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G. Takeuti developed the theory of ordinal diagrams of order » (where #
is a positive integer) in [2] and generalized it to the theory of ordinal dia-
grams constructed from well-ordered sets I, A, and S in [3] It was necessary
to consider S in order to prove the accessibility for Od({J, A, S) (the system of
ordinal diagrams constructed from 7, A and S) given in [3]. But S did
not serve to extend the system of ordinal diagrams. In fact, if we denote
Od(Z, A, S) and O(7, A, S) with empty S by Od({, A) and O(Z, A) respectively, we
can embed Od(/, 4, S) (or O(7, A, S)) into Od{({x}\J I, A\JS) (or O{{x}\JI, AJS)),
where * is distinct form any element of I, A and S; the notation AV S means
the well-ordered set obtained from A and S by keeping the orders in them-
selves and setting the elements of A before the elements of S. The embed-
ding is defined as follows:

1. If a= A, then a* is «.

2, If « is of the form («a,, s), then a* is (x, ¥, s).

3. If a is of the form (i, a,, «,), then a* is (7 ,a*, a,*).

4. If a is of the form «, # «,, then o* is a,*§ «,*.

Now we can simplify the proof of the accessibility of Od(/, 4,S) in a
similar way as in § 2 of whether S is empty or not (cf. § 2 of this paper).
In this paper, we shall construct a system Od(I), namely “ the system of ordinal
diagrams constructed from a well-ordered set /> (in §1), and prove that the
system is well-ordered for the given orderings in a similar way as in (in
§2). Then we shall show that the present system is a generalization of pre-
vious systems. In fact, Od{J, A) is embedded into OdJ\J A) in §3. By the
way, we shall show that a formal theory of Od(Z, A) can be formalized in the
system developed in and is consistent.

The author wishes to express her heart-felt thanks to Prof. G. Takeuti for
his valuable advice and kind encouragement in the preparation of this paper.

§1. Ordinal diagrams constructed from 1.

Let I be a well-ordered set with the order <* and ¢ be the first element:
of I. In this section, we shall construct a kind of system of ordinal diagrams,
called ordinal diagrams constructed from I and denoted by Od(7). Though
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the word o.d. is used in [2] and in [3] to denote an element of ordinal dia-
grams developed there, we use it instead of ‘an element of Od(/)’ for simpli-
fication throughout this and the next sections,

1. Od(J) is defined recursively as follows:
11. If z=1, then { is an o.d.
1.2, If a and /2 are o.d.’s, then («, #) is an o.d.
13. If « and A are o.d.’s, then %4 is an o.d.

2. An o.d. «is called a ¢.o.d. (connected ordinal diagram constructed from
D), if and only if the operation used in the final step of construction of « is
not #.

3. Let « be an o.d. We define components of « recursively as follows:
31. If «@ is a c.0.d., then & has exactly one component which is « itself.
32. If @ is an o.d. of the form «, # a,, then the components of « are
the components of «; and of «,.

4. Let a and 8 be o.d.’s. We define a« =8 recursively as follows:

41. Let a=1. Then a=4, if 2 is an element of [ and equal to « in I.

4.2. Let a be of the form {(a, «,). Then a—=pg if B is of the form (3, 5,)
and «, =4, and «,=43,.

4.3. Let a have & components «,, -, a; (>1). Then =g, if # has k-
components, and £, -+, 85 being these components, there exists a permutation
(my, -+ ,myy of (1,---, k) such that a,=pF,, for n=1,.--, k.

44, B=a if a=4.

5. Let e be an o.d. The rank of @ means the sum of the number of (,)
and £ in «a.

6. Let a, 2 and £ be o.d’s. We define the relations . « (to read: # is a
E-section of @) and f < «, B <. aand ‘index of a’ simultaneously as follows:

61. If ,f< then §<,; a and <. a means B <*a.

6.2. Let one (or both) of « and £ be not a c.o.d., and the components of
« and 8B be «y, -, «, and B, -+, B, respectively. B <.a holds if one of the
following conditions is satisfied:

6.2.1. There exists an «, (1=m=5) such that §8,<. a, holds for every
n (1=un=k).

622. 2>1, k=1 and g, =«a, for some m (1 =<m=h).

6.23. £2>1, k>1 and there exist an «,, (1 =m=/h) and a 5, {=Z2n=k)
such that «a,, =4, and

B § BB Bt 88 <cardfan fanEfa,.
B < e holds if one of 6.21-6.2.3 with co in place of & is fulfilled.
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63. If a=], then fC . a never holds.

6.4. Let « be of the form («,, ay).

64.1. If €<, then fC, e if and only if fC¢ ;.

642. If é=«, then S, « if and only if 2 is «;,.

6.43. If a,<, ¢, then . a never holds.

6.5. Let a be of the form «a,4a,. Then fC . « if and only if either # T, a;
or #C ¢ a; holds,

6.6. £ is called an index of «, if a has a &-section.

In the following we shall simply say ‘£ is less (or greater) than 7’ and
‘% is the minimum (or maximum)’ in place of ‘£ is less (or greater) than 7%
in the sense of <,’ and ‘¢ is the minimum (or maximum) in the sense of
<,’, respectively.

6.7. Let « and 8 be c.o.d’s. If there exists an index z of a and/or S
such that & <, », then £ is defined to be the minimum of such indices; other-
wise, £* is defined to be co. Then # <. «, if and only if one of the following
conditions is fulfilled:

6.7.1. There exists a £-section «, of a such that <. «,.

6.72. B,<:«a for every &-section f, of # and g <+ a.

68. Let « and 4 be c.0.d,’s of the form («,, «,) and (4,, #,) respectively.
B <« a if and only if one of the following conditions is fulfilled:

68.1. A<,

68.2. B,=a, and 7, <,, «,.

6.9. Let a=T and g be a c.o.d. of the form (8, 5,). a<. B if a=, B,
B <. aif f,<, a.

Under these definitions the following propositions are easily proved.

PROPOSITION 1. = is an egquivalence relation between o.d.’s.

PROPOSITION 2. Let «,, ., 8.8, be o.d’s. a,=f, and a,=Pp8, imply
a fa,=p. %85,

ProrosITIiON 3. Let «, a,, ., B be 0.d’s and v be an o.d. or oo. Then
o, =P, ay=F, and &, <y & imply B, <y Bs.

PROPOSITION 4. FEach of the velations <. wheve & is an o0.d. or oo, defines
a linear order befween o.d.’s.

ProposiTioN 5. Lef a and 8 be 0.d’s. Then B<. (a, B) for every v such
that v =,«.

§ 2. Accessibility of 0d([J).

Let S be a system with a linear order <. An element s of S is called
‘accessible in S (or accessible for <)’ if the subsystem of S consisting of
elements, which are not greater than s in the sense of <, is well-ordered. S
is called accessible, if the whole system is well-ordered by <.
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1. Let a« and # be o.d’s. We define a relation f=a (to read; £ is a value
of «) as follows:

1.1. If a =1, then « has no value, that is, S<=« never holds.

1.2. Let «a be not a c.o.d. and have components «,, -, «;. Then f<=qa,
if p=a,, for some m (1 <m<Ek).

1.3. Let a be of the form (a, «,). Then f<a, if § is a, or f<q, or
B=a..

2. Let a and 4 be o.d’s. f is called a (&, -+, £p)-section of «, if the following
conditions are fulfilled :

2.1 El go Ezéo"'én &-'n

2.2. There exists a series of 0.d.s a =«,, a,, -+, ¢, = F such that «, is
the maximal component of a &;-section of a;_, in the sense of <., for every
Ek=12 - ,n).

3. Let & be an o.d. %o is called the successor of & and sometimes denoted as
&, (It is clearly seen that no o.d. lies between & and &#o0 for <, where 7 is
an 0.d. or «). An o.d. £ is called a [ o.d. (limit ordinal diagram constructed
from 1), if every component of ¢ is different from o.

4. Let a be an 0.d. and & be an o.d. accessible for <,. We define ‘a is a
E-fan’ and ‘« is &-accessible”’ by transfinite induction on & for <, as follows:
4.1. An o.d., every value of which is accessible for <, is an o-fan.

4.2, « is &-accessible, if and only if « is a &-fan and accessible for <, in
the system of &-fans.

4.3, «a is £fo-fan, if and only if « is a &-fan and every &-section of « is
&-accessible.

44. Let £ bea lo.d «is a &fan, if and only if « is an z-fan for every
7 satisfying 7 <, &.

Let « be an 0.d. « is called an oo-fan, if « is a &-fan for every o.d. &
accessible for <,, and is called to be co-accessible, if a is an co-fan and acces-
sible for <. in the system of oo-fans.

The following propositions are easily proved.

PROPOSITION 1. Let @ and & be 0.d’s. If every o.d. less than « in the
sense of < is accessible for <., then « is accessible for <.

PROPOSITION 2. Let a and & be o0.d’s. If « is accessible for <., then every
0.d. less than « in the sense of <. is accessible for <,.

PROPOSITION 3. Let &y, -, &, and & be 0.d’s. If «, -, a, are accessible
Jor <g, then o ---§a, is accessible for <..

These propositions remain correct, if we replace ‘o.d. £, ‘o0.d.’s &, ay, -+ , "
and ‘accessible for <’ by ‘o.d. £ accessible for <,’, ‘é-fans «,ay, -+, @, and
¢ £-accessible’, respectively. We refer to thus replaced propositions as Propo-
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sitions 1*-3%,

PROPOSITION 4. Let & be an o.d. accessible for <,. If « is Efo-accessible,
then « is E-accessible.

PrOOF. « is a &-fan by the definition. We may assume that every &’-fan
B satisfying f <. « is f-accessible. We shall prove that every £-fan § such
that A <; a is &£’-fan and £-accessible by induction on the rank of 4. Let #
be a &-fan such that <, . If 8 hasa &-section 3, 8, is a &-fan and B, <, «.
Then j, is &-accessible by the hypothesis of induction. We see that g is a
£’-fan, whether A has a &-section or not. Then one of the following condi-
tions holds:

1) B<ea.

(2) There exists a &-section «, of & such that 2=, «a,.

In the former case, # is &-accessible by our assumption. In the latter case,
since «a, is £-accessible, &-accessibility of 8 follows from Proposition 1%, q.e. d.

PROPOSITION 5. Let & be a 1. 0.d. accessible for <., and the following condi-
tion (C) be satisfied:

(C) For any 7, such that n <,C <&, every {-accessible E-fan is n-accessible.
Then ‘« is &-accessible’ implies * ¢ is n-accessible’ for every n less than E.

Proor. Let the condition (C) be astisfied and « be ¢&-accessible, Let &,
be the successor of the greatest index less than £, We have only to prove
that « is p-accessible for every 7 such that §, =, =<, &, We shall prove this
by transfinite induction for <, on «. We may assume that every &-fan such
that B <, « is {-accessible for every { less than £, For the proof we define
an auxiliary notion ‘y is the xn-th z-branch of g with respect to £, and ¢,
recursively as follows:

5.1, If {,=, 7<, ¢, and r, B,7 is the 1 st g-branch of # with respect
to ¢, and ¢..

5.2. Let yCy 0 and ¢ be the »-th {-branch of # with respect to {, and (.
If =, 7n<, ¢, then 7 is the n-th n-branch of f. If { =, <, {;, then 7 is
the n-+1-st »-branch of # with respect to {, and {,.

Let 7 satisfy &£,=, 7<, & and £ be an »-fan and # <, a«. We shall prove
that 8 is a £-fan and {-accessible of every { such that &, <, { <, & by induction
on the number of branches of # with respect to &, and £ Let £, be an arbi-
trary {,-branch of 8 (£, =, {, <, &). Using the hypothesis of induction, we see
that g, is a £-fan. g, <. « holds by means of § <, a. Then j, is {,-accessible
by the hypothesis of transfinite induction for <,. Thus we may consider j
as a &-fan. B <. « holds by means of #<, a. Then f is {-accessible for every
{ less than & by the hypothesis of transfinite induction. From this our pro-
position follows by Proposition 1%, g.e.d.

By Propositions 4 and 5, we see easily
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PROPOSITION 6. Lef & be an o.d. accessible for <, and the condition (C)
Fold.  Then for every n less than &, ‘'« is &-accessible’ tmplies “ o« is n-accessible’.

PROPOSITION 7. The condition (C) holds for an avbitrary o.d. £ accessible
for <,.

ProOOF. We prove this by transfinite induction on £ Suppose now the
proposition holds for every &, less than £. If £ is a /.o0.d., our assertion is
clear by the definition of &-fan. If §={,%0, our assertion holds for ¢ less
than ¢, by the hypothesis of induction and for {={, by Proposition 6.

From Propositions 6 and 7 follows

PROPOSITION 8. Let & be an o.d. accessible for <, a be E-accessible and
n<o & Then « is n-accessible.

From follows

PROPOSITION 9. For any o.d.s 7,{ accessible for <, and 7<,{ every (-
accessible co-fan is n-accessible. |

PropOSITION 10. Jf « is co-accessible, then o is E-accessible for every o.d.
£ accessible for <

Proor. Following the proof of Proposition 5 we can prove this by the
help of Proposition 9.

By transfinite induction over 7, we have

PrROPOSITION 11. FEwvery co-fan is co-accessible.

From Propositions 10 and 11, we see easily

PROPOSITION 12. Every co-fan is &-accessible for every & accessible for <,.

PROPOSITION 13. FEvery o-fan is E-accessible wheve & is an avbitrary o.d.
accessible for <, or & is oo.

We see easily the following proposition.

PROPOSITION 14. Let « and B be c.o.d’s and & an o.d. If a<.f, then
a <o B or theve exists a (£, -, Ey)-section By of B such that E<,& and o <. B,

Then we have

PROPOSITION 15.  Every value of an o.d. « is less ihan «.

PROPOSITION 16. Let « be an o.d. and not an o-fan. Then there exists an
o-fan B such that §<,a and [ is not accessible for <,.

Proor. We prove this by induction on the rank of @. By the hypothesis
of the proposition, there exists a value «, of a not accessible for <, We
have «, <, a by Proposition 15. If «, is an o-fan, we can take a,as 5. If «,
is not an o-fan, there exists an ¢-fan £ such that 8 <, @, and # is not accessible
for <, by the hypothesis of induction. Then g has the required property.

q. e. d.

PropPoOSITION 17. Every o-fan is accessible for <,.

Proor. We prove this by transfinite induction for <, on the system of
o-fans (cf. Proposition 13). Let @ be an o-fan. We may assume that every
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o-fan # less than « is accessible for <,. Under this hypothesis and Proposi-
tion 16, we see easily that, if y <, « then 7 is an o-fan. Then we have the

proposition by [Proposition 1|

PROPOSITION 18. Every o.d. is an o-fan.
ProposITION 19. Every o.d. is accessible for <,

THEOREM. [very o.d. is accessible for <, where £ is an arbitrary o.d. or co.
Proor. It follows from Propositions 18, 19 and 13.

§3. Relations between 0d(1I, A) and Od([I).

In this section we shall show that Od(Z, ) is embedded into Od{/), where
J is a union of two sets isomorphic to I.

1. Let 7 be well-ordered, < be the well-ordering of I, and the first element
of I be denoted by o.

We define 7 to be a set consisting of all the i and ; where ;& I. <isa
well-ordering of I, which is defined as follows:

1.1. If i<j, then i <j.

12. If i and j= 1T, then i < 7.

13. If §<j, then 7 <j.

2. In the following some notations (e.g. %, oo) are used in both Od(/,I) and
od().
Let « be an element of Od(/, 7). «* is defined recursively as follows:
2.1. If w< ], then a* is @.
22, If a is of the form (4, &, «,), then «* is (%, G, ®,*).
2.3. If « is of the form «a,%a,, then a¥* is a *#a,*.
We see easily the following propositions.

PrOPOSITION 1. If « is an element of Od(l, I), thern «* is an element of Od(D).

PROPOSITION 2. Let « and 8 be elements of Od(I, 1), a¥*=8*% if and only
fa=4

PROPOSITION 3. If i and « belong te [ and Od(l, I) respectively, then i <g a¥
where & is an arbitrary element of Od([~ ) or co.

Proor. We prove this by induction on the rank of a. If a =, then it
is clear by 1.2. If « is of the form (j, «,, @,) then «* is (a.*, (4, @.*)). By the
hypothesis of induction i <, a;*, whence follows i <..a*. Then i <ga* for every
&=, a*. Since a* contains no £-section such that j <, & <, «,*, this implies
1< a* for j <, &<, ¥ Since i <; «* holds by the hypothesis of induction,
1 <; a* holds. From this we see easily the proposition.

PrOPOSITION 4. Let «« and B be elements of Od({, 1) and i=!. f* is an
i-section of %, if and only if B is an i-section of «.
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Proor. We see easily the proposition by induction on the rank of @ and
Proposition 3.

PROPOSITION 5. Let a and B be elements of Od(I, I). If a <; B, then a® <; §*
wheve i= 1 or i is co.

Proor. We shall prove this by double induction on the sum of ranks of
« and f# and the number of indices greater than i in « and/or S.

First we shall prove the case i =occ. We have only to prove a <. g implies
a* <, % under the following hypothesis of induction:

(H1) Let y and 6 be any elements of Od({/,7), and the sum of the ranks

of 7,d be less than the sum of the ranks of « and 4. Then 7y <, § implies

¥ <; 0% where j= I or j is oo.

To show this we separate the cases according to the forms of « and #. Since
other cases are easily treated, we treat here only the case that « and £ are
of the form (4, a,, ;) and (4, 8,, f,) respectively. If «,<, B, then a, <, B*
by (H1), which implies a* <. p*. If a,=#, then we have only to prove
(, a,®) <aF (4, £, (by Proposition 2), which follows from (i, «,*) <. (4, ,*) (by
Proposition 3). (@, a,*)<~({j, £,*) follows from i<j, or i=j and «a*<; £,*
according as i <j, or i=j7 and a; <; 5.

Then we prove that a <; # implies a* <; 8% for i = I under (Hl) and the
following hypothesis of induction:

(H2) « <; B implies a* <; #* for every j such that the number of indices

greater than j in « and/or 4 is less than the number of indices greater

than { in « and/or f.

If there exists an i-section f#, of # such that a <, 4,, then 8,* is an i-section
of A% and a*=, 4,/* by Proposition 4 and (H1). Let a«,<; # for every i-section
«, of & and « <; B where j is defined as follows: If there exists an index of
« and/or A greater than i, then j is defined to be the minimum of such indi-
ces ; othewise, j is defined to be co. Then a,* <; 8% for every i-section «,* of
a* and a* <; ¥ by Proposition 4 and (H2). From this follows a* <; §* by
Proposition 4.

From these propositions follows

THEOREM 1. Od(l,I) is embedded into Od(D).

We define a subsystem O() of Od{J) recursively as follows:

3.1. If il then i= O{).

32, If iel and a = O(), then (i,a)= OU).

33. If a=0() and f<=0), then atp = O).
Then we have

COROLLARY 1. O(Z,1) is embedded into OCI).

Let 7 and A be well-ordered. We have the following theorem in the same
way as above.
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THEOREM 2. If I and A have no element in common, Od(I, A) is embedded
into Od(I\/ A).

COROLLARY 2. If [ and A have no element in common, O, A) is embedded
into O(I\J A).

§4. On a formal theory of 0d(Z, A).

In [5], G. Takeuti proved the consistency of a logical system. We shall
consider the following slight modification of this system: Let I(a), A(a), a <*b
and ¢ <b be primitive recursive predicates, and <* and < well-orderings of
£ and A, where I and A are {a|l{a)} and {a|A(a)} respectively.

1. Every beginning sequence is of the form D— D or of the form a =24,
F(a)— F(b) or a ‘mathematische Grundsequénz’ in Gentzen [1], or one of the
following forms:

Ka), Anla, b5}— G la, b, {x, y} (A, V) A x <¥a));

Ka), Gola, b, {x, y}(Anlx, ) N x <Fa))— Aula, b);

A(@), Bila, )= Hila, b, 1% y}(Bofx,3) N £ < a));

A@), Hia, 0, {% y}(Bu(%,3) A x< @)= Bila, b);
where m,n=0,1,2, ---, A, 4, -+, Bo» By, --- are symbols for predicate and G,
and H, are arbitrary formulas satisfying the following conditions:

(@) Gupla, b, ) and Hla,b, @) do not contain A, Anyi, Amyer = s Boy By Bay +*
and B,, B,.,, Bns, --+ respectively.

(b) If Gula, b, &) or H(a,b, @) contains a formula of the form YeF(¢),
then F(#) contains no bound f-variable.

2. The following inference ‘induction’ is added:

Flo), I'> 4, Fla+1)
FQO), I'=4, F(D
where ¢ is contained in none of F(0), I' and 4, and ¢ is an arbitrary term.
3. The inference V left on f-variable
FOV), I'—4
YoF(p), I'— 4
is restricted by the condition that F(§) contains no bound f-variable.

Then we have the following

THEOREM. This sysiem is consistent.

Proor. Let J be I'\J A, < be a well-ordering of J defined as follows:

1. If 7 <*j4, then i<j.

2. If i=Iand e= A, then {<a.

3. If ¢<b, then a<b.

Then the proof is performed as in considering J as L
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We see easily from the proof of §2, that the proof for accessibility of
Od(Z, A) can be given in a similar way as in §2 of [2] We can develop a
formal theory of Od(Z, A) in a subsystem of the above system such that m=20,1
and #=0. Itis noticed that for the consistency-proof for this subsystem, we
have only to use {coc} U], U], instead of /.. We shall not give an exact treat-
ment of the formal theory here, but show how to develop it. First we give
all the necessary concepts concerning the construction of Od(l, A) as the
mathematische Grundsequenzen in the same way as in [4] Let I(a), A(a).
a<*b,a <b, Oa), <G, a,b), C@G, a b) and <(a, b) be the formal counterparts of
‘acsl’,‘as A’ ‘aisless than b in I, ‘q isless than b in A’ ‘@< 0d(, A)’,
‘a<;b’, ‘a;b’ and ‘a<b’, respectively. We use further the following
abbreviations :

JT¥a)y for Vo(Vx((x) AV¥(y <*x—@lyD—o[x])—elal);
D¥a,a) for Vx(x <*ar~— alx])— [*a);
J(@) for Ye(yx(A) ANy < 2 9Ly — D) — ¢lal);
D@, o) for Va(x<ar—alxD)—Ja);
AG,a,a) for Yo(Vala[x] AV a[yIA <Gy, ) —elyD—olxD—elal);
AlG,a) for A(@, {x}0x),a);
Na) for O@) AVx(<=(x, a)— A(l, 1)), where 1 stands for the formal
counterpart of the first element of I;
B(@,a,a) for
FOFN 5((1) AVx(x <*i—alx,a] ANV (x;y, @) — Alx, {u} alx, 4l ¥);
IG) for I() Ai=0, where 0 stands for the formal counterpart of co.
Then the following sequences are also used as beginning sequences of our
system:
1.1. I, C*G)— D¥Q, {x}(CHx) A x <*D)).
1.2, KD, DG, {x}(C¥x) A x <FD)— CH(0).
1.3, Ale), Cla)— D(a, {x}(Cx) A x < ).
14.  Al@), Da, {x}(C(%) A x < @) — Cla).
1.5, IG), FG, a)— BU, a,{x, yY(F(x, y) A x <*0).
1.6. IG), BG, a,{x, y}(F(x, ) AN x<*0)— F(, a).

We can prove that the sequence (@), 1())— A, @) is provable in our system.

This is done similarly as in [4], using the above proof of accessibility.

Tokyo University of Education
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