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Abstract:

Background:

This paper is an improvement of a previous work on the problem recovering a function or probability density function from a finite number of its
geometric moments, [1]. The previous worked solved the problem with the help of the B-Spline theory which is a great approach as long as the
resulting linear system is not very large. In this work, two solution algorithms based on the approximate representation of the target probability
distribution function via an orthogonal expansion are provided. One primary application of this theory is the reconstruction of the Particle Size
Distribution (PSD), occurring in chemical engineering applications. Another application of this theory is the reconstruction of the Radon transform
of an image at an unknown angle using the moments of the transform at known angles which leads to the reconstruction of the image form limited
data.

Objective:

The aim is to recover a probability density function from a finite number of its geometric moments.

Methods:

The tool is the orthogonal expansion approach. The Shifted-Legendre Polynomials and the Chebyshev Polynomials as bases for the orthogonal
expansion are used in this study.

Results:

A high degree of accuracy has been obtained in recovering a function without facing a possible ill-conditioned linear system, which is the case with
many typical approaches of solving the problem. In fact, for a normalized template function f on the interval [0, 1], and a reconstructed function  ;
the reconstruction accuracy is measured in two domains. One is the moment domain, in which the error (difference between the moments of f and
the moments of ) is zero. The other measure is the standard difference in the norm -space ||f- || which can be ≈ 10-6 or less.

Conclusion:

This  paper  discusses  the  problem  of  recovering  a  function  from  a  finite  number  of  its  geometric  moments  for  the  PSD  application.  Linear
transformations  were  used,  as  needed,  so  that  the  function  is  supported  on  the  unit  interval  [0,  1],  or  on  [0,  α]  for  some  choice  of  α.  This
transformation forces the sequence of moments to vanish. Then, an orthogonal expansion of the Scaled Shifted Legendre Polynomials, as well as
the Chebyshev Polynomials, are developed. The result shows good accuracy in recovering different types of synthetic functions. It is believed that
up to fifteen moments, this approach is safe and reliable.
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1. INTRODUCTION

Consider an unknown nonnegative function f with compact
support  on  the  interval  (a,b.)  The  geometric  moments  of  the
function f are defined by:
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(1)

In  fact,  the  problem of  determining f  from a  given finite
sequence Mkf takes different forms due to the related physical
and mathematical  assumptions.  Specifically,  if  Mfk  is  known
for all orders, then f can be recovered completely, but if only a
finite  number  of  these  moments  are  given,  then  we have  the
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well-known inverse ill –conditioned problem. Furthermore, it
is known that the support of the objective function f categorizes
the  problem  into  different  scenarios  [1  -  4].  The  Hausdorff
moment problem, where the support of f is a closed interval (a,
b), the Stieltjes moment problem, where the support of f on (0,
+∞),  and  the  Hamburger  moment  problem,  where  f  is
supported  on  (−∞,  +∞).

Reconstructing  a  function  from  a  finite  number  of  its
moments is an essential tool for many problems in science and
technology. Among many applications that involve the moment
problems, three major fields are described. Namely, chemical
engineering applications, tomography, and image processing.
The  most  known  existing  methods  of  solving  the  moment
problem  are  reviewed  in  [1].  A  general  review  of  these
applications  is  now  given.

In  the  field  of  chemical  engineering,  the  Particle  Size
Distribution (PSD) is a crucial process that results in several
industrial  operations  in  chemical  engineering,  especially  in
dynamic  multiphase  flows.  The  size  distribution  of  particles
can  be  essential  for  several  applications.  For  example,  this
property  may  have  an  impact  on  the  efficiency  of  processes
like filtration, as a small product size may result in a significant
increase  in  processing  time.  Moreover,  PSD  generally
represents  a  pivotal  result  to  assess  the  excellent  quality  of
chemical  process  output.  Methods  to  retrieve  PSD  can  be
divided into three main categories [1 - 4]. The first approach is
based  on  analytical  inversion  techniques.  In  the  second
approach, PSD is recovered using discrete linear equations sets
implemented  in  the  independent  model  algorithm.  The  third
approach  consists  of  reconstructing  PSD  from  known
moments.  In  the  last  decade,  several  research  studies  in
chemical  engineering  focused  on  PSD  applications  using
moment-based techniques to determine distributions [4 - 10].
Moreover, most of the applications implement a limited, finite
number of moments for the reconstruction introducing possible
inaccuracies.  This  moment  constraint  makes  chemical
engineering  applications  restricted  only  to  elementary
distribution shapes such as Gaussian or lognormal functions.

Moment-based  approach  for  several  types  of  image
processing and tomography problems attracted the attention of
many researchers, for instance [11 - 20]. For example, in image
processing,  we  compute  the  image  moments  from  the  given
projections  for  the  purpose  of  shape  classification  or  object
position  and  orientation,  recovering  a  general  linear
transformation of images, segmentation, texture analysis [12 -
16],  and others.  In the field of tomography, including digital
rock  physics,  we  deal  with  the  well-known  application  of
reconstructing an image from its moments or the reconstruction
of  the  Radon  Transforms  from  their  moments  [17  -  21].
Specifically,  we  use  the  connection  between  the  projection
moments and the image moments, and the connections among
the  projection  moments  from  different  views.  Using  these
known  relations  [13  -  17],  we  obtain  all  possible  image
moments  from the  given projections.  The image can then be
recovered.

As said, a full review of the most known existing methods
of solving the moment problem is reviewed [1].

This work considers the Hausdorff  moment problem and
proposes  the  use  of  orthogonal  polynomial  expansion
techniques to solve this problem. Without loss of generality, f

can be transformed and normalized so that ∫-∞∞fxdx=1 on the
support (0,1). In this way, the moments of tend to 0 as k→∞.

This work is organized as follows: In the next section, our
proposed  method  is  presented.  Section  3  is  concerned  with
experiments  and  discussion.  Finally,  the  conclusion  can  be
found in the last section.

2. MATERIALS AND METHODS

Our  tool  is  the  orthogonal  expansion.  Mathematics
Literature  provides  a  rich  theory  and  tools  for  the  classical
orthogonal  expansion  of  functions  [22  -  29].  The  choice  of
several  options  of  orthogonal  bases  that  serve  and  fit  the
physical,  geometry,  and  settings  of  our  current  problem  is
explored.  Undoubtedly,  the  role  of  the  Fourier  series,  the
Legendre’s and Chebyshev polynomials in many fields of pure
and  applied  sciences  are  well-established.  An  orthogonal
expansion  that  allows  us  to  represent  the  expansion's
coefficients in terms of the moments rather than the function
itself since it is not known, is required. It is found, for example,
that  the  Fourier  series  is  not  relevant  to  this  problem.
Expressing the Fourier series coefficients in terms of moments
is  possible,  but  the  numerical  implementation  immediately
would  suffer  the  overflow  issues.  On  the  other  hand,  the
Legendre series and Chebyshev series proved very well stable
solutions using a few moments of the target function.

2.1. Using Legendre Polynomials

The  Legendre  polynomials  ϕm(x)  form  a  complete
orthogonal  system  over  the  interval  [-1,1]:

(2)

where δmn denotes the Kronecker delta.

Since we require an approximation on the interval [ 0,1],
we first use the mapping (transformation)

(3)

that moves the interval [0,  α],  α>0 to the interval [−1,1],
and it preserves the orthogonality of the polynomials, say, Qα,n
on the interval [0,α]. In particular, the orthogonality in equation
(2) becomes:

(4)

We have a handy explicit formula for Qα,n, namely:

(5)

The Legendre series for f(x) is given by:

(6)

By orthogonality of  Qα,n the expansion coefficient  cn is
written as:

(7)

Using (5), we write (7) as:
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(8)

But  so (8) is written as:

(9)

Using (9), equation (6) is written as:

(10)

If we consider the N-partial sum of (10), we obtain:

(11)

Thus,  the  approximating  function  Legr(x)  is  calculated
from  the  given  moments.  Numerical  discussion  on  (11)  is
presented  in  the  next  section.

2.2. Using Chebyshev Polynomials

The  Shifted  Chebyshev  Polynomial  of  the  second  kind
[25], say Vnx, is considered and arguments like what is done
above are developed. These polynomials are orthogonal on the
interval [0,1] concerning the inner product

(12)

with the weight function x-x2. Furthermore, the following
is an analytical formula for computing these polynomials,

(13)

We  can  express  our  objective  function  in  the  following
manner:

(14)

Using (12), we solve for the coefficients,

(15)

(16)

Using (13), we write (15) as

(17)

Thus, (14) is written as

(18)

Finally, we consider the partial sum of (18) to obtain:

(19)

Examples and discussion of these results are given in the
next section.

3. RESULTS AND DISCUSSION

Now,  the  following  remarks  concerning  our  method  are
addressed. First, in (3.1), our theory using synthetic functions
is tested and validated using MATLAB. In doing so, moments
of  order  up  to  fifteen  or  less  are  employed,  and  a  reliable
approximation  using  either  one  of  the  two  families  of
polynomials  of  this  study  is  shown.  Second,  in  (3.2),  the
behavior  of  a  series  of  polynomials  with  a  large  number  of
terms  and  other  properties  is  considered.  This  work  is  not  a
classical interpolation since interpolation requires a sample of
the objective function. In the classical theory of interpolation,
the Chebyshev series is believed to be a better approximation if
the interpolation nodes are chosen to be the Chebyshev nodes.
In the context of this work, the two series (11) and (19) are not
comparable in terms of accuracy, given that we want to rely on
a  few  terms  of  these  series.  However,  they  exhibit  different
behaviors in regard to errors. Overall, thanks to the restriction
of using only a few moments, we will not need many terms. It
is believed that up to fifteen moments, this approach is safe and
reliable.

3.1. Demonstration

In  testing  our  formulas  (11)  and  (19),  the  support  of  the
testing  functions  will  be  the  interval  (0,  1).  Observe  that  in
(11); f0 or f1 need not to be zero, while in (19), it is assumed
that  f(0)  =  f(1)  =  0.  Measures  of  the  closeness  of  the
reconstructed  function  to  the  original  function  can  be:

(20)

(21)

As a first example, we consider the function:

(22)

normalized on [0,1], shown in Fig. (1a) (the green graph).
The  Legr(x),  from  (11),  with  moments  of  orders
N=2,4,6,8,and  10  are  computed.  We  display  these  graphs
together with the graph of f in (Fig. 1a-e). The corresponding
error values elk are calculated in Table 1, with a plot of elk in
(Fig. 1f).

Table 1. Calculations of figure 1: ( (a-e) The function f(x)=sin(2πx)+1 on [0,1] recovered using (11) with different moments:
N=2,4,6,8,10, along with the corresponding errors (20). (f) plot of elk).
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Figure 1 Moment
N

elk

b 4 0.2084
c 6 0.0662
d 8 0.0092
e 10 0.0004

Fig. (1). (a-e) The function f(x)=sin(2πx)+1 on (0,1) recovered using (11) with different moments: N=2,4,6,8,10, along with the corresponding errors
(20). (f) plot of elk .

different  moments:  N=2,4,6,8,10,  along  with  the  corres-
ponding errors (20). (f) plot of elk

In the second example, consider the function:

(23)

normalized on 0,1 . The Legr(x), from (11), with moments
N=6,8,10,12,  and 15 are  computed.  We display these  graphs
together with the graph of f (the green graph); (Fig. 2a-e). The
corresponding error values elk are calculated in Table 2 with a
plot of elk in Fig. (2f).

Fig. (2). a-e)_The function f(x)=exp [ -80(x-0.3)^2 ] + 1/2 exp [ -80 (x-0.6)^2 ] on (0,1) recovered using (19) with different moments: N=6, 8, 10, 12,
15 along with the corresponding errors (21). (f) plot of elk.

 𝑓(𝑥) = exp[ −80(𝑥 − 0.3)2]  +  
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2
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Table 2. Calculation of figure 2 ((a-e)_The function f(x)=exp [ -80(x-0.3)^2 ] + 1/2 exp [ -80 (x-0.6)^2 ] on [0,1] recovered
using (19) with different moments: N=6, 8, 10, 12, 15 along with the corresponding errors (21). (f) plot of elk).

Figure 2 Moment
N

elk

a 6 1.1954
b 8 1.1054
c 10 0.1682
d 12 0.0396
e 15 0.0037

The  assumption  that  f(0)  =  f(1)  =  0  is  natural  in  some
applications.  For  example,  in  image  processing  and
tomography, we can assume that the image is supported in the
interior of the unit circle. Similarly, we consider the value of
PSD out of the support (0, 1) to be small enough and can be set
as zero. For the rest of our experiments and discussion, we will
be under this assumption.

recovered using (19) with different moments: N=6, 8, 10,

12, 15 along with the corresponding errors (21). (f) plot of elk

Working  with  both  families  of  polynomials,  we  test
Legr(x)  and  Cheb(x)  for  the  function:

fx=sinπxe10x, normalized on (0,1).

Results  are  shown  in  Table  3  and  Fig.  (3).  Both  are
approximated very well using either (11) or (19) within the first
twelve moments.

Fig. (3). (a-e) The function f(x)=sin(πx) e^10x normailzed on [0,1] recovered using (11), red graphs, and (19), blue graphs, with different moments:
N=3,5,7,10,12 along with the corresponding errors (20) and (21). (f) plots of [el]_k and [ec]_k.

Table 3. Calculation of figure 3 ((a-e) The function f(x)=sin(πx) e^10x normailzed on (0,1) recovered using (11), red graphs,
and (19), blue graphs, with different moments: N=3,5,7,10,12 along with the corresponding errors (20) and (21). (f) plots of elk

and eck).

Figure 4 Moment
N

elk eck

a 3 0.0389 0.0067
b 5 0.0220 0.0060
c 7 0.0046 0.0034
d 10 0.0001 0.0085
e 12 0.0000 0.0015
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Fig. (4). (a-b) The function fx=sinπx normailzed on [0,1] , with Legr(x) from (11) and Chebx from (19) using N=25
(c-d) The function fx=sinπx normailzed on [0,1] , with Legr(x) from (11) and Chebx from (19) using N=30

different  moments:  N=3,5,7,10,12 along with  the  corres-
ponding errors (20) and (21). (f) plots of elk and eck

3.2. The Case of Large N

Although  our  approach  never  needs  a  large  N,  the
completeness  of  this  discussion  needs  to  address  several
concerns  regarding  the  approximation  by  polynomials.  The
Weierstrass approximation theorem [25] states that  for every
continuous  function  f(x)  defined  on  an  interval  (a,b),  there
exists a set of Polynomials pix, i≤N that approximates f(x) with
uniform  convergence  over  (a,b)  as  N→∞  .  However,  this
theorem does not provide a general method of finding such a
set of polynomials. A set of polynomials may even diverge as
N increases. This typically occurs in an oscillating pattern that
magnifies  near  the  end  of  the  interpolation  points.  This  is
known as Runge's phenomenon [26]. In fact, oscillation at the
edges of an interval occurs when polynomials of a high degree
over  a  set  of  equispaced  interpolation  points  are  used.  The
phenomenon  is  similar  to  the  Gibbs  phenomenon  in  Fourier
series approximations [27]. Runge's phenomenon comes from:
The  magnitude  of  the  n-th  order  derivative  of  this  function
grows quickly for large degrees, and the equidistance between
points leads to a larger Lebesgue constant for large N.

In  the  classical  interpolation  practice,  this  issue  using
different  approaches  is  mitigated,  such  as  change  of
interpolation  points,  using  the  S-Runge  algorithm  without
resampling, use of constrained minimization, use of piecewise
polynomials,  Least-squares  fitting,  and  others.  Perhaps,  the
most  common  of  these  is  the  standard  Chebyshev  points.
Although our work here is  not  a  classical  interpolation since
interpolations  require  the  knowledge  of  a  sample  of  f(x)  on
(a,b). Both families of polynomials used here are no exception,
and they, too, suffer the same behavior for large N. However,
the  Legendre  expansion  exhibits  different  rates  of  error  at

different values in (a,b) [28, 29], while in the Chebyshev case
the error is more uniformly distributed over the interval (a, b).

For  visual  display,  we  repeat  the  test  of  the  function
x=sinπx  normailzed  on  (0,1),  with  Legr(x)  and  Chebx  using
N=25,30, Results are shown in Fig. (4).

CONCLUSION

This paper discusses the problem of recovering a function
from  a  finite  number  of  its  geometric  moments  for  the  PSD
application.  Linear  transformations  were  used,  as  needed  so
that the function is supported on the unit interval

[0,  1],  or  on  [0,  α]  for  some  choice  of  α.  This
transformation  forces  the  sequence  of  moments  to  vanish.
Then, an orthogonal expansion of the scaled shifted Legendre
polynomials,  as  well  as  the  Chebyshev  polynomials,
developed.  The  result  shows  good  accuracy  in  recovering
different types of synthetic functions. It is believed that up to
fifteen moments, this approach is safe and reliable.
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