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1. Introduction. We base our discussion upon the concept of an ordered

group, that is, the generalization of the /-group studied by G. Birkhoff

in which the lattice property is replaced by the weaker "Moore-Smith" or

directed set axiom. An ordered group is embeddable in a complete ordered

group if and only if it is integrally closed. We prove that if the commutator

group of an ordered group is in its center, then integral closure of the group

implies commutativity. Thus the conjecture of Birkhoff (see Problem 2, loc.

cit.) is proved, although negative examples are given showing the falsity of

Problems 1 and 2. Problem 3 is left open; the authors hope to settle it in a

later paper. The linear group of functions ax+A, a, A real, a>0, admits no

integrally closed order under composition.

Every ordered group is embeddable in a group which is sequence-complete

in the sense of o-convergence. The results of [5] are thus extended to the non-

commutative case.

Properties of the group of monotone continuous functions on (0, 1) to

itself under composition are studied, and various orders in the free group with

two generators are used to establish a curious property of the function group.

2. Completion of ordered groups. A group G is called an ordered or o-group

in case G is (1) partially ordered by a relation ^ (a^a; a^b and b^a imply

a = b; a = b and b = c imply a^c), (2) a directed set: for every a, b there is a

c^a, b, (3) homogeneous: a^b implies c+a+d^c-\-b-\-d.

G is called an l-group in case the order is a lattice order, that is, every two

elements a, b possess a l.u.b. a\/b and a g.l.b. a/\b [l],

G is said to be conditionally complete in case every set of elements aa

bounded above has a l.u.b. \/aa (and hence also a g.l.b. /\aa when bounded

below).

G is integrally closed in case na=a+ ■ ■ • +a^b, n = 1, 2, • • • , implies

a^O [4], and archimedean if na^b, « = 0, +1, +2, • • • , implies c = 0 [l].

Lemma \. If G is an o-group, integral closure implies archimedean order.

For if na ^b, n = 0, +1, +2, • • • , then na^b and »( — a) ^b, n = 1, 2, • •

By integral closure, a^O and — a^O, a = 0.

We shall see later (Theorem 12) that the converse is false.
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Lemma 2 [l, p. 313]. If G is an l-group, integral closure and archimedean

order are equivalent.

Let G be archimedean, and na^b, n = l, 2, ■ • ■ . Then n(a\/0)

= «oV(»-l)aV • • • VaVOg&VO, and -»(a\/0) =»(-(aVO)) gO =W0.
Hence «(aV0) =W0, « = 0, ±1, • • ■ , and a\/0 = 0^a.

A. H. Clifford [4] has proved that a commutative o-group is embeddable

in a conditionally complete group if and only if it is integrally closed. We here

extend this result to noncommutative groups.

Theorem 1. An o-group G is embeddable in a conditionally complete o-group

with preservation of order, g.l.b., and l.u.b. */ and only if G is integrally closed.

If G is so embeddable, and na go, n = 1, 2, • • •, let u = V(na; all n); then

u—a^na, n — 1, 2, • • • , u—a^u, ago (cf. [l, p. 322]).

It is well known that if L(X), U(X) denote the sets of all lower and of all

upper bounds, respectively, for all the elements of a subset XQG, then the

operation X*=L(U(X)) has the closure properties: X*DX; X**=X*; XD Y

implies X*Z) Y*; and that the class & of all "closed" sets C = C* is a condi-

tionally complete lattice under set inclusion, with set intersection effective

as g.l.b., and closure of set union as l.u.b. [2, p. 25; 7]. The correspondence

a—>(a)* embeds G in & with preservation of order, g.l.b. and l.u.b. Moreover

one has the important property: V(*a) = x in G if and only if (xa; a)* = (x)*.

Defining X4-F=(all x+y; 3c£I, y£F)*, X, F££, one readily verifies

X+(Y+Z) = (X+Y)+Z, 0+X = 0=X+0, where 0 = (0)*, and ADB im-
plies X+A + YDX+B + Y. Since (a+b)* = (a)*+(b)*, G is an o-subgroup
of the lattice semigroup S. In general, S is not a group.

Lemma 3. For X£S, there exists F£S such that F4-A" = 0 if and only if

0 = A(— x+u; x£zX, u£U(X)); similarly X+Y = 0 if and only if /\(u—x)
= 0. There is a FG£/or which Y+X = 0 = X4-Fif and only if A(-x+u) =0
= A(«— x) and when such Y exists Y=L(all —x; x(EX).

If A(-x+u)=0 = V(-u+x) = \/(l+x;ieL(-x),xeX), then (/+*)*
= (0)* and L(-x)+X = 0. Conversely, if Y+X = 0, (y+*)* = (0)*, V(y+x)

= 0,y+xgO, y g -x, YCL(-x). Hence (y+x)C(l+x;l£L(-*)), 0 = Y+X

CL(-x)+X. But L(-x)+XC0=Y+X, thus 0=L(-x)+X. Hence

0 = V(/+*) = V( — u+x) = A(— x+u). Similarly for the second implication.

If both intersections are zero, L(—x)+X = 0 = X+L(—x), and if Y+X

= 0 = X4-F, both intersections are zero, L(-x)+X = 0, L(-x)+X+Y= Y

= L(-x).

Lemma 4. If Gis integrally closed, every X(E.&has an inverse.

Let X££,y^u-x, all uEU(X), xEX. Then x£ -y+u, -y+uE U(X)

for all m£J/(X). Let ua be any element of U(X). Then — y+ua = u\, —y+u\
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210 C. J. EVERETT AND S. ULAM [March

= «2, • • • where UiEU(X), and uo = ny+un. Thus ny = uo — u„^u0—Xo,

xo any fixed element of X. By integral closure, ygO. Hence /\(u — x)=0.

Similarly A(—£+w)=0.
3. Commutativity in integrally closed groups. G. Birkhoff has raised the

question whether archimedean order in /-groups does not imply commuta-

tivity [l, p. 329]. In this connection he quotes the following theorem [3].

Theorem 2 (H. Cartan). If G is an archimedean ordered o-group, then lin-

ear order implies commutativity.

He also conjectures the truth of the following theorem.

Theorem 3. If G is an integrally closed o-group (or archimedean l-group),

and if the commutator subgroup of G is in the center of G, then G is commutative.

Birkhoff bases a tentative proof on previous conjectures which we shall

later show false. The following proof however establishes Theorem 3.

Let c = o+o — b — a and note ö+a = o + (a+o) —b. Then c + (a+b) = (b+a)

= b + (a + b) -b; 2c+(a+b)=c+b+(a+b)-b = (c+b-c)+c+(a+b)-b

= (c+b-c)+b+(a+b)-2b;3c + (a+b) = (2c+b-2c) + (c+b-c)+b + (a+b)

— 3b; by induction, nc + (a+b) = ((» — l)c+b — (n — l)c)+ • • • +b + (a+b)

— nb. For a, b^O, and c in the center, we have nc + (a+b) =nb-\-(a-\-b) —nb

= 0. By integral closure, 6+a — b— a^O, b+a^a+b. Similarly a+b^b+a,

and a+b = b+a, all a, o^O. But then — b-\-a = a — b, and every positive ele-

ment commutes with every negative element. Since every g = gV0+gA0 [l,

p. 306] and ä = ä\/0+äA0 we have g+h = h+g, all h, g of G.

Theorem 4. The linear group of elements ax-\-A, a, A real, a>0, under

composition, admits no integrally closed o-group order.

One computes (gx-\-G)~x = (x — G)/g and (gx+G)(fx + F)(gx-\-G)~1=fx

+gF+G(l-f). The conjugates of /*4-F (jVl) consist of a\\fx+R, R real;

for example, use g = l, G = (R — F)/(l—f).

There existsfox + Fa^x (foAl), for since G is a directed set, \etfx-\-F^x,

x/2. If /=1, x + F^x, x/2. Substitution into 2x yields 2(x + F)=2x+2F

^2(x/2)=x.

Now all conjugates of f0x-\-F0, namely all fox+R (R real), are greater

than or equal to x. Thus fox — nk ^x, k real, « = 1, 2, • • • , and substitution

into (x-\-k)n=x-\-nk yields/0:c ^x+nk = (x+k)n. By integral closure, x+k^x,

all k. Thus (x-f-l) gx and (a:4-l)_1=a; —1 gar; x-f-l =x, a contradiction.

Corollary 1. The group of functions axA, a, A real and positive, under com-

position and the group [l, p. 303] of real pairs (x, y) under (x, y)-\-(x', y')

= (x-\-x', ex'y-\-y') are isomorphic to the group of Theorem 4, hence cannot be

integrally closed o-groups under any order.

For consider the correspondences ax +A^>eAxa, ax+A—►( — log a, —A/a).
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0 if and only if a = 0;

+1 b I serve to establish

4. On o-convergence and sequence completion in /-groups. The absolute

I a\ =o V —a has proved of importance in the study of commutative /-groups,

since its fundamental properties: |<x| = | — a| <£0; a

\a\/b— a'\/b\ g|a — a'| and dually; and |a4-ö| g a

an intrinsic topology in G via o-convergent sequences [2; 5; 6]. All these prop-

erties except the last are valid in /-groups. We suggest the following as a gen-

eralization which seems adequate:

Lemma 5. In an l-group, \a+b\£(\a\+\b\)y(\b\+\a\)^\a\+\b\

+ \a\.

\a\ -a, \b\ ^6, -6 yields \a\ +\b\ ^a+b and \b +\a\ =■ -b-a.
Hence the first inequality. But | a\ + \ b\ g | a\ + \ b\ +1 a and [o|-f-|a|

g|a| 4-|6| +\a\.
We write x„ | x for xi ^xz g • • • with x = \/xn and xn j x dually. Define

xn—+x (o-convergence) as usual [2, pp. 28, 112] to mean there exist sequences

/„, m„ such that /„ =;c„gttn where Z„T x and w„ j x. One proves x„->3c if and

only if for some wn I 0, \x„— x\ gw„; also if and only if | — #-|-tfn| 1 0.

Theorem 5. o-convergence is a Frichet convergence for which an—*a, b„—*b

implies an+bn—*a+b, — o„—* — a, an\/bn—>a\/b, and dually.

One easily verifies a, a, a, ■ • • —>a; aBi—>a; and a„—*a, an—>b implies a = b.

Moreover \(an+bn) — (a+b)\ = |an+bn — b — a\ = | (an — a)+(a+bn — b— a)\

g|a„ — a\ +\a + (bn — b)—a\ +\an — a\ ^wn + {a+Wn — a)4-w» J.0.

Finally, |flnVön-aVö| = \anVbn-a„Vb+anVb-aVb\ g \anVbn-an\/b\

+ \anVb-aVb\ + \anVbn-an\Jb\ g |bn-b\ + \an-a\ +1bn-b\ =W + wn

4-W I 0.
We say a sequence is o-regular in case, for some wn j, 0, | —an+p4-a„|

V|a„ —a„+p| =w„, all », /> = 1, 2, ■ ■

Theorem 6. Faery o-convergent sequence is o-regular.

For |a„-an+p| = | (an—a) + (a—an+P)\ g\an—a\ +\a — an+p\ +\a„—a\

g3w„. Similarly, | — an+p-\-a„\ g3w„', by the remark preceding Theorem 5.

G is called o-complete in case every o-regular sequence o-converges. In a

previous paper conditions were given for a commutative /-group to be o-com-

plete. The conditions and proofs given there [5] extend readily to the non-

commutative case. We merely state the following theorem.

Theorem 7. In an l-group G the following conditions are equivalent:

(i) G is o-complete.

(ii) Every o-regular monotone sequence yi ^ y2 ̂  • • • o-converges.

(iii) For every o-regular monotone sequence yi ^ y2 ̂  ■ • • , Ay>» exists.

(iv) For every o-regular sequence xn, Axn exists.

Corollary 2. Every conditionally complete l-group is o-complete.
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(Cf. Kantorovitch [6] for the commutative case.) For if a„ is o-regular,

\an — a\ gw„, — w„ga„ — a, — Wi+ag — wn+a£an (all n). Hence by com-

pleteness, Aß» exists and (iv) above is satisfied.

One naturally asks whether an arbitrary /-group may be embedded in an

o-complete /-group. Let ® be the set of all elements X of S (cf. §2) for which

an inverse exists: X+ F=0= Y-\-X.

Theorem 8. Every l-group G is embeddable with preservation of order, g.l.b.,

l.u.b., and o-convergence in the l-group ®, which is o-complete.

The correspondence a—»(a)* maps G into ® with preservation of order,

g.l.b., l.u.b. (and hence o-convergence), by the discussion in §2. That ® is an

o-group is obvious. We must show that the order is a lattice order. We need

only the following lemma.

Lemma 6. If X, Y, are in ® then the X AY {of £) is in ®.

The proof is given in [S].

Finally we verify Theorem 7 (iii) using the following lemma.

Lemma 7. If Yp, WPG&, WP I 0 in ®, and FES, where Yp-WPC FC Yp
and - Wp+ YPC FC Yp, all p, then F£®.

The proof is given in [S].

Hence condition (iii) holds; for let F„ be o-regular in @, FOF2D • • • ,

I F„-Fn+P| =Fn-Fn+pCTFn|0 in ®. Then -IFi+FiCFn (all »), and
Y= A( F„) exists in <£ with - Wn+ F„C FC F„ for - Wn+ F„C Yn+P. Simi-

larly we fulfill the other condition of Lemma 7.

5. The group of topological transformations of the line into itself. Let T

be the class of all functions/(a;) on 0 gx g 1, having the properties:

(1) f(x) is continuous monotone increasing on Ogsgl,

(2) /(0)=0,/(l) = l.
For/, g in F, define fg=f(g(x)), and f^g to mean f(x) Si g(x), Ogxgl.

Theorem 9. T is an l-group, non-integrally closed.

Under composition, T is the well known [8] group of topological trans-

formations of (0, 1) into itself, with identity e(x) =x. Verification of the order

postulates is trivial. The function w(a:)=max (/(#), e(x)), Ogxgl, is in the

class T and has the properties of a l.u.b. for/(x) and e(x). This is sufficient

for lattice order. The function b(x) in F defined by a broken line of four seg-

ments: b(x)=x on (0, 1/4) and on (3/4, 1) with o(l/2)=5/8 is obviously

bounded: 6"g/ for some/, all n, but b not less than or equal to e.

Theorem 10. In an l-group, the relation (aba~lb~v)n<ab, a, b>e,

n — 1,2,---, need not be true. Indeed in the l-group T, there are elements /,

g>efor which the elements (/g/_1g-1)"> « = 0, +1, ±2, • • • , are unbounded by

any element.
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For, any two polynomials/, g>e have the property that either/g/-1g-1 or

(fgf~1g~1)~1=:gfg~1f~1 is greater than x on an open interval (0, d), where d is

the first fixed point of the commutator. The powers of this commutator c(x)

are then unbounded, since, if lim„ cn(x) —L(x), Ofix^d, then lim„ c(cn(x))

— c(L(x))=L(x). But since x^d, cn(x) gc(d) —d. Hence L(x)=d and no con-

tinuous function can serve as upper bound.

This settles Problem 2 [l, p. 329].

Theorem 11. In an l-group, am>bmfor some m, a, b>edoes not imply a^b.

In F, we exhibit the broken line f(x) of two segments with vertex at

/(3/8) =3/4, and the broken line of four segments g(x)=x on (0, 1/4) and on

(3/4, 1) with vertex at g(5/16) = 11/16. One verifies/^x) >g2(x) for all x on

open (0, 1), but/(x) not greater than or equal to g(x).

This settles Problem 1 [l, p. 329].

Theorem 12. The subgroup of algebraic functions of T is an archimedean

ordered o-group, but is not integrally closed.

If f(x)Ax and g(x) are algebraic and fn(x) <g(x), n = 0, ±1, ±2, • • • ,

then either/(x) or/_1(x) must be greater than or equal to x on an interval

(0, d), hence its powers cannot be bounded by any continuous function (see

the argument of Theorem 10). It is clear however that an algebraic function

similar to the broken line of Theorem 9 can be defined, hence the group is

not integrally closed.

6. The free group, combinatorial order. Let F be the free group with two

generators a, b. We recall that an order may be established in a group G by

defining a subsemi-group of "positive" elements K which (a) is closed under

multiplication, (b) is closed under conjugation: gKg~lrZK, all gGG, (c) con-

tains e, and no other element along with its inverse. Then a = o is defined

to mean ab~l£zK [lj. These conditions are equivalent to (1, 3) of §2. A first

attempt to define art o-group on F consists in letting Ko be the set of all ele-

ments expressible as products of conjugates of a and of ö, together with the

identity e.

Theorem 13. The order x^y meaning xy_1£.Ko defines a non-integrally

closed o-group on F.

Properties (a, b, c) are trivial, the latter because the sum of exponents

of any K0 element not e is positive. Moreover, F is a directed set, since

an = a1 "l, hence ambn ■ ■ • ga|m|o|n| ■ ■ • . Thus both ambn ■ ■ ■ and am'b"' • • ■

g(alHo|n| . . . )(al"'l0ln'i . . . ). The remainder of the proof requires the fol-

lowing lemma.

Lemma 8. In any l-group, an^e for some n implies a^e.

Proof. (aAe)n=anAan_1A • • ■ AiA^^Ae)"-1, aA«=«^^
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However, in the group F one has A = ab~ia'bia~lb»~1b not greater than or

equal to e and A2 = (ab~2a2b2a-1) (baobab-1) (b-1a(ab2a-1b)a~1b)>e.

Now if Fwere integrally closed, by Theorem 1, //would be embeddable

in an /-group. Or one may argue directly that A2n > e, A2n+1 > A, hence A n >B

for any B<e, A (directed set property), and integral closure would imply

A^e.

7. The free group, function order. Again let F be the free group with

generators a, b, and let T be the group of continuous monotone functions

of §5. Denote by T+ the functions/(;c) = x, Ogxgl, of T. We now introduce

an order into F by defining a positive class F+ consisting of e, and of all formal

products ambn ■ ■ ■ of F for which fmgn ■ ■ ■ (x)£;T+ for all/, g of T+.

It is clear that F+ is closed under multiplication and conjugation, inas-

much as T+ is. Moreover, if a formal product ambn • ■ ■ Ae were in F+ along

with its inverse, we should have/mgn • • • (x)=x, Ogxgl, for all/, g of 7"+.

We show that this is impossible.

Lemma 9. If ambn ■ ■ ■ Ae, there exist functions f, g of T+ for which

fmgn ■ ■ ■ (x)j£x.

Assume P = ambn ■ ■ ■ completely reduced, that is, with no adjacent a, a-1

or b, b~l. Define the first function (/, /~\ g, or g-1) from the right at x = \/2

by/(l/2) =3/4, or g(l/2) =3/4 if P = am ■ ■ ■ a or P=am ■ ■ ■ b respectively,

and/(l/4> = l/2 or g(l/4) = l/2, that is, f-^1/2) = 1/4, or g-1(l/2) = l/4 in
case P = am ■ ■ • a-1 or P = am ■ ■ ■ 6-1. Now suppose the functions/, g have

been defined on a finite set of points of (0, 1) so that

(1) /, g are monotone increasing and greater than or equal to x,

(2) the values 1/2, Fi(l/2), • • • , Fm(l/2) are all distinct, where Fi(x)

=:( . . . f . . . g . . . ) jg the product of the i right-most factors of P with/, g

substituted for a, b.

Suppose Fm+i(x)=f(Fm(x)). We may define Fm+i(l/2) distinct from

Fm(l/2), • • • , 1/2, and/monotone with the previous values, and/(Fm(l/2))

> Fm(l/2) provided only that Fm(x) was not previously a point of definition

for /. But previous definition of / occurred in only two ways. Either

Fk=f(Fk^), k^m (and this is impossible by (2)), or Fk=t\Fk-i),f(Fk) = F*_a.

Again by (2), k<m is impossible, and if k—m, we have Fm+i=fFm=ff~lFm-i

contradicting the hypothesis on irreducibility of P.

Finally suppose Fm+l(x) =f~1(Fm(x)). We can define/-1 (and hence/) and

Fm+i(l/2) as we wish provided only that F(l/2) has not previously occurred

as a point of definition of/-1. If previously Fü=/-1Fä_i, k^m,we would con-

tradict (2). If Fk=fFk-i and thus/-1(Fi) =Ffc_i either k<m is impossible by

(2) or k=m means FOT+i=/-1Fm=/_1/Fm_i contradicting irreducibility of P.

It follows that we have the theorem:

Theorem 14. The order x^y meaning xy-1GF+ defines a non-integrally
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closed o-group on F,for which, however, xn^efor some n implies x~^e. The func-

tionally positive elements F+ properly include the elements of Ko.

Conditions (1, 3) of §2 are immediate. Since every element of Ko is a

product of conjugates of a and b, clearly KoCZF*. Hence function order de-

fines a directed set since Ko did. Hence also (2).

Suppose now P = ambn • • • Gr7 and P'GF4" for some v. Then for every

/, g in T+, (Jmgn ■ ■ ■ )*Gr+, and since T is an /-group (Theorem 9),

(fmgn ■ ■ ■ )GF+, hence PGF+ (Lemma 8). Note that the element A of Theo-

rem 12 (proof) is in F+, not in K0.

The fact that F+-order is non-integrally closed seems deeper, and has

curious consequences for function theory which we shall point out later.

Corollary 3. The composite function /g~2/2g2/_1g/_1g(x) is in T+ for all

f,gofT+.

For (ab-1atb2a-1ba-1byEKoCF+.

Lemma 10. In F, let A = ab-2a2b2a~lba~lb, and B=ab-2ab2ar'1-. Under func-

tion order, A2>B>2, but A, B are incomparable.

For A2^B2, see the computation of §6. Indeed, B~2A2£.Ko(ZF+. One

easily constructs broken lines/, g of F+ for which P = P~^4 =ab~2ab2a~voa~xb

under substitution yields a function P(f, g) =fg~2fg2f~1gf~lg which has

P(f, g)(l/2) > 1/2, and other broken lines for which P(f, g)(l/2) < 1/2. (This
is most easily accomplished graphically by a point by point construction of

the functions and their inverses from the right end of P, in the first case

always assigning/, g values as great as is possible, consistent with monotonic-

ity, in the second case, as small.)

Lemma 11. // for some fo, go of T+ and x0 on (0, 1) one has P(fo, go)(*o)

=fogF2foglfF1gQfö'1go(xo) <x0, then P(f0, go)(x{) >xu and P(f0, go)(xi) >x2, where

xi = J3-1 (Jo, go)(xo) <x0 <x2=A(fo, go)(xo).

Let P(xo) =B_1A(xo) <x0 (where throughout we understand that/0, go are

substituted for a, b respectively). Then B~lA(A(xo))^B(xo)>A(xo)>xo.

Similarly, B~lA (P-^Xo)) ^B-lA-'lB(xo)>B-1(xo).

Lemma 12. In the group F with function order F+, one has P"B>efor all v,

with P not greater than or equal to e.

For all v = 1, 2, • • • , and all x on (0, 1), all/, g of F+, one has P'B(J, g)(x)

= x. For if not, then there are functions/o, go of F+, such thatP"P(/o, go)(x) ^x,

all x on (0, 1), v = \, 2, ■ ■ • , N—l, but for v = N there exists an x0 on (0, 1)

for which PNB{fo, go)(*o) <x0gPJV-1P(/o, go)(*o). Hence PP(/0, g0)(*o)

< P(/o, go) (*o) • By Lemma 11, PB^B {fo, go) (*o) = P(/o, go) (*o) > B~lB (/„, g0) (*„)

= x0>PNB(fo, go)(x0). Hencex0>PJV-1P(/o, go)(x0).
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This concludes the proof of Theorem 13.

Corollary 4. Given functions f, g of F+ for which some fmgn ■ ■ ■ {x)^x

on certain subintervals of (0, 1), there do not in general exist functions f, g' of T+

arbitrarily close to e(x) =xfor which f'mg'n ■ ■ ■ (x) gx on these subintervals.

For if this were true, we could prove F integrally closed under function

order. Either S^e, or if not, for some /o, go of F+ one has 5(/o, go)(*o)<*o-

One would then have S(Jo, go')(*o)<*o with fi, g0' arbitrarily close to

e(x) =x. But then S could not be bounded; indeed if S'T(Jo, go')(x)S;x,

we should have S"(fd, go)(x0)>T~1(Jo, go')(*o). Since T is fixed, this would

be a contradiction.
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