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ON ORIENTED m-SEMIREGULAR REPRESENTATIONS OF FINITE GROUPS ABOUT

VALENCY TWO

JIA-LI DU, YOUNG SOO KWON, AND DA-WEI YANG∗

Abstract. Given a group G, an m-Cayley digraph Γ over G is a digraph that has a group of automorphisms
isomorphic to G acting semiregularly on the vertex set with m orbits. We say that G admits an oriented m-

semiregular representation (OmSR for short), if there exists a regular m-Cayley digraph Γ over G such that Γ is
oriented and its automorphism group is isomorphic to G. In particular, O1SR is also named as ORR. Verret and
Xia gave a classification of finite simple groups admitting an ORR of valency two in [Ars Math. Contemp. 22
(2022), #P1.07]. Let m ≥ 2 be an integer. In this paper, we show that all finite groups generated by at most
two elements admit an OmSR of valency two except four groups of small orders. Consequently, a classification of
finite simple groups admitting an OmSR of valency two is obtained.
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1. Introduction

By a digraph Γ, we mean an ordered pair (V,A) where the vertex set V is a non-empty set and the arc set
A is a binary relation on V , that is, A ⊆ V × V . The elements of V and A are called vertices and arcs of Γ,
respectively. For simplicity, we write V (Γ) := V and A(Γ) := A. The digraph Γ is a graph if the binary relation
A is symmetric, that is, A = {(v, u) | (u, v) ∈ A}. A digraph is called regular if each vertex has the same in-
and out-valency. For a vertex u ∈ V (Γ), let Γ+(u) be the set of vertices v such that (u, v) ∈ A(Γ). Throughout
this paper, all digraphs are regular, and all digraphs and groups are finite.

Let Γ be a digraph, and let ω ∈ V (Γ). An automorphism of Γ is a permutation σ of V (Γ) fixing A(Γ) setwise,
that is, (xσ , yσ) ∈ A(Γ) if and only if (x, y) ∈ A(Γ). The set of all automorphisms of Γ, with the operation of
composition, is the full automorphism group of Γ, denoted by Aut(Γ). For a subgroup G of Aut(Γ), denote by
Gω the stabilizer of ω in G, that is, the subgroup of G fixing ω. We say that G is semiregular on V (Γ) if Gω = 1
for every ω ∈ V (Γ), and regular if it is semiregular and transitive.

Let G be a group, and let S be a subset of G. The Cayley digraph Γ := Cay(G,S) is the digraph with
V (Γ) := G and A(Γ) := {(g, sg) | g ∈ G, s ∈ S}. In particular, Γ is a Cayley graph if and only if S = S−1. The
right regular representation R(G) of G gives rise to an embedding of G into Aut(Γ), that is, R(G) is a subgroup
of Aut(Γ). If Aut(Γ) actually coincides with R(G), then the (di)graph Γ is said to be a (di)graphical regular
representation over G, and this is usually abbreviated to GRR (or DRR). GRRs (or DRRs) offer a natural way to
represent groups geometrically and combinatorially as groups of automorphisms of (di)graphs [13]. The problem
that determining the finite groups admitting a GRR or DRR has a long history. The complete classification of
finite groups admiting a DRR has been given by Babai [1], and it was shown that except for five small groups,
every group admits a DRR. Clearly, if a group G admits a GRR, then G admits a DRR, however the converse is
not true. The GRR turned out to be much more difficult to handle and, after a long series of partial results by
various authors [8, 9, 10, 11, 15, 16, 19], the classification was completed by Godsil in [6]. Once the classifications
of DRRs and GRRs were completed, researchers proposed and investigated various natural generalizations. In
the following paragraphs, we mainly introduce some background about oriented m-semiregular representation;
one may see [13, 14, 17] for the introduction of some other generalizations.

Oriented regular representation, i.e. ORR. A digraph is oriented if it does not have both oppositely
directed arcs between any pairs of vertices. An oriented Cayley digraph is in some sense a proper digraph.
More formally, it is a Cayley digraph Cay(G,S) whose connection set S has the property that S ∩ S−1 = ∅.
Equivalently, in graph-theoretic terms, it is a digraph with no digons, see [13]. We say that a group G admits
an oriented regular representation (ORR for short) if there exists an oriented Cayley digraph Γ = Cay(G,S)
over G such that Aut(Γ) = R(G). In [1, Problem 2.7], Babai asked which groups admit an ORR, and this
problem was finally settled by Morris and Spiga in three papers [13, 14, 17].
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Oriented m-semiregular representation, i.e. OmSR. The concept of Cayley digraphs can be nicely
generalized to m-Cayley digraphs where regular actions are replaced with semiregular actions. An m-Cayley
(di)graph Γ over a finite group G is defined as a (di)graph which has a semiregular group of automorphisms
isomorphic to G with m orbits on its vertex set. Actually, 1-Cayley (di)graphs are the usual Cayley (di)graphs
and, 2-Cayley (di)graphs are also called bi-Cayley (di)graphs, see [12]. We say that a group G admits a
(di)graphical m-semiregular representation (GmSR and DmSR, for short), if there exists a regular m-Cayley
(di)graph Γ over G such that Aut(Γ) = R(G), and admits an oriented m-semiregular representation (OmSR
for short), if there exists a regular m-Cayley digraph Γ over G such that it is oriented and Aut(Γ) = R(G).
In particular, G1SRs and D1SRs are the usual GRRs and DRRs, respectively. The groups admitting GmSRs,
DmSRs or OmSRs for every positive integer m were determined in [3, 4].

Oriented m-semiregular representation of prescribed valency. In contrast to unrestricted GmSRs,
DmSRs and OmSRs, the classification of groups admitting GmSRs, DmSRs, or OmSRs of prescribed valency
is largely open.

Since a connected graph of valency one or two is an edge or a cycle, the smallest interesting case is of valency
three. The study on cubic GRR has begun with a piece of Godsil’s work [5], which confirmed the existence of
cubic GRR of the symmetric and alternating group. Recently, lots of research has been done on finite simple
groups admitting a cubic GRR. For example, Xia and Fang [20, 22, 23] studied some simple groups of Lie type
admitting a cubic GRR. Moreover, Spiga [18] gave some sufficient conditions for a cubic Cayley graph of a
non-abelian simple group to be a GRR.

For digraphs, the smallest interesting case is of valency two, as a connected digraph of valency one is just
a directed cycle. Recently, Verret and Xia [21] classified simple groups admitting an ORR (i.e. O1RR) of
valency two; every simple group of order at least 5 has an ORR of valency two. This work prompts us to
further consider the simple groups admitting an OmSR of valency two for m ≥ 2. Due to the classification of
finite simple groups, we know that every finite simple group can be generated by two elements, one can see [7,
Corollary]. In this paper, we consider OmSRs of valency two for groups generated by at most two elements,
where m ≥ 2. Our main results are the following theorem.

Theorem 1.1. Let G be a finite group generated by at most two elements, and let m ≥ 2 be an integer. Then

G admits no OmSR of valency two if and only if one of the following occurs:

(1) m = 2 and G ∼= Z1, Z2 or Z2
2;

(2) 3 ≤ m ≤ 6 and G ∼= Z1.

Consequently, a complete classification of simple groups admitting an OmSR of valency two can be obtained.

Corollary 1.2. Let G be a finite simple group, and let m ≥ 2 be an integer. Then G admits an OmSR of

valency two except (m,G) = (2,Z2).

We can see from Theorem 1.1 that almost all finite groups generated by two elements have an OmSR of
valency two when m ≥ 2. However, this is not true when m = 1. A counterexample is the dihedral group,
one may also see [1]. Moreover, the abelian group Zn × Zn also has no ORR of valency two, since it has an
automorphism interchanging the two generators for each minimal generating set. To end this section, we would
like to propose the following problem.

Problem 1.3. Classify finite groups generated by at most two elements admitting an ORR of valency two.

2. Preliminaries and notations

Let m be a positive integer, and let G be a group. Consistently throughout the whole paper, for not making
our notation too cumbersome to use, we denote the element (g, i) of the cartesian product G× {0, . . . ,m− 1}
simply by gi. We often identify {0, . . . ,m− 1} with Zm, that is, with the integers modulo m.

For every i, j ∈ Zm, let Ti,j be a subset of G. The m-Cayley digraph of G with respect to (Ti,j : i, j ∈ Zm) is
the digraph with vertex set

G× Zm =
⋃

i∈Zm

Gi,

where Gi = {gi | g ∈ G}, and with arc set
⋃

i,j

{(gi, (tg)j) | t ∈ Ti,j, g ∈ G}.
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We denote this digraph by
Cay(G,Ti,j : i, j ∈ Zm).

For any given g ∈ G, the right multiplication R(g) mapping each vertex xi ∈ Gi to (xg)i ∈ Gi for all i ∈ Zm, is
an automorphism of Γ, and R(G) = {R(g) | g ∈ G} is a semiregular group of automorphisms of G with Gi as
orbits. Thus {R(g) | g ∈ G} is a subgroup of Aut(Γ) isomorphic to G.

To end this section, we give a result about the elementary abelian 2-groups admitting OmSRs of valency
two, see the Remark 3.5 in [4].

Proposition 2.1. Z1 admits an OmSR of valency two if and only if m ≥ 7, and Zt
2 admits an OmSR of

valency two if and only if m ≥ 3 with 1 ≤ t ≤ 2.

3. Proof of Theorem 1.1

This section aims to give the proof of Theorem 1.1, which will be divided into two lemmas. In our first lemma
we deal with cyclic groups.

Lemma 3.1. Let G be a cyclic group, and let m ≥ 2 be an integer. Then G has no OmSR of valency two if

and only if

(1) m = 2 and G ∼= Z1 or Z2;

(2) 3 ≤ m ≤ 6 and G ∼= Z1.

Proof. By Proposition 2.1, Z1 has OmSR of valency two if and only if m ≥ 7, and Z2 has OmSR of valency
two if and only if m ≥ 3. Now, we are in the position to consider the cyclic groups of order at least 3. Assume
G = 〈a〉, where the order o(a) ≥ 3. Take Ti,j ⊂ G with i, j ∈ Zm as follows:

T0,0 = {a}, Ti,i = {a−1} for i 6= 0;

Tm−1,0 = {a}, Ti,i+1 = {1} for i 6= m− 1;

Ti,j = ∅ otherwise.

Let Γm = Cay(G,Ti,j : i, j ∈ Zm) and A = Aut(Γm). Then Γm is an oriented m-Cayley digraph over G of
valency two. Figure 1 might be of some help for understanding the structure of Γm.

a−1

G1

1

a

G0

1
a−1

G2

1

a−1

G3

1

a

a−1

Gm−1

1

Figure 1. The oriented m-Cayley graphs of valency two for cyclic groups

It is easy to see that

Γ+
m(10) = {a0, 11}, Γ+

m(1m−1) = {a−1
m−1, a0},

Γ+
m(1i) = {a−1

i , 1i+1} for i 6= 0,m− 1.

Let Γ+
m(Γ+

m(1i)) be the set of out-neighbors of Γ+
m(1i). Then, we have

Γ+
2 (Γ

+
2 (10)) = Γ+

2 (a0) ∪ Γ+
2 (11) = {a20, a1} ∪ {a−1

1 , a0} = {a0, a
2
0, a1, a

−1
1 };

Γ+
m(Γ+

m(10)) = Γ+
m(a0) ∪ Γ+

m(11) = {a20, a1} ∪ {a−1
1 , 12} = {a20, a1, a

−1
1 , 12} for m ≥ 3;

Γ+
m(Γ+

m(1m−2)) = Γ+
m(a−1

m−2) ∪ Γ+
m(1m−1) = {a−2

m−2, a
−1
m−1} ∪ {a−1

m−1, a0} = {a−2
m−2, a

−1
m−1, a0};

Γ+
m(Γ+

m(1m−1)) = Γ+
m(a−1

m−1) ∪ Γ+
m(a0) = {a−2

m−1, 10} ∪ {a20, a1} = {a−2
m−1, 10, a

2
0, a1};

Γ+
m(Γ+

m(1i)) = Γ+
m(a−1

i ) ∪ Γ+
m(1i+1) = {a−2

i , a−1
i+1} ∪ {a−1

i+1, 1i+2} = {a−2
i , a−1

i+1, 1i+2} when i 6= 0,m− 2,m− 1.

Recall that o(a) ≥ 3. Then |Γ+
m(Γ+

m(10))| = 4 and |Γ+
m(Γ+

m(1i))| = 3 for 1 ≤ i ≤ m − 2. Moreover,
|Γ+

m(Γ+
m(1m−1))| = |{a−2

m−1, 10, a
2
0, a1}| = 3 when m = 2 and o(a) = 3; and |Γ+

m(Γ+
m(1m−1))| = 4 otherwise.
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Now, we consider the cases m = 2 and m ≥ 3 separately. Let m = 2. If o(a) = 3 or 4, by Magma [2], Γ2 is
an O2SR over G. Assume o(a) ≥ 5. We consider the number of arcs in the induced sub-digraphs [Γ+

2 (Γ
+
2 (10))]

and [Γ+
2 (Γ

+
2 (11))], respectively. Note that Γ+

2 (Γ
+
2 (10)) = {a0, a

2
0, a1, a

−1
1 }. By the definition of Γ2, we have

Γ+
2 (a0) = {a20, a1}, Γ+

2 (a
2
0) = {a30, a

2
1},

Γ+
2 (a1) = {11, a

2
0}, Γ+

2 (a
−1
1 ) = {a−2

1 , 10}.

Since o(a) ≥ 5, there are exactly three arcs in the induced sub-digraph [Γ+
2 (Γ

+
2 (10))], that is, (a0, a

2
0), (a0, a1)

and (a1, a
2
0). On the other hand, since Γ+

2 (Γ
+
2 (11)) = {10, a

2
0, a1, a

−2
1 } and

Γ+
2 (10) = {a0, 11}, Γ+

2 (a
2
0) = {a30, a

2
1},

Γ+
2 (a1) = {11, a

2
0}, Γ+

2 (a
−2
1 ) = {a−3

1 , a−1
0 },

the induced sub-digraph [Γ+
2 (Γ

+
2 (11))] has only one arc, that is, (a1, a

2
0). Thus, [Γ

+
2 (Γ

+
2 (10))] ≇ [Γ+

2 (Γ
+
2 (11))], and

so A fixes G0 and G1 setwise, respectively. Therefore, A10 and A11 fix Γ+
2 (10) = {a0, 11} and Γ+

2 (11) = {a−1
1 , a0}

pointwise, respectively. We then conclude that A10 = A11 = 1 as Γ is connected. Since R(G) ≤ A is transitive
on Gi with i ∈ Z2, A has two orbits, and by the Frattini argument, we have A = R(G)A10 = R(G). Hence Γ2

is an O2SR over G of valency two.
Let m ≥ 3. Then |Γ+

m(Γ+
m(1m−1))| = 4, and so both G0 ∪ Gm−1 and ∆ = {Gi | 1 ≤ i ≤ m − 2} are fixed

setwise by A. Since ∆ has out-neighbors in Gm−1 while has no out-neighbor in G0 (see Figure 1), we have that
A fixes G0 and Gm−1 setwise. Recall that Ti,i+1 = {1} and Ti,j = ∅ for each 1 ≤ i ≤ m − 2 and j 6= i, i + 1.
By considering the out-neighbors of Gi in turn (see Figure 1), we notice that for each 0 ≤ i ≤ m − 1 (write
i + 1 = 0 when i = m− 1), Gi has out-neighbors only in Gi and Gi+1, and so it is fixed by A setwise. On the
other hand, since

Γ+
m(10) = {a0, 11}, Γ+

m(1m−1) = {a−1
m−1, a0}, Γ+

m(1i) = {a−1
i , 1i+1}, i 6= 0,m− 1,

the stabilizer A1i fixes Γ+
m(1i) pointwise with i ∈ Zm, and so A10 = 1 as Γ is connected. Again by Frattini

argument, A = R(G)A10 = R(G), and hence Γm is an OmSR over G of valency two. The proof is completed. �

Finally, we deal with non-cyclic groups generated by two elements.

Lemma 3.2. Let G be a non-cyclic group generated by two elements, and let m ≥ 2 be an integer. Then G has

an OmSR of out-valency two except (m,G) = (2,Z2
2).

Proof. Let G = 〈a, b〉 with o(a) ≥ o(b) ≥ 2. Then G = 〈a, ab〉. If all of a, b and ab are involutions, then G = Z2
2,

and it has an OmSR of valency two if and only if m ≥ 3 by Proposition 2.1. In the following, we assume that
at least one of a, b and ab has order at least 3. Without loss of generality, we assume o(a) ≥ 3. In the following,
we divide the proof into two cases.

Case 1: G is abelian.

Take Ti,j ⊂ G with i, j ∈ Zm as follows:

T0,0 = {a}, Ti,i = {ab} for i 6= 0;

Tm−1,0 = {b}, Ti,i+1 = {1} for i 6= m− 1;

Ti,j = ∅ otherwise.

Let Γm = Cay(G,Ti,j : i, j ∈ Zm) and A = Aut(Γm). Then Γm is an oriented m-Cayley digraph over G of
valency two. Figure 2 might be of some help for understanding the structure of Γm.

ab

G1

1

a

G0

1
ab

G2

1

ab

G3

1

b

ab

Gm−1

1

Figure 2. The oriented m-Cayley graphs of valency two for abelian groups
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Note that

Γ+
m(10) = {a0, 11}, Γ+

m(1m−1) = {(ab)m−1, b0},

Γ+
m(1i) = {(ab)i, 1i+1} for i 6= 0,m− 1.

Similar as the proof of Lemma 3.1, we consider the set Γ+
m(Γ+

m(1i)) for each i ∈ Zm. By the definition of Γm,
we have

Γ+
2 (Γ

+
2 (10)) = Γ+

2 (a0) ∪ Γ+
2 (11) = {a20, a1, (ab)1, b0};

Γ+
m(Γ+

m(10)) = Γ+
m(a0) ∪ Γ+

m(11) = {a20, a1, (ab)1, 12} for m ≥ 3;

Γ+
m(Γ+

m(1m−2)) = Γ+
m((ab)m−2) ∪ Γ+

m(1m−1) = {(ab)2m−2, (ab)m−1, b0};

Γ+
m(Γ+

m(1m−1)) = Γ+
m((ab)m−1) ∪ Γ+

m(b0) = {(ab)2m−1, (ab
2)0, (ab)0, b1};

Γ+
m(Γ+

m(1i)) = Γ+
m((ab)i) ∪ Γ+

m(1i+1) = {(ab)2i , (ab)i+1, 1i+2} when i 6= 0,m− 2,m− 1.

Since o(b) ≥ 2, we have ab2 6= ab, and so |Γ+
m(Γ+

m(10))| = |Γ+
m(Γ+

m(1m−1))| = 4 and |Γ+
m(Γ+

m(1i))| = 3 for
i 6= 0,m− 1. It follows that A fixes G0 ∪Gm−1 setwise.

First, assume m = 2. Since G = 〈a, b〉, we have that Γm is a connected digraph. Let Γ′(1i) be the set of
vertices of distance at most 2 from 1i, that is, Γ′(1i) = {1i} ∪ Γ+

2 (1i) ∪ Γ+
2 (Γ

+
2 (1i)) with i ∈ Z2. We consider

the induced sub-digraphs [Γ′(10)] and [Γ′(11)], respectively. Note that Γ+
2 (Γ

+
2 (10)) = {a20, a1, (ab)1, b0} and

Γ+
2 (Γ

+
2 (11)) = {(ab)21, (ab

2)0, (ab)0, b1}. By the definition of Γ2, we have

Γ+
2 (a

2
0) = {a30, a

2
1}, Γ+

2 (a1) = {(a2b)1, (ba)0},

Γ+
2 ((ab)1) = {(ab)21, (ab

2)0}, Γ+
2 (b0) = {(ab)0, b1},

Γ+
2 ((ab)

2
1) = {(ab)31, (a

2b3)0}, Γ+
2 ((ab

2)0) = {(ab)20, (ab
2)1},

Γ+
2 ((ab)0) = {(a2b)0, (ab)1}, Γ+

2 (b1) = {(a2b)1, b
2
0}.

One may see Figure 3 for the induced sub-digraphs [Γ′(10)] and [Γ′(11)], and obviously, [Γ′(10))] ≇ [Γ′(11)]. It

yields that A fixes G0 and G1 setwise, respectively. Furthermore, the stabilizer A10 fixes Γ+
2 (10) = {a0, 11}

pointwise, while A11 fixes Γ+
2 (11) = {(ab)1, b0} pointwise. The connectivity of Γ forces A10 = A11 = 1. Since

R(G) ≤ A is transitive on Gi with i ∈ Z2, we have A = R(G)A10 = R(G), and hence Γ2 is an O2SR over G of
valency two.

10

11

a0

(ab)1

b0

a1

a20

11

b0

(ab)1

(ab)0

b1

(a2b)0

(a2b2)1

Figure 3. The induced sub-digraphs [Γ′(10)] and [Γ′(11)]

Next, let m ≥ 3. Then A fixes both G0 ∪ Gm−1 and ∆ = {Gi | 1 ≤ i ≤ m − 2} setwise. Since ∆ has
out-neighbors in Gm−1 but no out-neighbor in G0, we conclude that A fixes G0 and Gm−1 setwise. Recalling
that Ti,i+1 = {1} and Ti,j = ∅ for each 1 ≤ i ≤ m − 2 and j 6= i, i + 1 (see Figure 2), we can conclude that A
fixes Gi setwise for each 1 ≤ i ≤ m− 2. On the other hand, since

Γ+
m(10) = {a0, 11}, Γ+

m(1m−1) = {(ab)m−1, b0}, Γ+
m(1i) = {(ab)i, 1i+1}, i 6= m− 1,

we have A1i fixes Γ
+
m(1i) pointwise, and so A10 = A11 = 1 as Γ is connected. Since R(G) ≤ A is transitive on

Gi with i ∈ Zm, we conclude that A = R(G)A10 = R(G) and Γm is an OmSR over G of valency two.
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Case 2: G is non-abelian.

Take Ti,j ⊂ G with i, j ∈ Zm as follows:

Ti,i = {a} for i ∈ Zm;

Tm−1,0 = {b}, Ti,i+1 = {1} for i 6= m− 1;

Ti,j = ∅ otherwise.

Let Γm = Cay(G,Ti,j : i, j ∈ Zm) and A = Aut(Γm). Then Γm is an oriented m-Cayley digraph over G of
valency two. Figure 4 might be of some help for understanding the structure of Γm.

a

G1

1

a

G0

1

a

G2

1

a

G3

1

b

a

Gm−1

1

Figure 4. The oriented m-Cayley graphs of valency two for non-abelain groups generated by two elements

Similarly, we consider Γ+
m(Γ+

m(1i)), the set of out-neighbors of Γ+
m(1i). Since

Γ+
m(1m−1) = {am−1, b0}, Γ+

m(1i) = {ai, 1i+1} for i 6= m− 1,

we have

Γ+
m(Γ+

m(1m−2)) = Γ+
m(am−2) ∪ Γ+

m(1m−1) = {a2m−2, am−1} ∪ {am−1, b0} = {a2m−2, am−1, b0},

Γ+
m(Γ+

m(1m−1)) = Γ+
m(am−1) ∪ Γ+

m(b0) = {a2m−1, (ba)0} ∪ {(ab)0, b1} = {a2m−1, (ab)0, (ba)0, b1},

Γ+
m(Γ+

m(1i)) = Γ+
m(ai) ∪ Γ+

m(1i+1) = {a2i , ai+1} ∪ {ai+1, 1i+2} = {a2i , ai+1, 1i+2} when i 6= 0,m− 2,m− 1.

Since (ab)0 6= (ba)0 because G is non-abelian, |Γ+
m(Γ+

m(1m−1))| = 4 and |Γ+
m(Γ+

m(1i))| = 3 for each i 6= m − 1.
Therefore, A fixes Gm−1 setwise. Since Gi only has out-neighbors in Gi+1 for each 0 ≤ i ≤ m−1 (write i+1 = 0
when i = m− 1), it is fixed by A setwise. Recall that Γ+

m(1m−1) = {am−1, b0} and Γ+
m(1i) = {ai, 1i+1} for each

i 6= m− 1. Thus, A1i fixes Γ
+
m(1i) pointwise, and so A10 = 1 as Γ is connected. Since R(G) ≤ A is transitive on

Gi with i ∈ Zm, we have A = R(G)A10 = R(G) and hence Γm is an OmSR over G of valency two. The proof
is completed. �
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[8] D. Hetzel, Über reguläre graphische Darstellung von auflösbaren Gruppen, Technische Universität, Berlin, 1976. (Diplomarbeit)
[9] W. Imrich, Graphical regular representations of groups odd order, in: Combinatorics, Coll. Math. Soc. János. Bolayi 18 (1976),

611–621.
[10] W. Imrich, M.E. Watkins, On graphical regular representations of cyclic extensions of groups, Pac. J. Math. 55 (1974), 461–477.

http://arxiv.org/abs/2208.03912


7

[11] W. Imrich, M. E. Watkins, On automorphism groups of Cayley graphs, Period. Math. Hungar. 7 (1976), 243–258.
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