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ON ORTHOGONAL TENSORS AND BEST RANK-ONE

APPROXIMATION RATIO∗

ZHENING LI† , YUJI NAKATSUKASA‡ , TASUKU SOMA§ , AND ANDRÉ USCHMAJEW¶

Abstract. As is well known, the smallest possible ratio between the spectral norm and the
Frobenius norm of an m × n matrix with m ≤ n is 1/

√
m and is (up to scalar scaling) attained

only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible
ratio between spectral and Frobenius norms of n1 × · · · × nd tensors of order d, also called the
best rank-one approximation ratio in the literature, is investigated. The exact value is not known
for most configurations of n1 ≤ · · · ≤ nd. Using a natural definition of orthogonal tensors over
the real field (resp., unitary tensors over the complex field), it is shown that the obvious lower
bound 1/

√
n1 · · ·nd−1 is attained if and only if a tensor is orthogonal (resp., unitary) up to scaling.

Whether or not orthogonal or unitary tensors exist depends on the dimensions n1, . . . , nd and the field.
A connection between the (non)existence of real orthogonal tensors of order three and the classical
Hurwitz problem on composition algebras can be established: existence of orthogonal tensors of size
ℓ × m × n is equivalent to the admissibility of the triple [ℓ,m, n] to the Hurwitz problem. Some
implications for higher-order tensors are then given. For instance, real orthogonal n× · · · × n tensors
of order d ≥ 3 do exist, but only when n = 1, 2, 4, 8. In the complex case, the situation is more drastic:
unitary tensors of size ℓ×m× n with ℓ ≤ m ≤ n exist only when ℓm ≤ n. Finally, some numerical
illustrations for spectral norm computation are presented.

Key words. orthogonal tensor, rank-one approximation, spectral norm, nuclear norm, Hurwitz
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1. Introduction. Let K be R or C. Given positive integers d ≥ 2 and n1, . . . , nd,
we consider the tensor product

V = V 1 ⊗ · · · ⊗ V d

of Euclidean K-vector spaces V 1, . . . , V d of dimensions dim(V µ) = nµ, µ = 1, . . . , d.
The space V is generated by the set of elementary (or rank-one) tensors

C1 = {u1 ⊗ · · · ⊗ ud : u1 ∈ V 1, . . . , ud ∈ V d}.
In general, elements of V are called tensors. The natural inner product on the space V

is uniquely determined by its action on decomposable tensors via

〈u1 ⊗ · · · ⊗ ud, v1 ⊗ · · · ⊗ vd〉F =

d∏

µ=1

〈uµ, vµ〉V i .
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This inner product is called the Frobenius inner product, and its induced norm is
called the Frobenius norm, denoted by ‖ · ‖F.

1.1. Spectral norm and best rank-one approximation. The spectral norm
(also called injective norm) of a tensor X ∈ V is defined as

‖X‖2 = max
Y∈C1

‖Y‖F=1

|〈X,Y〉F| = max
‖u1‖V 1=···=‖ud‖

V d=1

∣
∣〈X, u1 ⊗ · · · ⊗ ud〉F

∣
∣.(1.1)

Note that the second max is achieved by some u1 ⊗ · · · ⊗ ud since the spaces V µ’s are
finite dimensional. Hence the first max is also achieved. Checking the norm properties
is an elementary exercise.

Since the space V is finite dimensional, the Frobenius norm and spectral norm are
equivalent. It is clear from the Cauchy–Schwarz inequality that

‖X‖2 ≤ ‖X‖F.

The constant one in this estimate is optimal, since equality holds for elementary
tensors.

For the reverse estimate, the maximal constant c in

c‖X‖F ≤ ‖X‖2

is unknown in general and may depend not only on d, n1, . . . , nd but also on K.
Formally, the optimal value is defined as

App(V) ≡ Appd(K;n1, . . . , nd) := min
X 6=0

‖X‖2
‖X‖F

= min
‖X‖F=1

‖X‖2.(1.2)

Note that by continuity and compactness, there always exists a tensor X achieving
the minimal value.

The task of determining the constant App(V) was posed by Qi [26], who called
it the best-rank one approximation ratio of the tensor space V. This terminology
originates from the important geometrical fact that the spectral norm of a tensor
measures its approximability by elementary tensors. To explain this, we first recall
that C1, the set of elementary tensors, is closed and hence every tensor X admits
a best approximation (in Frobenius norm) in C1. Therefore, the problem of finding
Y1 ∈ C1 such that

‖X−Y1‖F = inf
Y∈C1

‖X−Y‖F(1.3)

has at least one solution. Any such solution is called a best rank-one approximation to
X. The relation between the best rank-one approximation of a tensor and its spectral
norm is given as follows.

Proposition 1.1. A tensor Y1 ∈ C1 is a best rank-one approximation to X 6= 0
if and only if the following holds:

‖Y1‖F =

〈

X,
Y1

‖Y1‖F

〉

F

= ‖X‖2.

Consequently,

‖X−Y1‖2F = ‖X‖2
F
− ‖X‖22.(1.4)
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The original reference for this observation is hard to trace back; see, e.g., [20]. It
is now considered folklore. The proof is easy from some least-square argument based
on the fact that C1 is a K-double cone, i.e., Y ∈ C1 implies tY ∈ C1 for all t ∈ K.

By Proposition 1.1, the rank-one approximation ratio App(V) is equivalently seen
as the worst-case angle between a tensor and its best rank-one approximation:

App(V) = min
X 6=0

|〈X,Y1〉F|
‖X‖F · ‖Y1‖F

,

where Y1 ∈ C1 depends on X. As an application, the estimation of App(V) from
below has some important implications for the analysis of truncated steepest descent
methods for tensor optimization problems; see [31].

Combining (1.2) and (1.4) one obtains

App(V)2 = 1− max
‖X‖F=1

min
Y∈C1

‖X−Y‖2
F
.

1.2. Nuclear norm. The nuclear norm (also called projective norm) of a tensor
X ∈ V is defined as

‖X‖∗ = inf

{
∑

k

‖Zk‖F : X =
∑

k

Zk with Zk ∈ C1
}

.(1.5)

It is known (see, e.g., [3, Thm. 2.1]) that the dual of the nuclear norm is the spectral
norm (in tensor products of Banach spaces the spectral norm is usually defined in this
way):

‖X‖2 = max
‖Y‖∗=1

|〈X,Y〉F|.

By a classic duality principle in finite-dimensional spaces (see, e.g., [15, Thm. 5.5.14]),
the nuclear norm is then also the dual of the spectral norm:

‖X‖∗ = max
‖Y‖2=1

|〈X,Y〉F|.

It can be shown that this remains true in tensor products of infinite-dimensional
Hilbert spaces [3, Thm. 2.3].

Either one of these duality relations immediately implies that

‖X‖2
F
≤ ‖X‖2‖X‖∗.(1.6)

In particular, ‖X‖F ≤ ‖X‖∗ and equality holds if and only if X is an elementary
tensor.

Regarding the sharpest norm constant for an inequality ‖X‖∗ ≤ c‖X‖F, it is shown
in [8, Thm. 2.2] that

max
X 6=0

‖X‖∗
‖X‖F

=

(

min
X 6=0

‖X‖2
‖X‖F

)−1

=
1

App(V)
.(1.7)

This is a consequence of the duality of the nuclear and spectral norms. Moreover, the
extremal values for both ratios are achieved by the same tensors X.
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Consequently, determining the exact value of maxX 6=0 ‖X‖∗/‖X‖F is equivalent
to determining App(V). An obvious bound that follows from the definition (1.5) and
the Cauchy–Schwarz inequality is

‖X‖∗
‖X‖F

≤
√

rank⊥(X) ≤
√

min
ν=1,...,d

∏

µ 6=ν

nµ,(1.8)

where rank⊥(X) is the orthogonal rank of X; cf. section 2.1.

1.3. Matrices. It is instructive to inspect the matrix case. In this case, it is well
known that

App2(K;m,n) =
1

√

min(m,n)
.(1.9)

In fact, let X ∈ Km×n have rank(X) = R and

X =

R∑

k=1

σkuk ⊗ vk

be a singular value decomposition (SVD) with orthonormal systems {u1, . . . , uR}
and {v1, . . . , vR}, and σ1 ≥ σ2 ≥ · · · ≥ σR > 0. Then by a well-known theorem
[11, Thm. 2.4.8] the best rank-one approximation of X in Frobenius norm is given by

X1 = σ1u1 ⊗ v1,

producing an approximation error

‖X−X1‖2F =

R∑

k=2

σ2
k.

The spectral norm is

‖X‖2 = ‖X1‖F = σ1 ≥ ‖X‖F√
R

.

Here equality is attained only for a matrix with σ1 = · · · = σR = ‖X‖F√
R

. Obviously, (1.9)

follows when R = min(m,n). Hence, assuming m ≤ n, we see from the SVD that a

matrix X achieving equality satisfies XXH =
‖X‖2

F

m Im with Im the m × m identity
matrix, that is, X is a multiple of a matrix with pairwise orthonormal rows.

Likewise it holds for the nuclear norm of a matrix that

‖X‖∗ =
R∑

k=1

σk ≤
√

min(m,n) · ‖X‖F,

and equality is achieved (in the case m ≤ n) if and only if X is a multiple of a matrix
with pairwise orthonormal rows.

1.4. Contribution and outline. As explained in section 2.1 below, it is easy
to deduce the “trivial” lower bound

Appd(K;n1, . . . , nd) ≥
1

√

minν=1,...,d

∏

µ 6=ν nµ

(1.10)
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for the best rank-one approximation ratio of a tensor space. From (1.9) we see that this
lower bound is sharp for matrices for any (m,n) and is attained only at matrices with
pairwise orthonormal rows or columns, or their scalar multiples (in this paper, with a
slight abuse of notation, we call such matrices orthogonal when K = R (resp., unitary
when K = C)). A key goal in this paper is to generalize this fact to higher-order
tensors.

First in section 2 we review some characterizations of spectral norm and available
bounds on the best-rank one approximation ratio.

In section 3 we show that the trivial rank-one approximation ratio (1.10) is achieved
if and only if a tensor is a scalar multiple of an orthogonal (resp., unitary) tensor,
where the notion of orthogonality (resp., unitarity) is defined in a way that generalizes
orthogonal (resp., unitary) matrices very naturally. We also prove corresponding
extremal properties of orthogonal (resp., unitary) tensors regarding the ratio of the
nuclear and Frobenius norms.

We then study in section 4 further properties of orthogonal tensors, in particular fo-
cusing on their existence. Surprisingly, unlike the matrix case where orthogonal/unitary
matrices exist for any (m,n), orthogonal tensors often do not exist, depending on the
configuration of (n1, . . . , nd) and the field K. In the first nontrivial case d = 3 over
K = R, we show that the (non)existence of orthogonal tensors is connected to the
classical Hurwitz problem. This problem has been studied extensively, and in particular
a result by Hurwitz himself [16] implies that an n×n×n orthogonal tensor exists only
for n = 1, 2, 4, and 8, and is then essentially equivalent to a multiplication tensor in
the corresponding composition algebras on Rn. These algebras are the reals (n = 1),
the complex numbers (n = 2), the quaternions (n = 4), and the octonions (n = 8).
We further generalize Hurwitz’s result to the case d > 3. These observations might
give an impression that considering orthogonal tensors is futile. However, the situation
is vastly different when the tensor is not cubical, that is, when nµ’s take different
values. While a complete analysis of the (non)existence of noncubic real orthogonal
tensors is largely left an open problem, we investigate this problem and derive some
cases where orthogonal tensors do exist. When K = C, the situation turns out to be
more restrictive: we show that when d ≥ 3, unitary cubic tensors do not exist unless
trivially n = 1, and noncubic ones do exist only in the trivial case of extremely “tall”
tensors, that is, if nν ≥∏µ 6=ν nµ for some dimension nν .

Unfortunately, we are currently unable to provide the exact value or sharper lower
bounds on the best rank-one approximation ratio of tensor spaces where orthogonal
(resp., unitary) tensors do not exist. The only thing we can conclude is that in these
spaces the bound (1.10) is not sharp. For example,

App3(R;n, n, n) >
1

n

for all n 6= 1, 2, 4, 8. However, recent results on random tensors imply that the trivial
lower bound provides the correct order of magnitude, that is,

Appd(K;n1, . . . , nd) = O




1

√

minν=1,...,d

∏

µ 6=ν nµ



 ,

at least when K = R; see section 2.4.
Some numerical experiments for spectral norm computation are conducted in

section 5, comparing algorithms from the Tensorlab toolbox [32] with an alternating
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SVD (ASVD) method proposed in [7, sect. 3.3] and later in [9]. In particular, com-
putations for random n × n × n tensors indicate that App3(R;n, n, n) behaves like
O(1/n).

Some more notational conventions. For convenience, and without loss of
generality, we will identify the space V with the space Kn1 ⊗ · · ·⊗Knd ∼= Kn1×···×nd of
d-way arrays [X(i1, . . . , id)] of size n1 × · · · × nd, where every Knµ is endowed with a
standard Euclidean inner product xHy. This is achieved by fixing orthonormal bases
in the space V µ.

In this setting, an elementary tensor has entries

[u1 ⊗ · · · ⊗ ud]i1,...,id = u1(i1) · · ·ud(id).

The Frobenius inner product of two tensors is then

〈X,Y〉F =
∑

i1,...,id

X(i1, . . . , id)Y(i1, . . . , id).

It is easy to see that the spectral norm defined below is not affected by the identification
of Kn1×···×nd and V 1 ⊗ · · · × ⊗V d in the described way.

For readability it is also useful to introduce the notation

V[µ] := Kn1 ⊗ · · · ⊗Knµ−1 ⊗Knµ+1 ⊗ · · · ⊗Knd ∼= Kn1×···×nµ−1×nµ+1×···×nd ,

which is a tensor product space of order d− 1. The set of elementary tensors in this

space is denoted by C[µ]
1 .

An important role in this work is played by slices of a tensor and their lin-
ear combinations. Formally, such linear combinations are obtained as partial con-
tractions with vectors. We use standard notation [20] for these contractions: let
Xiµ = X( : , . . . , : , iµ, : , . . . , :) ∈ V[µ] for iµ = 1, . . . , nµ, denoting the slices of the
tensor X ∈ Kn1×···×nd perpendicular to mode µ. Given uµ ∈ Knµ , the mode-µ product
of X and uµ is defined as

X×µ uµ :=

nµ∑

iµ=1

u(iµ)Xiµ ∈ V[µ].

Correspondingly, partial contractions with more than one vectors are obtained by
applying single contractions repeatedly, for instance,

X×1 u
1 ×2 u

2 := (X×2 u
2)×1 u

1 = (X×1 u
1)×1 u

2,

where ×1u
2 in the last equality is used instead of ×2u

2 since the first mode of X is
vanished by ×1u

1. With this notation, we have

〈X, u1 ⊗ · · · ⊗ ud〉F = X×1 u
1 · · · ×d u

d = 〈X×1 u
1, u2 ⊗ · · · ⊗ ud〉F.(1.11)

2. Previous results on best rank-one approximation ratio. For some ten-
sor spaces the best rank-one approximation ratio has been determined, most notably
for K = R.

Kühn and Peetre [22] determined all values of App3(R; ℓ,m, n) with 2 ≤ ℓ ≤ m ≤
n ≤ 4, except for App3(R; 3, 3, 3). For ℓ = m = 2 it holds that

App3(R; 2, 2, 2) = App3(R; 2, 2, 3) = App3(R; 2, 2, 4) =
1

2
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(the value of App3(R; 2, 2, 2) was found earlier in [5]). The other values for ℓ = 2 are

App3(R; 2, 3, 3) =
1√
5
, App3(R; 2, 3, 4) =

1√
6
, App3(R; 2, 4, 4) =

1√
8
,(2.1)

whereas for ℓ ≥ 3 it holds that

App3(R; 3, 3, 4) =
1

3
, App3(R; 3, 4, 4) =

1√
12

, App3(R; 4, 4, 4) =
1

4
.

It is also stated in [22] that

App3(R; 8, 8, 8) =
1

8
,

and the value App3(R; 3, 3, 3) is estimated to lie between 1/
√
7.36 and 1/

√
7.

Note that in all cases listed above except [2, 3, 3] and [3, 3, 3], the naive lower
bound (1.10) is hence sharp. In our paper we deduce this from the fact that the
corresponding triples [ℓ,m, n] are admissible to the Hurwitz problem, while [2, 3, 3]
and [3, 3, 3] are not; see section 4.1.1. In fact, Kühn and Peetre obtained the values for
App3(R;n, n, n) for n = 4, 8 by considering the tensors representing multiplication in
the quaternion and octonion algebra, respectively, which are featured in our discussion
as well; see in particular Theorem 4.2 and Corollary 4.7.

More general recent results by Kong and Meng [21] are

App3(R; 2,m, n) =
1√
2m

for 2 ≤ m ≤ n and m even(2.2)

and

App3(R; 2, n, n) =
1√

2n− 1
for n odd.1(2.3)

Hence the naive bound (1.10) is sharp in the first case, but not in the second. Here,
since obviously App3(R; 2,m, n) ≤ App3(R; 2,m,m) for m ≤ n, it is enough to prove
the first case for m = n being even. Again, we can recover this result in section 4.1.1
by noting that the triple [2, n, n] is always admissible to the Hurwitz problem when n
is even due to the classic Hurwitz–Radon formula (4.8). Admittedly, the proof of (2.2)
in [21] is simple enough.

The value Appd(C; 2, . . . , 2) is of high interest in quantum information theory,
where multiqubit states, X ∈ C2×···×2 with ‖X‖F = 1 are considered. The distance
1− ‖X‖22 of such a state to the set of product states, that is, the distance to its best
rank-one approximation (cf. (1.4)), is called the geometric measure of entanglement.
In this terminology, 1 − (Appd(C; 2, . . . , 2))

2 is the value of the maximum possible
entanglement of a multiqubit state. It is known that [5]

App3(C; 2, 2, 2) =
2

3
.

1In [21] it is incorrectly concluded from this that App3(R; 2,m, n) = 1/
√

2m− 1 whenever
2 ≤ m ≤ n and m is odd. By (2.1), this is not true for m = 3, n = 4 and is also false whenever
n ≥ 2m by Proposition 2.3 below.
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This result was rediscovered later by Derksen et al. [8] based on the knowledge of the
most entangled state in C2×2×2 due to [2]. The authors of [8] have also found the
value

App4(C; 2, 2, 2, 2) =

√
2

3
.

This confirms a conjecture in [14]. We can see that in these cases the trivial bound (1.10)
is not sharp. In fact, [8] provides an estimate

Appd(C; 2, . . . , 2) ≥
(
2

3

)
1√
2d−3

=

(
4

3

)
1√
2d−1

, d ≥ 3,

so the bound (1.10) is never sharp for multiqubits (except when d = 2). The results in
this paper imply that

Appd(C;n1, . . . , nd) >
1

√
n1 · · ·nd−1

(2.4)

whenever n1 ≤ · · · ≤ nd and nd−2nd−1 > nd (Corollary 3.6 and Theorem 4.3).
In the rest of this section we gather further strategies for obtaining bounds on the

spectral norm and best rank-one approximation ratio. For brevity we switch back to
the notation App(V) when further specification is not relevant.

2.1. Lower bounds from orthogonal rank. Lower bounds of App(V) can be
obtained from expansion of tensors into pairwise orthogonal decomposable tensors.
For any X ∈ V, let R be an integer such that

X =

R∑

k=1

Zk(2.5)

with Z1, . . . ,ZR ∈ C1 being mutually orthogonal. We can assume that ‖Z1‖F ≥
‖Z2‖F ≥ · · · ≥ ‖ZR‖F, hence that ‖Z1‖F ≥ ‖X‖F√

R
, and so

‖X‖2
‖X‖F

≥ |〈X,Z1〉F|
‖X‖F · ‖Z1‖F

=
‖Z1‖F
‖X‖F

≥ 1√
R
.(2.6)

For each X the smallest possible value of R for which a decomposition (2.5) is possible
is called the orthogonal rank of X [19], denoted by rank⊥(X). Then, it follows that

App(V) ≥ 1
√

rank⊥(X)
for all X ∈ V.(2.7)

A possible strategy is to estimate the maximal possible orthogonal rank of the space
V (which is an open problem in general). For instance, the result (2.3) from [21] is
obtained by estimating orthogonal rank.

The trivial lower bound (1.10) is obtained by noticing that every tensor can be
decomposed into pairwise orthogonal elementary tensors that match the entries of the
tensor in single parallel fibers2 and are zero otherwise. Depending on the orientation
of the fibers, there are

∏

µ 6=ν nµ of them. Therefore,

max
X∈Kn1×···×nd

rank⊥(X) ≤ min
ν=1,...,d

∏

µ 6=ν

nµ(2.8)

and (1.10) follows from (2.7); see Figure 1(a).

2A fiber is a subset of entries (i1, . . . , id) in a tensor, in which one index iµ varies from 1 to nµ,
while other indices are kept fixed.
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(A) Orthogonal decompo-
sition of a tensor into its
longest fibers. A fiber
of largest Euclidean norm
provides a lower bound of
the spectral norm.

(B) Normal form using an
orthonormal tensor prod-
uct basis that includes a
normalized best rank-one
approximation. The red
entry equals the spectral
norm.

Fig. 1. Illustration of fibers and spectral normal form.

It is interesting and useful to know that after a suitable orthonormal change of basis
we can always assume that the entry X(1, . . . , 1) of a tensor X ∈ Kn1×···×nd equals its
spectral norm. In fact, let ‖X‖2 · (u1

1 ⊗ · · · ⊗ ud
1) be a best rank-one approximation

of X with u1
1, . . . , u

d
1 all normalized to one. Then we can extend uµ

1 to orthonormal
bases {uµ

1 , . . . , u
µ
nµ

} for every µ to obtain a representation

X =

n1∑

i1=1

· · ·
nd∑

id=1

C(i1, . . . , id)u
1
i1 ⊗ · · · ⊗ ud

id
.

We may identify X with its new coefficient tensor C; in particular, they have the same
spectral norm. Since (see Proposition 1.1 for the second equality)

C(1, . . . , 1) = 〈X, u1
1 ⊗ · · · ⊗ ud

1〉F = ‖X‖2 = ‖C‖2,

and considering the overlap with fibers, we see that all other entries of any fiber that
contains C(1, . . . , 1) must be zeros; see Figure 1(b). This “spectral normal form” of
the tensor X can be used to study uniqueness and perturbation of best rank-one
approximation of tensors [18]. For our purposes, the following conclusion will be of
interest and is immediately obtained by decomposing the tensor C into fibers.

Proposition 2.1. Let X ∈ Kn1×···×nd . For any ν = 1, . . . , d, there exists an
orthogonal decomposition (2.5) into R =

∏

µ 6=ν nµ mutually orthogonal elementary
tensors Zk such that Z1 is a best rank-one approximation of X. In particular, ‖Z1‖F =
‖X‖2.

2.2. Lower bounds from slices. The spectral norm admits two useful charac-
terizations in terms of slices. Let again Xiµ = X( : , . . . , : , iµ, : , . . . , :) ∈ V[µ] denote
the slices of a tensor X perpendicular to mode µ. The following formula is immediate
from (1.11) and the commutativity of partial contractions:

‖X‖2 = max
uµ∈K

nµ

‖uµ‖V µ=1

‖X×µ uµ‖2 = max
uµ∈K

nµ

‖uµ‖V µ=1

∥
∥
∥
∥
∥
∥

nµ∑

iµ=1

uµ(iµ)Xiµ

∥
∥
∥
∥
∥
∥
2

.
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By choosing uµ = ei (the ith column of the identity matrix), we conclude that

‖Xiµ‖2 ≤ ‖X‖2(2.9)

for all slices.
We also have the following.

Proposition 2.2.

‖X‖2 = max
Z∈C[µ]

1

‖Z‖F=1





nµ∑

iµ=1

∣
∣〈Xiµ ,Z〉F

∣
∣
2





1/2

.

Proof. Since the spectral norm is invariant under permutation of indices, it is
enough to show this for µ = 1. We can write

‖X‖2 = max
Z∈C[1]

1

‖Z‖F=1

max
‖u1‖V 1=1

〈X, u1 ⊗ Z〉F = max
Z∈C[1]

1

‖Z‖F=1

max
‖u1‖V 1=1

n1∑

i1=1

〈Xi1 ,Z〉F · u1(i1).

By the Cauchy–Schwarz inequality, the inner maximum is achieved for u1 = x/‖x‖
with x(i1) = 〈Xi1 ,Z〉F for i1 = 1, . . . , n1. This yields the assertion.

2.3. Upper bounds from matricizations. Let t ( {1, . . . , d} be nonempty.
Then there exists a natural isometric isomorphism between the spaces Kn1×···×nd

and K
∏

µ∈t nµ ⊗K
∏

ν/∈t nν . This isomorphism is called t-matricization (or t-flattening).
More concretely, we can define two multi-index sets

It =×
µ∈t

{1, . . . , nµ}, Jt =×
ν /∈t

{1, . . . , nν}.

Then a tensor X yields, in an obvious way, an (
∏

µ∈t nµ)× (
∏

ν /∈t nν) matrix Xt with
entries

Xt(i, j) = X(i1, . . . , id), i ∈ It, j ∈ Jt.(2.10)

The main observation is that Xt is a rank-one matrix if X is an elementary tensor
(the converse is not true in general). Since we can always construct a tensor from its
t-matricization, we obtain from the best-rank one approximation ratio for matrices
that

Appd(K;n1, . . . , nd) ≤
1

√

min
(
∏

µ∈t nµ,
∏

ν /∈t nν

) .

This is because ‖X‖2 ≤ ‖Xt‖2 and ‖X‖F = ‖Xt‖F. Here the subset t is arbitrary.
In combination with (1.10), this allows the following conclusion for tensors with one
dominating mode size.

Proposition 2.3. If there exists ν ∈ {1, . . . , d} such that
∏

µ 6=ν nµ ≤ nν , then

Appd(K;n1, . . . , nd) =
1

√

minν=1,...,d

∏

µ 6=ν nµ

,

that is, the trivial bound (1.10) is sharp.

For instance, App3(K;n, n, n2) = 1/n.
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2.4. Upper bounds from random tensors. We conclude this section with
some known upper bounds derived from considering random tensors. These results
are obtained by combining coverings of the set of normalized (to Frobenius norm one)
elementary tensors with concentration of measure results.

In [12], Gross, Flammia, and Eisert showed that for d ≥ 11 the fraction of tensors
X on the unit sphere in C2×···×2 satisfying

‖X‖22 ≤ 1

2d−2 log2 d−3

is at least 1− e−d2

.
More recently, Tomioka and Suzuki [30] provided a simplified version of a result

by Nguyen, Drineas, and Tran [24], namely that

‖X‖22 ≤ C ln d
d∑

µ=1

nµ

with any desired probability for real tensors with independent, zero-mean, sub-Gaussian
entries satisfying E(etXi1,...,id) ≤ eσ

2t2/2, as long as the constant C is taken large enough.
For example, when the elements are independent and identically distributed Gaussian,
we have

‖X‖22 ≤ C ln d

d∑

µ=1

nµ, ‖X‖2
F
≥ C ′n1 · · ·nd

with probability larger than 1/2, respectively, where the second inequality follows from
the tail bound of the χ-squared distribution. Thus,

‖X‖22
‖X‖2

F

≤
C ′′ ln d

∑d
µ=1 nµ

n1 · · ·nd
≤ C ′′d ln d

minν=1,...,d

∏

µ 6=ν nµ
(2.11)

with positive probability. This shows that the naive lower bound (1.10), whether sharp
or not, provides the right order of magnitude for App(V) (at least when K = R).

For cubic tensors this was known earlier. By inspecting the expectation of spectral
norm of random n×n×n tensors, Cobos, Kühn, and Peetre [4] obtained the remarkable
estimates

1

n
≤ App3(R;n, n, n) ≤

3
√
π√
2

1

n
(2.12)

and

1

n
≤ App3(C;n, n, n) ≤ 3

√
π
1

n
.

They also remark, without explicit proof, that Appd(K;n, . . . , n) = O(1/
√
nd−1), in

particular

Appd(R;n, . . . , n) ≤
d
√
π√
2

1√
nd−1

.

Note that the estimate (2.11) provides a slightly better scaling of Appd(R;n . . . , n)
with respect to d, namely,

√
d ln d instead of d.
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3. Orthogonal and unitary tensors. In this section we introduce the con-
cept of orthogonal tensors. It is a “natural” extension of matrices with pairwise
orthonormal rows or orthonormal columns. Orthogonal matrices play a fundamental
role in both matrix analysis [15] and numerical computation [11, 25]. Although the
concept of orthogonal tensors was proposed earlier in [10], we believe that our less
abstract definition given below extends naturally from some properties of matrices
with orthonormal rows or columns. As in the matrix case, we will see in the next
section that orthogonality is a necessary and sufficient condition for a tensor to achieve
the trivial bound (1.10) on the extreme ratio between spectral and Frobenius norms.
However, it also turns out that orthogonality for tensors is a very strong property
and in many tensor spaces (configurations of (n1, . . . , nd) and the field K) orthogonal
tensors do not exist.

For ease of presentation we assume in the following that n1 ≤ · · · ≤ nd, but
all definitions and results transfer to general tensors using suitable permutations of
dimensions. In this sense, our recursive definition of orthogonal tensors generalizes
matrices with pairwise orthonormal rows.

Definition 3.1. A tensor of order one, i.e., a vector u1 ∈ Kn1 , is called orthog-
onal for K = R (resp., unitary for K = C) if its Euclidean norm equals one (unit
vector). Let n1 ≤ n2 ≤ · · · ≤ nd. Then X ∈ Kn1×···×nd is called orthogonal for K = R

(resp., unitary for K = C) if for every unit vector u1 ∈ Kn1 , the tensor X ×1 u
1 is

orthogonal (resp., unitary).

Since partial contractions commute, one could use the following, slightly more
general definition of orthogonal (unitary) tensors of order d ≥ 2 (which, e.g., subsumes
matrices with orthonormal rows or columns). Let ν be such that nν ≥ nµ for all µ.
Then X is orthogonal (unitary) if for any subset S ⊂ {1, 2, . . . , d} \ {ν} and any unit
vectors uµ ∈ Knµ , the tensor X×µ∈S uµ of order d− |S| is orthogonal (unitary). In
particular, X×µ uµ is an orthogonal (unitary) tensor of order d− 1 for any µ 6= ν. It
is clear that X will be orthogonal (unitary) according to this definition if and only
if for any permutation π of {1, . . . , d} the tensor with entries X(iπ(1), . . . , iπ(d)) is
orthogonal (unitary). Therefore, we can stick without loss of generality to consider
the case where n1 ≤ · · · ≤ nd and the Definition 3.1 of orthogonality (unitarity).

An alternative way to think of orthogonal and unitary tensors is as length-
preserving (d− 1)-form in the following sense. Every tensor X ∈ Kn1×···×nd defines a
(d− 1)-linear form

ωX : Kn1 × · · · ×Knd−1 → Knd ,

(u1, . . . , ud−1) 7→ X×1 u
1 · · · ×d−1 u

d−1.
(3.1)

It is easy to obtain the following alternative, noninductive definition of orthogonal
(unitary) tensors.

Proposition 3.2. Let n1 ≤ · · · ≤ nd. Then X ∈ Kn1×···×nd is orthogonal (uni-
tary) if and only if

‖ωX(u1, . . . , ud−1)‖2 =

d−1∏

µ=1

‖uµ‖2

for all u1, . . . , ud−1.
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For third-order tensors this property establishes an equivalence between orthogonal
tensors and the Hurwitz problem that will be discussed in section 4.1.1. By considering
subvectors of u1, . . . , ud−1, it further proves the following fact.

Proposition 3.3. Let n1 ≤ · · · ≤ nd and X ∈ Kn1×···×nd be orthogonal (unitary).
Then any n′

1 × · · · × n′
d−1 × nd subtensor of X is also orthogonal (unitary).

We now list some extremal properties of orthogonal and unitary tensors related to
the spectral norm, nuclear norm, and orthogonal rank.

Proposition 3.4. Let n1 ≤ · · · ≤ nd and X ∈ Kn1×···×nd be orthogonal or
unitary. Then

(a) ‖X‖2 = 1, ‖X‖F =

√
√
√
√

d−1∏

µ=1

nµ, ‖X‖∗ =

d−1∏

µ=1

nµ,

(b) rank⊥(X) =
d−1∏

µ=1

nµ.

Proof. Ad (a). It follows from orthogonality that all fibers X(i1, . . . , id−1, :) along
dimension nd have norm one (because the fibers can be obtained from contractions

with standard unit vectors). There are
∏d−1

µ=1 nµ of such fibers, hence ‖X‖2
F
=
∏d−1

µ=1 nµ.
From the trivial bound (1.10) it then follows ‖X‖2 ≥ 1. On the other hand, by the
Cauchy–Schwarz inequality and orthogonality (Proposition 3.2),

∣
∣〈X, u1 ⊗ · · · ⊗ ud〉F

∣
∣ =

∣
∣〈ωX(u1, . . . , ud−1), ud〉Knd

∣
∣

≤ ‖ωX(u1, . . . ud−1)‖2‖ud‖2 ≤
d∏

µ=1

‖uµ‖2.

Hence ‖X‖2 ≤ 1. Now (1.6) and (1.8) together give the asserted value of ‖X‖∗.
Ad (b). Due to (a), this follows by combining (2.6) and (2.8).

Our main aim in this section is to establish that, as in the matrix case, the extremal
values of the spectral and nuclear norms in Proposition 3.4 fully characterize multiples
of orthogonal and unitary tensors.

Theorem 3.5. Let n1 ≤ · · · ≤ nd and X ∈ Kn1×···×nd , X 6= 0. The following are
equivalent:

(a) X is a scalar multiple of an orthogonal (resp., unitary) tensor,

(b)
‖X‖2
‖X‖F

=
1

√
∏d−1

µ=1 nµ

,

(c)
‖X‖∗
‖X‖F

=

√
√
√
√

d−1∏

µ=1

nµ.

In light of the trivial lower bound (1.10) on the spectral norm, and the relation (1.7)
with the nuclear norm, the immediate conclusion from this theorem is the following.

Corollary 3.6. Let n1 ≤ · · · ≤ nd. Then

Appd(K;n1, . . . , nd) =
1

√
∏d−1

µ=1 nµ
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if and only if orthogonal (resp., unitary) tensors exist in Kn1×···×nd . Otherwise, the
value of Appd(K;n1, . . . , nd) is strictly larger. Analogously, it holds that

max
X 6=0

‖X‖∗
‖X‖F

=

√
√
√
√

d−1∏

µ=1

nµ

in Kn1×···×nd if and only if orthogonal (resp., unitary) tensors exist.

Proof of Theorem 3.5. In the proof, we use the notation n1 · · ·nd−1 instead of
∏d−1

µ=1 nµ. By Proposition 3.4, (a) implies (b) and (c).
We show that (b) implies (a). The proof is by induction over d. For d = 1 the

spectral norm and Frobenius norm are equal. When d = 2, we have already mentioned
in section 1.3 that for m ≤ n only m × n matrices with pairwise orthonormal rows
achieve ‖X‖F =

√
m and ‖X‖2 = 1. Let now d ≥ 3 and assume (b) always implies

(a) for tensors of order d − 1. Consider X ∈ Kn1×···×nd with ‖X‖2
F
= n1 · · ·nd−1

and ‖X‖2 = 1. Then all the n1 · · ·nd−1 fibers X(i1, . . . , id−1, :) parallel to the last
dimension have Euclidean norm one, since otherwise one of these fibers has a larger
norm, and so the corresponding rank-one tensor containing only that fiber (but
normalized) provides a larger overlap with X than one. As a consequence, the n1

slices Xi1 = X(i1, : , . . . , :) ∈ Kn2×···×nd , i1 = 1, . . . , n1, have squared Frobenius norm
n2 · · ·nd and spectral norm one (by (1.10), ‖Xi1‖2 ≥ 1, whereas by (2.9), ‖Xi1‖2 ≤ 1).
It now follows from the induction hypothesis and Proposition 3.4 that all slices are
orthogonal (resp., unitary) tensors.

Now let u1 ∈ Kn1 , . . . , ud−1 ∈ Knd−1 have norm one. We have to show that

ωX(u1, . . . , ud−1) = X×1 u
1 ×2 u

2 · · · ×d−1 u
d−1

=

n1∑

i1=1

u1(i1)
(
Xi1 ×2 u

2 · · · ×d−1 u
d−1
)

has norm one.3 Since the Xi1 are orthogonal (resp., unitary), the vectors vi1 =
Xi1 ×2 u

2 · · · ×d−1 u
d−1 have norm one. It is enough to show that they are pairwise

orthogonal in Knd . Without loss of generality assume to the contrary that 〈v1, v2〉 6= 0.
Then the matrix M ∈ K2×nd with rows v1 and v2 has spectral norm larger than
one. Hence there exist ũ ∈ K2 and ud ∈ Knd , both of norm one, such that for
u1 = (ũ(1), ũ(2), 0, . . . , 0) ∈ Kn1 it holds that

∣
∣〈X, u1 ⊗ u2 ⊗ · · · ⊗ ud−1 ⊗ ud〉F

∣
∣ =

∣
∣ũ(1)〈v1, ud〉+ ũ(2)〈v2, ud〉

∣
∣ =

∣
∣ũTMud

∣
∣ > 1.

This contradicts ‖X‖2 = 1.

We prove that (c) implies (b). Strictly speaking, this follows from [8, Thm. 2.2],
which states that ‖X‖∗/‖X‖F = (App(V))−1 if and only if ‖X‖2/‖X‖F = App(V),
and (c) implies the first of these properties (by (1.8) and (1.7)). The following more
direct proof is still insightful.

If (c) holds, we can assume that

‖X‖∗ = n1 · · ·nd−1 = ‖X‖2
F
.(3.2)

3The notation Xi1 ×2 u2 · · · ×d−1 ud−1 is convenient although slightly abusive, since, e.g., ×2 is
strictly speaking a contraction in the first mode of Xi1 .
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By Proposition 2.1, we can find a decomposition X =
∑n1···nd−1

k=1 Zk into n1 · · ·nd−1

mutually orthogonal elementary tensors Zk ∈ C1 such that ‖Z1‖F = ‖X‖2. Using the
definition (1.5) of nuclear norm, the Cauchy–Schwarz inequality, and (3.2) we obtain

‖X‖∗ ≤
n1···nd−1∑

k=1

‖Zk‖F ≤ √
n1 · · ·nd−1‖X‖F = ‖X‖∗.

Hence the inequality signs are actually equalities. However, equality in the Cauchy–
Schwarz inequality is attained only if all ‖Zk‖F’s take the same value, namely,

‖Zk‖F =
‖X‖F√

n1 · · ·nd−1
= 1.

In particular, ‖Z1‖F = ‖X‖2 has this value, which shows (b).

Remark 3.7. We note for completeness that by Proposition 3.4 an orthogonal
(resp., unitary) tensor has infinitely many best rank-one approximations and they are
very easy to construct. In fact, given any unit vectors uµ ∈ Knµ for µ = 1, . . . , d− 1,
let ud = X×1 u

1 · · · ×d−1 u
d−1, which is also a unit vector. Then

∣
∣〈X, u1 ⊗ · · · ⊗ ud〉F

∣
∣ = ‖ud‖22 = 1 = ‖X‖2,

which, by Proposition 1.1, shows that u1 ⊗ · · · ⊗ ud is a best rank-one approximation
of X.

4. Existence of orthogonal and unitary tensors.

4.1. Third-order tensors. For a third-order tensorX∈Kℓ×m×n with ℓ≤m≤n,
the lower bound (1.10) takes the form

‖X‖2
‖X‖F

≥ 1√
ℓm

.(4.1)

By Theorem 3.5, equality can be achieved only for orthogonal (resp., unitary) tensors.
From Proposition 2.3 we know that this estimate is sharp in the case ℓm ≤ n. In fact,
an orthogonal tensor can then be easily constructed via its slices

X(i, : , :) = [O · · · O
︸ ︷︷ ︸

i−1

Qi O · · · O] ∈ Km×n, i = 1, . . . , ℓ,

where the entries represent blocks of size m×m (except the last block might have fewer
or even no columns), and the Qi ∈ Km×m are matrices with pairwise orthonormal
rows at position i.

In this section we inspect the sharpness in the case ℓm > n, where such a
construction is not possible in general. Interestingly, the results depend on the
underlying field.

4.1.1. Real case: Relation to Hurwitz problem. By Proposition 3.2, a third-
order tensor X ∈ Kℓ×m×n is orthogonal if and only if the bilinear form ωX(u, v) =
X×1 u×2 v satisfies

‖ωX(u, v)‖2 = ‖u‖2‖v‖2(4.2)
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for all u ∈ Rℓ, v ∈ Rm. In the real case K = R, this relation can be written as

n∑

k=1

ωk(u, v)
2 =

(
ℓ∑

i=1

u2
i

)



m∑

j=1

v2j



 .(4.3)

The question of whether for a given triple [ℓ,m, n] of dimensions a bilinear form ω(u, v)
exists obeying this relation is known as the Hurwitz problem (here for the field R).
If a solution exists, the triple [ℓ,m, n] is called admissible for the Hurwitz problem.
Since, on the other hand, the correspondence X 7→ ωX is a bijection4 between Rℓ×m×n

and the space of bilinear forms Rℓ ×Rm → Rn, every solution to the Hurwitz problem
yields an orthogonal tensor. For real third-order tensors, Theorem 3.5 can hence be
stated as follows.

Theorem 4.1. Let ℓ ≤ m ≤ n. A tensor X ∈ Rℓ×m×n is orthogonal if and
only if the induced bilinear form ωX is a solution to the Hurwitz problem (4.3).
Correspondingly, it holds that

App3(R; ℓ,m, n) =
1√
ℓm

if and only if [ℓ,m, n] is an admissible triple for the Hurwitz problem.

Some admissible cases (besides ℓm ≤ n) known from the literature are discussed next.
n× n× n tensors and composition algebras. In the classical work [16], Hurwitz

considered the case ℓ = m = n. In this case the bilinear form wX turns Rn into an
algebra on Rn. In modern terminology, an algebra on Rn satisfying the relation (4.3)
for its product u · v = ω is called a composition algebra. Hurwitz disproved the
existence of such an algebra for the cases n 6= 1, 2, 4, 8.5

For the cases n = 1, 2, 4, 8, the real field R, the complex field C, the quaternion
algebra H, and the octonion algebra O are composition algebras on Rn, respectively,
since the corresponding multiplications are length preserving. Consequently, examples
for orthogonal n × n × n tensors are given by the multiplication tensors of these
algebras. For completeness we list them here.

For n = 1 this is just X = 1. For n = 2, let e1, e2 denote the standard unit vectors
in R2, i.e., [e1 e2] = I2. Then

XC =

[
e1 e2
e2 −e1

]

∈ R2×2×2(4.4)

is orthogonal. This is the tensor of multiplication in C ∼= R2. Here (and in the
following), the matrix notation with vector-valued entries means that XC has the
fibers XC(1, 1, :) = e1, XC(1, 2, :) = e2, XC(2, 1, :) = e2, and XC(2, 2, :) = −e1 along
the third mode.

For n = 4, let e1, e2, e3, e4 denote the standard unit vectors in R4; then

XH =







e1 e2 e3 e4
e2 −e1 e4 −e3
e3 −e4 −e1 e2
e4 e3 −e2 −e1






∈ R4×4×4(4.5)

is orthogonal. This is the tensor of multiplication in the quaternion algebra H ∼= R4.

4The inverse is given through X(i, j, k) = ωk(ei, ej) with standard unit vectors ei, ej .
5In fact, when X is orthogonal, ωX turns Rn into a division algebra. By a much deeper result,

these algebras also only exist for n = 1, 2, 4, 8.
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For n = 8, let e1, . . . , e8 denote the standard unit vectors in R8; then

XO =















e1 e2 e3 e4 e5 e6 e7 e8
e2 −e1 e4 −e3 e6 −e5 −e8 e7
e3 −e4 −e1 e2 e7 e8 −e5 −e6
e4 e3 −e2 −e1 e8 −e7 e6 −e5
e5 −e6 −e7 −e8 −e1 e2 e3 e4
e6 e5 −e8 e7 −e2 −e1 −e4 e3
e7 e8 e5 −e6 −e3 e4 −e1 −e2
e8 −e7 e6 e5 −e4 −e3 e2 −e1















∈ R8×8×8(4.6)

is orthogonal. This is the tensor of multiplication in the octonion algebra O ∼= R8.
For reference we summarize the n× n× n case.

Theorem 4.2. Real orthogonal n × n × n tensors exist only for n = 1, 2, 4, 8.
Consequently,

App3(R;n, n, n) =
1

n

if and only if n = 1, 2, 4, 8. Otherwise, the value of App3(R;n, n, n) must be strictly
larger.

Other admissible triples. There exists an impressive body of work for identifying
admissible triples for the Hurwitz problem. The problem can be considered as open in
general. We list some of the available results here. We refer to [28] for an introduction
into the subject and to [23] for recent results and references.

Regarding triples [ℓ,m, n] with ℓ ≤ m ≤ n we can observe that if a configuration
is admissible, then so is [ℓ′,m′, n′] with ℓ′ ≤ ℓ, m′ ≤ m, and n′ ≥ n. This follows
directly from (4.3), since we can consider subvectors of u and v and artificially expand
the left sum with ωk = 0. As stated previously, n ≥ ℓm is always admissible. Let

ℓ ∗m := min{n : [ℓ,m, n] is admissible},

i.e., the minimal n for (4.3) to exist. For ℓ ≤ 9 these values can be recursively computed
for all m ≥ ℓ according to the rule [28, Prop. 12.9 and 12.13]:

ℓ ∗m =







2

(⌈
ℓ

2

⌉

∗
⌈m

2

⌉)

− 1 if ℓ, m are both odd and

⌈
ℓ

2

⌉

∗
⌈m

2

⌉

=

⌈
ℓ

2

⌉

+
⌈m

2

⌉

− 1,

2

(⌈
ℓ

2

⌉

∗
⌈m

2

⌉)

else.

This provides the following table [28]:

ℓ \m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16
3 4 4 7 8 8 8 11 12 12 12 15 16 16 16
4 4 8 8 8 8 12 12 12 12 16 16 16 16
5 8 8 8 8 13 14 15 16 16 16 16 16
6 8 8 8 14 14 16 16 16 16 16 16
7 8 8 15 16 16 16 16 16 16 16
8 8 16 16 16 16 16 16 16 16
9 16 16 16 16 16 16 16 16
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For 10 ≤ ℓ ≤ 16, the following table due to Yiu [34] provides upper bounds for ℓ ∗m
(in particular it yields admissible triples):

ℓ \m 10 11 12 13 14 15 16
10 16 26 26 27 27 28 28
11 26 26 28 28 30 30
12 26 28 30 32 32
13 28 32 32 32
14 32 32 32
15 32 32
16 32

(4.7)

The admissible triples in these tables are obtained by rather intricate combinatorial
constructions of solutions ω = ωX to the Hurwitz problem (4.3), whose tensor repre-
sentations X have integer entries (integer composition formulas); see [28, p. 269 ff.]
for details. From the abstract construction, it is not easy to directly write down the
corresponding orthogonal tensors, although in principle it is possible. For the values
in the table (4.7) it is not known whether they are smallest possible if one admits real
entries in X as we do here (although this is conjectured [28, p. 314]). Some further
upper bounds for ℓ ∗m based on integer composition formulas for larger values of ℓ
and m are listed in [28, p. 291 ff.].

There are also nontrivial infinite families of admissible triples known. Radon [27]
and Hurwitz [17] independently determined the largest ℓ ≤ n for which the triple
[ℓ, n, n] is admissible: writing n = 24α+βγ with β ∈ {0, 1, 2, 3} and γ odd, the maximal
admissible value of ℓ is

ℓmax = 2β + 8α.(4.8)

If n ≥ 2 is even, then ℓmax ≥ 2, and so

App3(R; ℓ, n, n) =
1√
ℓn

for n even and 1 ≤ ℓ ≤ ℓmax.

In particular, we recover (2.2) as a special case. On the other hand, when n is odd,
then α = β = 0 and so ℓmax = 1. Hence [ℓ, n, n] is not admissible for ℓ ≥ 2 and
App3(R; ℓ, n, n) > 1/

√
ℓn, in line, e.g., with (2.3).

Some known families of admissible triples “close” to Hurwitz–Radon triples are

[

2 + 8α, 24α −
(
4α

2α

)

, 24α
]

and [2α, 2α − 2α, 2α − 2], α ∈ N.

We refer once again to [23] for more results of this type.

4.1.2. Complex case. In the complex case, the answer to the existence of
unitary tensors in the case ℓm > n is very simple: they do not exist. For example, for
complex 2 × 2 × 2 tensors this is illustrated by the fact that App3(C; 2, 2, 2) = 2/3;
see [8].

Theorem 4.3. Let ℓ ≤ m ≤ n. When ℓm > n, there exists no unitary tensor in
Cℓ×m×n, and hence

App3(C; ℓ,m, n) >
1√
ℓm

.
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Proof. Suppose to the contrary that some X ∈ Cℓ×m×n is unitary. Let Xi =
X(i, : , :) ∈ Cm×n denote the slices of X perpendicular to the first mode. By definition,
∑ℓ

i=1 u(i)Xi is unitary (has pairwise orthonormal rows) for all unit vectors u ∈ Cℓ.

In particular, every Xi is unitary. For i 6= j we then find that Xi +Xj is
√
2 times a

unitary matrix, so

2Im = (Xi +Xj)(Xi +Xj)
H = 2Im +XiX

H
j +XjX

H
i ,

that is, XjX
H
i +XiX

H
j = 0. But also we see that Xi + iXj is also

√
2 times a unitary

matrix, so

2Im = (Xi + iXj)(Xi + iXj)
H = (Xi + iXj)(X

H
i − iXH

j ) = 2Im + i(XjX
H
i −XiX

H
j ),

that is, XjX
H
i −XiX

H
j = 0. We conclude that XjX

H
i = 0 for all i 6= j. This would

mean that the ℓ row spaces of the matrices Xi are pairwise orthogonal subspaces in
Cn, but each of dimension m. Since ℓm > n, this is not possible.

The above result appears surprising in comparison to the real case. In particular,
it admits the following remarkable corollary on a slight variation of the Hurwitz
problem. The statement has a classical feel, but since we have been unable to find it
in the literature, we emphasize it here. As a matter of fact, our proof of nonexistence
of unitary tensors as conducted above resembles the main logic of contradiction
in Hurwitz’s original proof [16], but under stronger assumptions that rule out all
dimensions n > 1. The subtle difference to Hurwitz’s setup is that the function
u 7→ ‖u‖22 is not a quadratic form on Cn over the field C (it is not C-homogeneous)
but is generated by a sesquilinear form.

Corollary 4.4. If n > 1, then there exists no bilinear map ω : Cn × Cn → Cn

such that

‖ω(u, v)‖2 = ‖u‖2‖v‖2
for all u, v ∈ Cn.

Proof. Since bilinear forms from Cn ×Cn to Cn are in one-to-one correspondence
to complex n× n× n tensors via (3.1), the assertion follows from Theorem 4.3 due to
Proposition 3.2.

We emphasize again that while unitary tensors do not exist when ℓm > n, they
do exist when ℓm ≤ n, by Proposition 2.3.

4.2. Implications to tensor spaces of order larger than three. Obviously,
it follows from the recursive nature of the definition that orthogonal (resp., unitary)
tensors of size n1 × · · · × nd × nd+1, where n1 ≤ · · · ≤ nd ≤ nd+1, can exist only if
orthogonal (resp., unitary) tensors of size n2 × · · · × nd+1 exist. This rules out, for
instance, the existence of orthogonal 3× 3× 3× 3 tensors and, more generally, the
existence of unitary tensors when nd−2nd−1 > nd (cf. (2.4)).

In the real case, the construction of orthogonal n × n × n tensors from the
multiplication tables (4.4)–(4.6) in section 4.1.1 is very explicit. The construction can
be extended to higher orders as follows.

Theorem 4.5. Let d ≥ 2, n ∈ {2, 4, 8}, n1 ≤ · · · ≤ nd, and X ∈ Rn1×···×nd be
orthogonal. For any fixed µ ∈ {1, . . . , d − 1} satisfying n ≤ nµ, take any n slices
X1, . . . ,Xn ∈ R[µ] from X perpendicular to mode µ. Then a real orthogonal tensor of
order d+1 and size n1 × · · · ×nµ−1 ×n×n×nµ+1 × · · · ×nd can be constructed from
the tables (4.4–4.6), respectively, using Xk instead of ek.
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The proof is given further below. Here, using Xk instead of ek in the (i, j)th
entry in (4.4)–(4.6) means constructing a tensor X of size n1 × · · · × nµ−1 × n× n×
nµ+1 × · · · × nd such that X(:, . . . , :, i, j, :, . . . , :) = Xk.

As an example, [10, 10, 16] is an admissible triple by the table (4.7). Hence, by the
theorem above, orthogonal tensors of size 8× · · · × 8× 10× 16 exist for any number
d− 2 of 8’s. So the naive bound (1.10) (which equals 1/

√
10 · 8d−2 in this example) for

the best rank-one approximation ratio is sharp in R8×···×8×10×16. This is in contrast
to the restrictive condition in Proposition 2.3. In particular, in light of Theorem 4.2,
we have the following immediate corollary of Theorem 4.5.

Corollary 4.6. Real orthogonal n× · · · × n tensors of order d ≥ 3 exist if and
only if n = 1, 2, 4, 8. Consequently,

Appd(R;n, . . . , n) =
1√
nd−1

if and only if n = 1, 2, 4, 8 for d ≥ 3. Otherwise, the value of Appd(R;n, . . . , n) must
be larger.

In combination with Proposition 3.3, this corollary implies that lots of orthogonal
tensors in low dimensions exist.

Corollary 4.7. If max1≤µ≤d nµ = 1, 2, 4, 8, then orthogonal tensors exist in
Rn1×···×nd .

Proof of Theorem 4.5. Without loss of generality, we assume µ = 1. Let Y ∈
Rn×n×n2×···×nd be a tensor constructed in the way described in the statement from
an orthogonal tensor X. The slices Xk of X are then orthogonal tensors of size
n2 × · · · × nd. The Frobenius norm of Y takes the correct value

‖Y‖F =

√
√
√
√n2 ·

d−1∏

µ=2

nµ.

According to Theorem 3.5(a), we hence have to show that ‖Y‖2 = 1. By (1.10), it is
enough to show ‖Y‖2 ≤ 1. To do so, let ω(u, v) = X0×1u×2v denote the multiplication
in the composition algebra Rn, that is, X0 is the corresponding multiplication tensor
XC, XH or XO from (4.4)–(4.6) depending on the considered value of n. Then it holds
that

Y ×1 u×2 v =

n∑

k=1

ωk(u, v)Xk.(4.9)

Let ‖u‖2 = ‖v‖2 = 1. Then, by (4.2), ‖ω(u, v)‖2 = 1. Further let Z be a rank-
one tensor in Rn2×···×nd of Frobenius norm one. By (4.9) and the Cauchy–Schwarz
inequality, it then follows that

|〈Y, u⊗ v ⊗ Z〉F|2 =

(
n∑

k=1

ωk(u, v)〈Xk,Z〉F
)2

≤
n∑

k=1

|〈Xk,Z〉F|2.

By Proposition 2.2, the right expression is bounded by ‖X‖22, which equals one by
Theorem 3.5(a). This proves ‖Y‖2 ≤ 1.
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5. Accurate computation of spectral norm. In the final section, we present
some numerical experiments regarding the computation of the spectral norm. We
compare state-of-the-art algorithms implemented in the Tensorlab [32] toolbox with
our own implementation of an ASVD method that has been proposed for more accurate
spherical maximization of multilinear forms via two-factor updates. It will be briefly
explained in section 5.1.

The summary of algorithms that we used for our numerical results is as follows:
• cpd. This is the standard built-in algorithm for low-rank CP approximation
in Tensorlab. To obtain the spectral norm, we use it for computing the best
rank-one approximation. Internally, cpd uses certain problem-adapted nonlinear
least-squares algorithms [29]. When used for rank-one approximation as in our
case, the initial rank-one guess u1⊗· · ·⊗ud is obtained from the truncated higher-
order singular value decomposition (HOSVD) [6, 7], that is, uµ is computed as a
dominant left singular vector of a {µ}-matricization (t = {µ} in (2.10)) of tensor
X. The rank-one tensor obtained in this way is known to be nearly optimal in the
sense that ‖X − u1 ⊗ · · · ⊗ ud‖F ≤

√
d‖X −Y1‖F, where Y1 is a best rank-one

approximation.
• cpd (random): The same method, but using an option to use a random initial
guess u1 ⊗ · · · ⊗ ud.

• ASVD (random): Our implementation of the ASVD method using the same
random initial guess as cpd (random).

• ASVD (cpd): The ASVDmethod using the result of cpd (random) (which was often
better than cpd) as the initial guess, i.e., ASVD is used for further refinement. The
improvement in the experiments in sections 5.2–5.4 is negligible (which indicates
rather strong local optimality conditions for the cpd (random) solution), and so
results for this method are reported only for random tensors in section 5.5.

5.1. The ASVD method. The ASVDmethod is an iterative method to compute
the spectral norm and best rank-one approximation of a tensor via (1.1). In contrast
to the higher-order power method (which updates one factor at a time), it updates
two factors of a current rank-one approximation u1 ⊗ · · · ⊗ ud simultaneously, while
fixing the others, in some prescribed order. This strategy was initially proposed in [7]
(without any numerical experiments) and then given later in more detail in [9]. Update
of two factors has also been used in a framework of the maximum block improvement
method in [1]. Convergence analysis for this type of method was conducted recently
in [33].

In our implementation of ASVD the ordering of the updates is overlapping in the
sense that we cycle between updates of (u1, u2), (u2, u3), and so on. Assume that the
algorithm tries to update the first two factors u1 and u2 while u3, . . . , ud are fixed. To
maximize the value 〈X, u1 ⊗ u2 ⊗ · · · ⊗ ud〉F for u1, u2 with ‖u1‖ = ‖u2‖ = 1, we use
the simple fact that

〈X, u1 ⊗ u2 ⊗ · · · ⊗ ud〉F = (u1)T (X×3 u
3 · · · ×d u

d)u2.

Therefore, we can find the maximizer (u1, u2) as the top left and right singular vectors
of the matrix X×3 u

3 · · · ×d u
d.

5.2. Orthogonal tensors. We start by testing the above methods for the orthog-
onal tensors (4.4)–(4.6), for which we know that the spectral norm after normalization
is 1/n. The result is shown in Table 1: all the methods easily find a best rank-one
approximation. It is worth noting that the computed approximants are not always the
same, due to the nonuniqueness described in Remark 3.7.
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Table 1

Spectral norm estimations for orthogonal tensors.

n cpd cpd (random) ASVD (random)
2 0.500000 0.500000 0.500000
4 0.250000 0.250000 0.250000
8 0.125000 0.125000 0.125000

5.3. Fourth-order tensors with known spectral norm. In [13], the following
examples of fourth-order tensors with known spectral norms are presented. Let

X =

m∑

i=1

Ai ⊗Bi with Ai, Bi ∈ Rn×n being symmetric,

such that all the eigenvalues of Ai and Bi are in [−1, 1], and there are precisely two
fixed unit vectors a, b ∈ Rn (up to trivial scaling by −1) satisfying

aTAia = bTBib = 1, i = 1, . . . ,m.

Clearly, for any unit vectors x, y, z, w ∈ Rn, one has xTAiy ≤ 1 and yTBiw ≤ 1,
and so

〈X, x⊗ y ⊗ z ⊗ w〉F ≤ m = 〈X, a⊗ a⊗ b⊗ b〉F.

Therefore, ‖X‖2 = m and m ·a⊗a⊗ b⊗ b is a best rank-one approximation. Moreover,
it is not difficult to check that a is the dominant left singular vector of the first
(t = {1} in (2.10)) and second (t = {2}) principal matrix unfolding of X, while b
is the dominant left singular vector of the third and fourth principal matricization.
Therefore, for tensors of the considered type, the HOSVD truncated to rank one yields
a best rank-one approximation m · a⊗ a⊗ b⊗ b.

We construct tensors X of this type for n = 10, 15, 20, . . . , 50 and m = 10,
normalize them to Frobenius norm one (after normalization the spectral norm is
m/‖X‖F), and apply the considered methods. The results are shown in Figure 2.
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Fig. 2. Results for fourth-order tensors with known spectral norms.
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As explained above, the method cpd uses HOSVD for initialization, and indeed it
found the optimal factors a and b immediately. Therefore, the corresponding curve
in Figure 2 matches the precise value of the spectral norm. We observe that for
most n, the methods with random initialization found only suboptimal rank-one
approximations. However, ASVD often found better approximations and in particular
found optimal solutions for n = 10, 30, 40.

5.4. Fooling HOSVD initialization. In the previous experiment the HOSVD
truncation yielded the best rank-one approximation. It is possible to construct tensors
for which the truncated HOSVD is not a good choice for intialization.

Take, for instance, an n× n× n tensor Xn with slices

Xn( : , : , k) = Sk−1
n ,(5.1)

where Sn ∈ Rn×n is the “shift” matrix:

Sn =










0 1
0 1

. . .
. . .

0 1
1 0










.

This tensor has strong orthogonality properties: in any direction, the slices are
orthogonal matrices, and parallel slices are pairwise orthogonal in the Frobenius inner
product. In particular, ‖Xn‖F = n. However, Xn is not an orthogonal tensor in the
sense of Definition 3.1, since ‖Xn‖2 =

√
n (use Proposition 2.2). A possible (there are

many) best rank-one approximation for Xn is given by the “constant” tensor whose
entries all equal 1/n. Nevertheless, we observed that the method cpd estimates the
spectral norm of Xn to be one, which, besides being a considerable underestimation for
large n, would suggest that this tensor is orthogonal. Figure 3 shows the experimental
results for the normalized tensors Xn/n and n = 2, 3, . . . , 50.

The explanation is as follows. The three principal matricization of Xn into an
n×n2 matrix all have pairwise orthogonal rows of length

√
n. The left singular vectors
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Fig. 3. Results for the normalized tensors Xn/n from (5.1).
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are hence just the unit vectors e1, . . . , en. Consequently, the truncated HOSVD yields
a rank-one tensor ei ⊗ ej ⊗ ek with Xn(i, j, k) = 1 as a starting guess. Obviously,
〈Xn, ei⊗ej⊗ek〉F = 1. The point is that ei⊗ej⊗ek is a critical point for the spherical
maximization problem (and thus also for the corresponding rank-one approximation
problem (1.3))

max f(u1, u2, u3) = 〈Xn, u
1 ⊗ u2 ⊗ u3〉F s.t. ‖u1‖2 = ‖u2‖2 = ‖u3‖2 = 1.(5.2)

To see this, note that u1 = ei is the optimal choice for fixed u2 = ej and u3 = ek, since
Xn has no other nonzero entries in fiber Xn( : , j, k) except at position i. Therefore,
the partial derivative h1 7→ f(h1, ej , ek) vanishes with respect to the first spherical
constraint, i.e., when h1 ⊥ ei (again, this can be seen directly since such h1 has
a zero entry at position i). The observation is similar for other directions. As a
consequence, ei ⊗ ej ⊗ ek will be a fixed-point of nonlinear optimization methods
for (5.2) relying on the gradient or block optimization, thereby providing the function
value f(ei, ej , ek) = 1 as the spectral norm estimate.

Note that a starting guess ei ⊗ ej ⊗ ek for computing ‖Xn‖2 will also fool any
reasonable implementation of ASVD. While for, say, fixed u3 = ek, any rank-one matrix
u1 ⊗ u2 of Frobenius norm one will maximize 〈Xn, u

1 ⊗ u2 ⊗ ek〉F = (u1)TSk−1
n u2, its

computation via an SVD of Sk−1
n will again provide some unit vectors u1 = ei and

u2 = ej . We conclude that random starting guesses are crucial in this example. But
even then, Figure 3 indicates that there are other suboptimal points of attraction.

5.5. Spectral norms of random tensors. Finally, we present some numerical
results for random tensors. In this scenario, Tensorlab’s cpd output can be slightly
improved using ASVD. Table 2 shows the computed spectral norms averaged over
10 samples of real random 20 × 20 × 20 tensors whose entries were drawn from the
standard Gaussian distribution. Table 3 repeats the experiment but with a different
size 20× 20× 20× 20. In both experiments, ASVD improved the output of cpd in the
order of 10−3 and 10−4, respectively, yielding the best (averaged) result.

Figure 4 shows the averaged spectral norm estimations of real random n× n× n
tensors for varying n together with the naive lower bound 1/n for the best rank-one
approximation ratio (we omit the curve for ASVD (cpd) as it does not look very
different from the other ones in the double logarithmic scale). The average is taken
over 20 random tensors for each n. From Theorem 4.2 we know that the lower bound
is not tight for n 6= 1, 2, 4, 8. Nevertheless, we observe an asymptotic order O(1/n) for
the spectral norms of random tensors. This illustrates the theoretical results mentioned
in section 2.4. In particular, App3(R;n, n, n) = O(1/n) as explained in section 2.4;
see (2.11) and (2.12).

Table 2

Averaged results for random tensors of size 20 × 20 × 20.

cpd cpd (random) ASVD (random) ASVD (cpd)
0.130927 0.129384 0.129583 0.130985

Table 3

Averaged results for random tensors of size 20 × 20 × 20 × 20.

cpd cpd (random) ASVD (random) ASVD (cpd)
0.035697 0.035265 0.034864 0.035707
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Fig. 4. Averaged results for random n× n× n tensors.
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[22] T. Kühn and J. Peetre, Embedding constants of trilinear Schatten-von Neumann classes,

Proc. Est. Acad. Sci. Phys. Math., 55 (2006), pp. 174–181.
[23] A. Lenzhen, S. Morier-Genoud, and V. Ovsienko, New solutions to the Hurwitz problem on

square identities, J. Pure Appl. Algebra, 215 (2011), pp. 2903–2911.
[24] N. H. Nguyen, P. Drineas, and T. D. Tran, Tensor sparsification via a bound on the spectral

norm of random tensors, Inf. Inference, 4 (2015), pp. 195–229.
[25] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Appl. Math. Z., SIAM,

Philadelphia, 1998.
[26] L. Qi, The best rank-one approximation ratio of a tensor space, SIAM J. Matrix Anal. Appl.,

32 (2011), pp. 430–442.
[27] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Semin. Univ. Hamb., 1 (1922),

pp. 1–14.
[28] D. Shapiro, Compositions of Quadratic Forms, Walter de Gruyter, Berlin, 2000.
[29] L. Sorber, M. Van Barel, and L. De Lathauwer, Optimization-based algorithms for tensor

decompositions: Canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) terms,

and a new generalization, SIAM J. Optim., 23 (2013), pp. 695–720.
[30] R. Tomioka and T. Suzuki, Spectral Norm of Random Tensors, arXiv:1407.1870, 2014.
[31] A. Uschmajew, Some results concerning rank-one truncated steepest descent directions in

tensor spaces, in Proceedings of the International Conference on Sampling Theory and
Applications, 2015, pp. 415–419.

[32] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab v3.0,
https://www.tensorlab.net/ (2016).

[33] Y. Yang, S. Hu, L. De Lathauwer, and J. A. K. Suykens, Convergence Study of Block

Singular Value Maximization Methods for Rank-1 Approximation to Higher Order Tensors,
Internal Report 16-149, ESAT-SISTA, KU Leuven, 2016, ftp://ftp.esat.kuleuven.ac.be/pub/
stadius/yyang/study.pdf.

[34] P. Yiu, Composition of sums of squares with integer coefficients, in Deformations of Mathemat-
ical Structures II: Hurwitz-Type Structures and Applications to Surface Physics. Selected
Papers from the Seminar on Deformations,  Lódź-Malinka, 1988/92, J.  Lawrynowicz, ed.,
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