combines with (14.25) to give (14.23), which completes the proof of the
theorem.

(14.31) Corollary. p(""0) consists of those iand only those) elements
7tG9î which satisfy

(14.32) ir = oigiï))

for all g^O, gGP[.t], and all f. p(^"0) also consists of those iand only those)
elements irG9î which satisfy

(14.33) r = .(/(f))
for f and all f.

(14.34) Corollary. (fir__ then

a-^i-6)a = p(~0).

For if irG9i then o-17r<rG9c; if - = o(/(f)) then o-17ro- = o((r-1/(f)ff)
= o(/(<r-1f<r)) because the coefficients of/ are in the centre. Also, when f
ranges over all elements with ^£ = ^0, then <r-1f<r also ranges over all these
elements; hence <r-1f(r = o(/(f)) for all f. This shows that -"-1p(^0)o"_5pC~0).
Replacing a by <r-1 and combining the results, one obtains (14.34).

We have defined p(^0) only for elements "~~0 which lie in ^9f, do not lie
in T, and are algebraic over "P. None of these restrictions is essential. For
elements outside ""9i one would have to replace "all f such that ""f = "0"
(of which there are then none) by "all f of an interval p <f <c such that the

(M) (12.6) need not be applied, as here all polynomials have coefficients in P, therefore in the
centre.
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corresponding interval ("^p, "V) contains ^0 but no real algebraical con-
jugate of ""0"; but one then has to restrict g in 14.21 to polynomials such
that ^~g possesses no root in that interval except (possibly) ^0 itself. For
transcendent elements over ^"P and for elements in ^P the definition
imutatis mutandis) also applies. One satisfies oneself without difficulty
that p("~~0) =$ if ^0 is transcendent over T, or if ^0 is outside ^9î; in all
other cases, that is, if ^8 is algebraic over ^P andG"^9f, p(^~0)<<i)3; and
pP0) = (0) if (but not necessarily only if) "^GT-a-C4).

Now let p be an infinitely smalli65) prime ideal in 9Î, and denote the residue
class ring modulo p by

(14.41) 9îi = 9î/p.
Then by forming (left or right) quotients in 9ti one can embed it in a division
ring 2i. The order of 9t induces an order in 9îi, and this in turn leads to an
order relation for 2i (cf. (10.11)). Hence the results we have already derived
can be applied to 2X.

The ring of elements which are 0(1) in 2X is of course just 9ti. The ideal of
o(l) in 9îi is
(14.42) %\i = WP-

The homomorphic mapping of 9îi into the real field "TP* gives

(14.43) -Dîi = ~9î.
If Zi denotes the centre of 2i, then ZiA9fi contains a field Pi which is mapped
on T

(14.44) ~Pi = ~P,
and therefore is order-isomorphic to P. But now ZiP\9ii may contain bigger
fields then Pt; and that even if P is a maximal field PmBI in ZH9Î.

(14.5) Theorem. If "^0G'"9î is algebraic over T, and if pr¿(0), then a
necessary and sufficient condition for the existence of an element 0iG9îi with

(14.51) ~0! = ~0,
(14.52) Pi(0i) = Zi H 9ii,
is that

(14.53) pre)<p.
Proof. If (14.53) is satisfied there is a ir = Q (mod p), 7r^0(mod p(^0)).

Hence there is a f G9Î, T = ^8 for which

(«*) pC^(j) = (0) characterises those elements which can be obtained by completing 2 with
respect to its order topology.

(*•) That is, one contained in Ç.
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(14.54) /(f) = O(tt) = 0 (mod p).
Denoting by 0i the element of 9ci onto which f is mapped when 9Î is reduced
mod p, we see that in 9îi

(14.55) /i(0i) = 0.
Here/i is the (monic and irreducible) polynomial with coefficients in Pi which
corresponds to/and "~/ under the order-isomorphism between Pi, P, and "T.
(14.51) is obviously satisfied, and (14.52) follows from (9.72).

Conversely (14.51) and (14.52) lead to (14.55) in 9t_. Translated back
into 9Î this means that for any f G9c which is mapped onto 0i (mod p) we
have

(14.56) /(f) = 0 (mod D).

Now either/(f) =0, then clearly p(~0) = (0) ^ p, and (14.53) is trivially satis-
fied; or/(f)?*0, and then /(f) ^0 (mod p(~0)) by (14.3). Hence (14.53) fol-
lows, and the theorem is proved. The theorem can be interpreted thus: The
irreducible polynomial /GP[*] has a zero modulo p, corresponding to the
root ^0 of "~~f = ^~0, if and only if p properly contains p(""0). Note that zeros
in other positions lead to (possibly) different left-hand sides in (14.53).

(14.6) Lemma. If ^0G^9Í is algebraic over T, and if

(14.61) ~6' G ~PC~0),
theniM)

(14.62) pre') ^ pre).
Proof. If ~0G~Pmax then also ~0'G~Pma_, and p(~0)=p(~0') =(0). If

""0GT_ax put p = pC~~0') and apply Theorem (14.5). Then Zif^'iRi contains
no subfield Pi(0i) with ^81=^8', hence a fortiori no subfield Pi(0i) with
^0i = ^0. Hence p(^0)<p(^0'), and the (obvious) linear order (by inclusion)
of the ideals entails (14.62).

(14.63) Corollary. If "~8' and "~8 generate the same algebraic extension of
"T\ then

*r*') = pre).
Thus the prime ideal p(^~0) depends on the extension ^P(^0) of T

rather than on *~~8 itself.

(14.7) Lemma. If "0', "8", "*0 are algebraic over T and

(14.71) -P(-0', -6") = ~P(~0),

(66) If -~~e is not in -~SR, or transcendent over T, then p(^0) = '$, and {14.62) becomes
trivial.
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then
(14.72) pro) = pro v pro-

Proof. Application of (14.6) gives immediately

(14.73) pre') V pre") á pre).
On the other hand, if p is a prime ideal in 9Î such that

(14.74) pre') v prn < P.
then we apply (14.5) and see that (in the notation there used) ZiC\dti contains
Pi(0,') and Pi(0i"), therefore also Pi(0i\ 0i")=Pi(0i). Then

(14.75) pre)<p.
As (14.74) implies (14.75) for any p, then

(14.76) pre) = pre') v prn.
which together with (14.73) completes the proof of (14.72).

15. Comparison of polynomials near a root. We can now introduce a
property of certain algebraic elements which will play an important rôle
when we define the order relations in algebraic extensions.

(15.1) Definition. Let —0G^9Î be algebraic of degree greater than 1 over
—P, ""/C^) = —0 its irreducible monic equation over —P, /G9î[x] the corre-
sponding polynomial with coefficients in P. Then —0 will be said to possess
"property (15.1)" if and only if/is irreducible modulo pr0).

Of course this property depends upon the field P. An element which
has the property with respect to P may possibly lose it when some other ele-
ment is adjoined to P; and elements not possessing the property will acquire
it after certain extensions. We shall, however, show presently that there are
always elements with property (15.1) as long as there are algebraic elements
in~9î.

(15.2) Theorem. If ""9Î contains an algebraic element (o/ degree greater than
1) over ^P, then it contains one which enjoys property (15.1).

Proof. Let ^0'G^"9Î be algebraic over "^P; denote by _• the normal exten-
sion^7) of ^P generated by "-0' and all its algebraical conjugates over T. Put

(15.21) ~_- = 4>n~9i.
Let all the different subfields of ^St" which contain ~P properly be,

(15.22) -pre), -pre,), • • •, -pre,).
Clearly ""St' is a finite extension of ~~~P and so are all its subfields over —P;
there are only a finite number of them. We may then assume they are so

(*') In —P*( — l)1'2, the field of complex numbers.
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arranged in (15.22) that

(15.23) pre) á prei) =      = pre,).
We shall prove the theorem by showing:

(15.3) Lemma. ""0 has property (15.1).

Proof. If pr0)=(O), then (15.3) is trivial. Assume then pp0)>(O). Let
/ be again the irreducible monic polynomial with coefficients in P defined by
~/P0)=~O. Let
(15.31) / = g-Â(modpre)),
where

(15.32) g(x) m at» + ßm-ix^ + ■ ■■ +ß0 (mod pp0))

is irreducible modulo pP0), and ^~~gi^~8) -»"""0. The coefficients ""ßm-i, • • • ,
^ßo of —g all lie in "~9Î and (being certain symmetric functions of certain
algebraic conjugates of ^0) also in f>, hence in ^_*. Applying (14.5) to each
""■ßß in turn, with pp0) as the prime ideal modulo which Qîx and Zi are defined,
we see then that

(15.33) PPA,)<Pp0), u = 0, ■■■ ,m- 1.

But then no TP/3,,) can occur in 15.22, that is, no "T?P/3„) can contain
T properly. Thus

(15.34) ~A,G~P, p = 0, •••,m- 1.

Then ^g = ^/, g=f (mod pP#)), and the lemma follows. This also completes
the proof of theorem (15.2).

In order to exhibit the significance of property (15.1), we now study the
behaviour of a polynomial with coefficients in 9Î for arguments for which a
polynomial with coefficients in P nearly vanishes. We use again the notation
of the beginning of §14, especially (14.1).

(15.4) Lemma. Let qP0) denote the set of those iand only those) polynomials
gG9f [x] which satisfy

(15.41) ?(f)=0(/(f))
for f and all f defined by (14.1). Then qP0) is a left ideal in '¡ft [x].

Proof. Let ?iGqp0), _2Gqp0). Then

(ïi + .0(f) = ?i(f) + .»(f) = 0(/(f)),
hence gi+g2GqP0). Let gGqP») and pG9î[x]. Then by (13.2)

(¿».XA = />(f)?(f) + "(?(f)) = 0(î(f)) = 0(/(f)),
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hence pgGqP0). This proves the lemma.

(15.42) Corollary. The constants in qP0) are

(15.43) qpe) n sr = ppe).
Also

(15.44) 9i[x]ppe) V9î[x]/^ qpe).
Both are immediate from the definitions of pP0) and q(^0), and the

obvious inclusion

/Gqpe).
The left-hand side of (15.44) is a two-sided ideal in 91 [x], for pP0) is a two-
sided ideal in 9Í, and/ is in the center of 9î[x]. More accurately we can de-
scribe the situation thus:

(15.5) Theorem. Let gG9t[x] be the monic irreducible factor of f modulo
pp0) which belongs to "8, that is,

(15.51) / = Äg (mod ppe)),
(15.52) ~gpe) = -o,
and g irreducible modulo pP0). Theni6s)

(15.53) qpe) = 9Î [*]ppe) V 9Î [x]g.
Proof. Let

(15.54) f=hg + r,

where rG9i[x] has coefficients in pP0). Then for all f

rit) = o(/(f)),

and by (13.2)

/(f) = Â(fMf) + ^(g(f))+o(/(f));
but hit) 5*0(1) because ~AP0) ^"U Hence

git) = 0(/(f))
for all f, that is, gGqP0). This shows (using (15.44)) that

(15.55) qpe) è 9Î [*]pp0) V 9f [x]g.
On the other hand let pG9î[x]

(*8) g is not uniquely defined as an element of 9Î [*], but only modulo p(^0) ; but the right-
hand side of (15.53) is independent of the representation of g within its residue class modulo
D(~e).
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(15.56) p jé O(mod9l[x]pp0) VSR[*]_).
Then p and gare relatively prime modulo pP0), and there are «G9c[x],
»G9c[*]. pG9î such that(69)

(15.57) „p + t>g = P^O(modppe)),

or

(15.58) up + vg = P + s,

where sG9l[x] has coefficients in pP0). Then for all f

sit) = *(/(f)) = 0(/(f)),
ivg)it) = vit) git) + oigit)) = Oigit)) = Oifit)),

but for suitable f i,

P 5* 0(/(fi)).

For such fi then (15.58) gives

Op)(fl)  = UÍtl)PÍtl) + OÍPÍtl))r¿Oifitl)),
hence

Piti) * Oifiti)),
that is,

p p_ 0 (mod qp0)).

This shows that

(15.59) qpe) = 9?[x]ppe) V 9î[x]g,
and combined with (15.55) completes the proof of the theorem.

(15.6) Corollary. Necessary and sufficient condition for

(15.61) qpe) = 9î[x]ppe) V 91 [x]/
is that ^0 possess property (15.1).

(15.62) Corollary. // "0 possesses property (15.1) then qP0) is a two-
sided prime ideal in 9î[x].

For 9f[#]pP0) is two-sided because pP0) is two-sided in 9Î, and 9î[x]/is

(69) This can be seen thus: Using the notation of (14.4) with p = pr«), we put 9îi = 9î/)>(^0),
pi and gi the polynomials onto which p and g are mapped. 2i is the division ring of left quotients
in SRi; then 2i[x] is a principal ideal domain. As pi and giare relatively prime, there are Ui, V\
in 2i[#] such that in 2i[x], ?7i/)i + Figi = l. Let p~l denote the coefficient of greatest absolute
value in U\, V\, and put ui=piUi, v1=píVí. Then u\, vi are in 9îi[#], and u¡pi+vigi = pi leads
to (15.57).
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two-sided because/is in the centre. Also/is irreducible modulo pP0), which
is itself prime in 9Î.

One can also show without great difficulty that qp0) is always a two-
sided prime ideal, whether "~~0 enjoys property (15.1) or not; but the fact will
not be needed.

(15.7) Corollary. Let ""0 have property (15.1), let pG9î[x] have at least
one coefficient not in pP0), and let p be of smaller degree than f. Then there is
a f G9î, "~"f = "^0, such that

(15-71) /(f) = oipit)).
For clearly p cannot lie in qP0).
Finally we study the behaviour of p for arguments where / is infinitely

small compared with it; and also the behaviour of two such polynomials pu p2
for such arguments.

(15.8) Lemma. If
(15.81) fiti) = oipiti))
and

(15.82) fiti) = 0(/(fi)),
then also

(15.83) Kti) = oipiti)).
Proof. We apply (12.31) to p, and (12.42) to/:

Piti) - Piti) = 0(f2 - fi)
= OifiSt) - f(Si))
- 0(/(fi)) = oipiti)).

Hence

(15.84) Piti) = Piti) + oipiti)),

and

fiti) = Oifiti)) = oipiti)) = oipiti)).
(15.91) Corollary. If

fiti) = oipiti)),       fiti) = oipiti))
then

Piti) = _>(fi)(l + 0(1))-

This is immediate from (15.84), observing that it is symmetric in fi and
f2, so that we may assume (15.82) without loss of generality.
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(15.92) Corollary. If
fiti) = oipiti)),       fiti) = oiPiiti))

then for f = fi or f = f 2,
/(f) = oipiit) & Piit)).

For if/(f2) =0(/(fi)), say, we choose f = f2 and apply (15.8).
16. Ordering a simple algebraic extension (in ^9t). We now have all the

tools for defining the order in an algebraic extension 2(0) of 2. Throughout
this section we assume that P is a maximal subfield Pmax_=Zr>\9î, and that
^"0G^9£ is algebraic over T and has property (15.1). We know that the
algebraic adjunction of 0 to 2 is possible (§9), and only have to define when
an element of 2(0) shall be positive.

(16.1) Definition. Let p be a polynomial with finite coefficients not all
in pP0), that is, pG9î[x] — 9c[x]pp0), and let p he of smaller degree than/.
Let f G9Î be chosen such that '""f = ^0 and

(16.11) /(f) = oipit)).
(Such f exist by (15.7).) Then we define

(16.12) pid) ^ 0 in2(0) according as pit) ^ 0 in 2(70).

(16.2) Definition. Let PG2[x] be of smaller degree than /; and if
P^O let ttG2, pG9î[x]-9î[x]pp0) be chosen such that

(16.21) P = irp.

Finally let f be chosen as in (16.1). Then we define

(16.22) Pid) ^ 0 in 2(e) according as P(f) ^ 0 in 2.

(16.3) Lemma. By virtue of definitions (16.1), (16.2) every element of 2(0)
is either >0, or =0, or <0, and no two of these simultaneously.

Proof. The elements of 2(0) can be represented uniquely as the poly-
nomials in 8, of smaller degree than/, with coefficients in 2. If P(0) ?¿0 is such
a polynomial, ir a coefficient of P of greatest absolute value, and p=ir~1P,
then the coefficients of p are all finite, but at least one of them is ± 1 ; hence
pG9îM-9l[x]pp0). The existence of a suitable f follows from (15.7).
P(f)=0 would entail p(f)=0, contrary to (16.11). Hence (16.2) allocates a
positive or negative sign to P(0). This proves the first part of the lemma.

Let now fiG9î be chosen (differently from f) such that "~fi = '~'6' and

fiti) = oipiti)).
(70) This definition contains the macroscopic order (when p{ 8)?¿'~~0) as a special case.

It is, itself, only a special case of definition (16.2), but has been included to show more clearly
the underlying principle (cf. the introductory remarks, §7) and to underline the analogy with
the situation in §10 and §17.
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Then by (15.91)

Piti) = _>(f)(l + 0(1))-

Hence p(fi)^0 according as p(f)^0 and (multiplying by w) also P(fi)«*0
according as P(f)^0. Hence a different choice of the f in (16.1) does not
affect the sign allocated to an element by the definitions.

Finally let 7riG2, piG9î[x] -9f [x]pp0) be chosen (differently from ir, p)
such that

P = TTlpl

and let fiG9i be such that ^fi = ^0 and

fiti) = oipiti)).
Then by (15.92) we may assume without loss of generality that also

fiti) = oipiti)).
Hence the sign of P(0) according to (16.2), using iri, pi, fi, is the same as that
determined in terms of ir, p, f i, and therefore also the same as that defined in
terms of it, p, f. Thus a different choice of ir, p in (16.2) does not affect the
sign allocated to an element by the definitions, and the proof of the lemma is
completed.

(16.4) Lemma. The sum of two positive elements of 2(0) is positive.

Proof. Let Pi, P2G2[x], P = Pi + P2, and Pi(0)>O, P2(0)>O. If *_, tt2,
p\, pi are chosen according to (16.2) so that

Pi  =  TClpl, P2  =  TCipi

and then f according to (15.92) such that (16.11) is satisfied simultaneously
for pi and p2, then

(16.41) Pit) = (Pi + P2)(f) = Pi(f) + P2(f) > 0;

therefore P is not identically zero. Clearly also P is of smaller degree than /,
hence P(0)^O, and we can apply (16.2) to it. Assume now without loss of
generality that 7Ti^7r2>0, and put

T  =   Ti, P  =  pl+  Tfï^ipi,

so that

P = irp.

Then pG9ï[x]. Also -rV2p2(f) >0, whence p(f) >pi(f) >0 and

/(f) - oipit)).

This shows that pG9î[x]pp0), and also that P(f)>0 (cf. (16.41)) entails
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P(0) >0. Thus the lemma is proved.

(16.42) Corollary. If P(0)>O then -P(0) <0, and vice versa.

In order to show that the product of positive elements is again positive
we first have to extend (16.2) to the case of polynomials of degree no smaller
than that of /.

(16.5) Lemma. Let P, Q, i?G2[x], R^O of smaller degree than f, and

(16.51) P = Qf+R.
Let also, if possible^1), irG2, pG9?[x] — qP0) be chosen such that

(16.52) P = irp,

and fG9î such that ^f = ^0 and

(16.53) fit) = oipit)).
Then

Pie) = Rie) ^ 0 according as Pit) ^ 0.

Proof. Put ir-lQ = q, ■n-1R = r. Then

(16.54) p = qf+r
and consequently îG9c[x], <*'G9î[x](72). Also

r = p^O(modqp0));

thus rG9î[x]-9î[x]pp0). Moreover, from (16.54), (13.2), (16.53)

rit) - iP - <7/)(f) = Pit) - iqJKt)
- pit) - qit)fit) + oifit)) = pit) + oifit))
= Pit) + oipit))

or

(16.55) rit) = pit)H + oil)),

and also

/(f) = 0('(f)).
Hence (16.2) can be applied toi?, ir, r, f, to show that i?(0) ^0 according as
Rit)^0. But using (16.55),

(71) This can be done only if the coefficients of R are not too small compared with those
of>.

(ra) If qj or r had an infinite coefficient, left-multiply by the reciprocal of the absolutely
greatest coefficient and consider the result modulo Ç: Then •^2i^/-f-'~~r1 = ^0 with "^t\ of
smaller degree than ^-/, and not both ^gi and ^n vanishing, which is absurd.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



248 B. H. NEUMANN [July

Rit) = «-GO = T_>0-)(1 + 0(1)) = ^(f)(l + 0(1))-
Hence P(f) and i?(f) have the same sign, and the lemma follows.

(16.6) Lemma. 2/ PG2[x] is of smaller degree than f, and (rG2, then
<r-1P(0)o- and P(0) have the same sign.

Proof. a~lPa is the polynomial obtained from P by transforming all
coefficients by a. For brevity we put, when £G2(0),

a-^a = r,
and for polynomials ?G_[i]

a~lPa = P'.

Then obviously

a-iPiÇ)a = P'(r).
Also, as/ has coefficients in the centre of 2,

/'-/,

and as 0 lies in the centre of 2(0),

8" = 0;

hence
a~lPie)a = P'ie).

Let now it, p, f be chosen according to (16.2). Then

(16.61) P' = ir"p"

because P = irp, and

(16.62) p- G9î[x] -9î[x]ppe),

because pG9î[x]—9î[x]p(^0), using (14.34). Transforming

/(f) = oipit))
by a, we get on the left-hand side

<r-lfit)* = fif) - fit*),
and on the right-hand side

°-loiPit))e = oia-ipit)a) = o(¿'(f*)).

Hence

(16.63) fif) = oipiT)).
Now (16.61)-(16.63) and (16.2) (applied to P", it", p', f) show that a~lPi8)a
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= P'i8) ^0 according as P'if) ^0; but P'if) ^0 according as P(f) ^0 be-
cause they are conjugate in 2; and P(f) ^0 according as P(0) ^0 by (16.2)
(applied to P, w, p, f). This establishes the lemma.

(16.7) Lemma. The product of two positive elements of 2(0) is positive.

Proof. Let Pi, P2G2[x] be of smaller degree than/, and Pi>0, P2>0.
Put P = PiP2. This need not be of smaller degree than/. Put

P = Qf+R,
where R is of smaller degree than /. Then R^0, for 22(0) = (PiP2)(0)
= Pi(0)P2(0)5¿O. Put also

Pi  =  Tlpl, P2  =  Tt2p2

with 7T.-G2, piG9î[x]-9î[x]pp0); finally put
7Ti7r2 = x;        ir~1P = p;        x-1Ç = q;        v~1R = r.

Then

(16.71) p = irî^piiripi-

As
*-2-1¿ix2G9í[s] -qpe),

¿2G9c[x]-qp0),

and qP0) is a two-sided prime ideal in 9î[x] (by (15.62)), it follows that also

pG9î[x]-qpe).
Therefore (16.5) can be applied. Thus we have to show only that P(f) >0 if
t is chosen according to (16.53).

We may assume that 7Ti and 7r2 are positive. Then ir>0, and P(f) has the
same sign as p(f). We chose f according to (15.7) and (15.92) so that simul-
taneously

(16.72) /(f) = oipit) & ir^Punit) & p2(f)).

Then we can apply (13.7), with w^piiri, pi, f,/, p in the place of p, q, £,/, pq
respectively. We get then

(16.73) pit) = T2-ViT2(f)-Mf)(l + oil)).

Now ir¿"Ipi7r2(f)>0 because pi(0) >0, using (16.6). Also p2(f) >0 because
p2(0)>O. Hence, by (16.73), p(f) >0, and the lemma follows.

(16.81). Lemma. If 7rG2, then it has the same sign qua element of 2(0) as
qua element of 2.

The proof is obvious and omitted.
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(16.82) Lemma. 2/"pi < "0 < "p2 with "~7>i, "p2GTo, then for the corre-
sponding elements p\, p2 of Po also

Pi < e < p2.

The proof is obvious and omitted. Combining all these facts we have now
the following theorem.

(16.9) Theorem. If "0 has property (15.1), then the algebraic extension
2(0) of 2 is ordered by the definitions (16.1), (16.2); its order continues that of
2, and (10.1) is satisfied.

17. Ordering a simple algebraic extension (outside "9c). We have so far
dealt only with the cases that "0 is transcendent over "P (§10) or con-
tained in "^9c (§§11-16). If "0 is algebraic over "T but outside "9Î the order-
ing procedure is rather simpler(73) ; in particular if we may assume T = "9t.
In fact we then have only to order the extension macroscopically.

Let then "P = ^9Î. Then P is obviously a maximal subfield Pmax_;Zn9c.
Hence if/GP[x] is irreducible, then / is irreducible in 2[x] (cf. (9.8)). We
assume "0 algebraic (of degree >1) over "P, / again the monic irreducible
polynomial GP[#] defined by ""/P0) = ""0. The elements of 2(0) are the
polynomials in 0 of smaller degree than /, with coefficients in 2.

(17.1) Definition. Let pG9c[x] — ̂3[x] be a polynomial with finite
coefficients not all infinitely small. Then we define

(17.11) pie) ^ 0 according as "pp0) ^ "0.

(17.2) Definition. Let PG2[x] be a polynomial, and let irG2, pG9t[x]
— *iß[x] be such that ir>0 and

(17.21) P = irp.

Then we define

(17.22) P(0) ^ 0 according as p(e) ^ 0.

Note that we do not here restrict the degree of p or P; but that (17.11)
does not cover the case that "pP0) ="0.

(17.3!) Lemma. By virtue of definitions (17.1), (17.2) every element of 2(0)
is either >0, or =0, or <0, and no two of these simultaneously.

Proof. Any element of 2(0) can be represented in the form P(0), where
JPG2[x] has smaller degree than/. If Py¿0, let ir he the greatest of the ab-
solute values of the coefficients of P, and p=ir~lP. Then pG9t[x] — $[#],
p^0, and the degree of p is smaller than that of/. Hence "ppfl)^"^), and

(») With a few appropriate changes in the formulation of the definitions (in particular
Pi^8), q(^0), and property (15.1)) this case could have been subsumed under the algebraic
extensions already dealt with. But any gain in conciseness would have been only slight.
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(17.1) allocates a sign to p(0), (17.2) the same sign to P(0). This proves the
first part of the lemma.

If itiG2, piG9t[x]—^[x], 7Ti>0, and P=iripi is a different representa-
tion (17.21) of P, we put7Ti-1ir=p. Thenpi = pp, and pG9î — ̂ 3; hence "~p?¿^~0.
In fact p>0, and thus '~~p>^0. Therefore "pip0) and "7>P0) are both
positive or both negative, and (17.2) allocates the same sign to P(0), what-
ever the representation (17.21).

Finally let Pi(0) =P(0) be two different representations of the same ele-
ment of 2(0), with P (but of course not Pi) of smaller degree than /. Then
Pi = Qf+P. Let also ttiG2, piG9t[x]-$[x], in>0, and Pi = Tipi, and put

"T'Q = q,        xf'P = r.
Then

(17.31) pi = qf+r.
Clearly rG9t[x]. If rG9t[x]-<ß[x], then (17.1) and (17.2) (applied to P, arb
r) imply that

P(e) ^ 0 according as ">p0) ^ "0,

and ->P0)=->iP0) by (17.31), and then (17.1) and (17.2) (appliedto
Pi, -i, pi) give

Pi(0) ^ 0 according as "pipe) ^ 0.

Hence in this case P(0) and Pi(0) are allocated the same sign by the defini-
tions. If, on the other hand, rG^H, then (17.31) shows that "piP0) ="0;
hence in this case (17.1) and (17.2) (applied to Pi, 7Ti, pi) are vacuous, and no
other sign is allocated to Pi(0) than to P(0). This completes the proof of the
lemma.

(17.4) Theorem. If "P = "9c and "~8 is algebraic over T, then the alge-
braic extension 2(0) of 2 is ordered by the definitions (17.1), (17.2); its order
continues that of 2, and (10.1) is satisfied.

The proof follows, with the appropriate (and obvious) simplifications, the
line of argument in §10 (or §16), and is omitted.

Finally we can now establish the main result of this part.

(17.5) Theorem. An ordered division ring 2 can be extended to an ordered
division ring 2* icontaining 2 and continuing its order, and) containing in its
centre a field *P order-isomorphic to the field "P* of all real numbers.

Proof (74). The algebraic adjunction of the required elements has been de-
scribed in §9. Following the Steinitz [13] procedure we first adjoin, step by

(n) We present a proof sketch rather than a formal proof. Note that well-order is implicitly
and extensively used.
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step, all transcendents, and order the resulting extensions as described in §10.
Next we adjoin (again step by step) algebraic elements 0 for which ^0 has
property (15.1); and we order the resulting extensions as described in §16.
By theorem (15.2) this can be carried on as long as there are algebraic ele-
ments in ^9Î — T left; that is—as the transcendent elements have been ad-
joined already—until T coincides with "~9Î. Then finally we adjoin (again
step by step) the algebraic elements outside "9c = ^_>, and order the resulting
extensions as described in this paragraph. This process comes to an end only
when T* is exhausted; the final division ring thus obtained is the desired 2*.
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