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Abstract-Binary tree-structured filter banks have been em- 
ployed in the past to generate wavelet bases. While the relation 
between paraunitary filter banks and orthonormal bases is 
known to some extent, there are some extensions which are 
either not known, or not published so far. In particular it is 
known that a binary tree-structured filter bank with the same 
paraunitary polyphase matrix on all levels generates an or- 
thonormal basis. First, we generalize the result to binary trees 
having different paraunitary matrices on each level. Next, we 
prove a converse result: that every discrete-time orthonormal 
wavelet basis can be generated by a tree-structured filter bank 
having paraunitary polyphase matrices. 

We then extend the concept of orthonormal bases to gener- 
alized (i.e., nonbinary) tree structures, and see that a close re- 
lationship exists between orthonormality and paraunitariness 
in this case too. We prove that a generalized tree structure with 
paraunitary polyphase matrices produces an orthonormal ba- 
sis. Since not all bases can be generated by tree-structured filter 
banks, we prove that if an orthonormal basis can be generated 
using a tree structure, it can be generated specifically by a 
paraunitary tree. 

I. INTRODUCTION 

ECENTLY, wavelet transforms have evoked consid- R erable interest in the signal processing community. 
They have found applications in several areas such as 
speech coding, edge detection, data compression, extrac- 
tion of parameters for recognition and diagnostics, etc. 
[ll-[3]. Since wavelets provide a way to represent a sig- 
nal on various degrees of resolution, they are a convenient 
tool for analysis and manipulation of data. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], Mallat 
describes a multiresolution algorithm for decomposing and 
reconstructing images. In [2], Mallat and Hwang have 
shown that the local maxima of the wavelet transform de- 
tect the location of irregular structures. They have also 
shown that it is possible to reconstruct one and two di- 
mensional signals from the local maxima of their wavelet 
transform. Applications of wavelets to subband speech 
and image coding techniques can be found in [5]-[7]. 
Wavelets can also be used in the detection of transient 
signals [ 6 ] .  Orthonormality is a very desirable property in 
several of these applications, and indeed, the problem of 
generating orthonormal wavelets is of considerable inter- 
est. 
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The theory of wavelets was originally developed in the 
context of continuous time functions [8], [9]. It has since 
been related to the familiar idea of quadrature mirror filter 
(QMF) banks. Continuous time wavelets can be obtained 
from infinite-level binary tree-stmctured QMF banks, with 
the same filters on each level [lo]. This infinite recursion 
gives rise to two continuous time functions $ ( t )  and 4((t) 
which are termed as the wavelet function and the scaling 
function, respectively. The wavelet basis is then obtained 
by dyadic scaling and shifting of the wavelet function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+(t). It has been shown [lo] that if this basis of continu- 
ous time functions is orthonormal, then the single QMF 
pair used to generate them is paraunitary [ 1 I ] .  

Subsequently, the notion of wavelets has been extended 
to discrete time. This is more suitable in a number of sig- 
nal processing applications. However, there appears to be 
no universal definition of wavelets in discrete time. Some 
authors have referred to a one-level paraunitary filter bank 
as wavelet transforms. This definition is, however, too 
restrictive. Probably the definition which best captures the 
notion of wavelets in discrete-time is the idea of having a 
binary tree with a finite number of levels, simultaneously 
allowing different filters on each level. This definition is 
fairly general, and is also useful from a practical view- 
point. We shall subscribe to this definition in this paper. 
The idea of wavelets in discrete time therefore reduces to 
that of a filter bank with dyadically increasing decimation 
ratios. This idea of a filter bank with dyadic decimation 
ratios can be generalized to filter banks with nonuniform, 
nondyadic decimation ratios. The basis functions corre- 
sponding to such nonuniform filter banks have been re- 
ferred to as wavelet packets [ l ] ,  [12]. One of the ways to 
realize such nonuniform filter banks is by using general 
tree structures. 

Given the importance of orthonormal wavelets and 
wavelet packets in several applications, it becomes natu- 
ral to seek necessary and sufficient conditions under which 
these discrete time basis functions are orthonormal. While 
the relation between orthonormal bases and paraunitary 
filter banks is known to some extent, there are some ex- 
tensions which are either not known, or not published so 
far. There also appears to be no published work which 
can serve as a comprehensive reference for the general- 
ized orthonormal wavelet bases (wavelet packets) and 
paraunitary filter banks. The aim here is to present a com- 
plete study of this relation. The following are the main 
points of this paper. 
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1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAParaunitariness implies wavelet orthonormality. It 
is shown that if a binary tree is constructed using the same 
paraunitary block on each level, the resulting discrete time 
basis is orthonormal. A straightforward extension is that 
the discrete time basis continues to be orthonormal even 
if different paraunitary blocks are used on each level 
(Theorem 1). 

2) Orthonormality implies paraunitariness. We prove 
that every orthonormal wavelet basis can be generated us- 
ing binary tree structured filter banks with paraunitary 
building blocks (Theorem 2). The proof also shows how 
we can synthesize the tree, i.e., we can identify the filter 
pair on each level of the tree, starting from the given or- 
thonormal basis. Furthermore, if an orthonormal wavelet 
basis is generated using a binary tree, the filters on each 
level have to be generalized paraunitary (i.e., paraunitary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
except for constant scaling) (Corollary I ) ,  These results 
allow us to generate all orthonormal wavelet bases simply 
by manipulating the coefficients of a set of lattice struc- 
tures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 )  Orthonormality of wavelet packets. We develop the 
concept of orthonormality for nonuniform filter banks. In 
particular, we show that iffk(n) andfi(n) are two of the 
basis functions, then the orthonormality condition can be 
written as 

m 

c fk(n)fT(n - glki) = 6 ( k  - l )S( i ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n =  -m 

Here, glk is the greatest common divisor (gcd) of ( I k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,), 
the decimation factors corresponding to the two filters. 
The fact that the gcd is involved in the definition has not 
been brought to attention before. We also prove that if a 
set of wavelet packets is realized using a general tree 
structure with paraunitary matrices on each level, the re- 
sulting basis is orthonormal (Theorem 3 ) .  Since not all 
bases can be generated using tree structures, the exact 
converse of this result is not true, unlike the binary case. 
However, if an orthonormal basis can be generated using 
a tree structure, we show that it can be generated specif- 
ically by a tree having paraunitary filters on each level 
(Theorem 4). This establishes the relation between par- 
aunitariness and orthonormality in the case of wavelet 
packets. 

Nomenclature 

Boldfaced quantities denote matrices and vectors, as in 
A and x. AT denotes the transpose of the matrix A.  A su- 
perscript asterisk as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf* (n)  denotes conjugation. The 
tilde notation as in A ( z )  stands for conjugation of coeffi- 
cients followed by transposition followed by replacing z 
by z-I .  Consider a transfer function A ( z ) .  It can be writ- 
ten in terms of its M polyphase components [ 111 as fol- 
lows: 

This is known as type I polyphase. Let Hi(z), i = 0, * . , 
M - 1, be a set of analysis filters. They can be written as 

The matrix E ( z )  = [Ek, , ]  is called the polyphase matrix 
of the analysis filters. There is also a type I1 polyphase 
representation which is as follows: 

A ( z )  = z-M+Ia’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ( Z M )  + Z-M+2u;(zM) 

Let F, ( z ) ,  i = 0, * * . , M - 1, be a set of synthesis fil- 
ters. They can be written as 

The matrix R ( z )  = [R,,,] is called the polyphase matrix 
of the synthesis filters. 

If a (n)  is the inverse transform of A ( z ) ,  then a (Mn) is 
called the M-fold decimated version of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU (n).  In the z-do- 
main, we use a downward arrow to denote the decimation 
operator, for example, ( A  ( z ) ) l w  is the z transform of the 
M-fold decimated version of a (n).  A matrix E ( z )  is said 
to be paraunitary if it satisfies [ 1 I ]  

Given a set of M filters H k ( z ) ,  k = 0,  * - , A4 - 1 ,  we 
can define an M by M polyphase matrix for these filters 
as in [ 113. We say that the set of filters forms a parauni- 
tary set (abbreviated PU-set) if their polyphase matrix is 
paraunitary. In particular, two filters with a paraunitary 
polyphase matrix are said to form a PU-pair. 

The abbreviation “gcd” stands for the greatest com- 
mon divisor. The abbreviation FIR stands for finite im- 
pulse response. 

11. PRELIMINARIES 

In this section, we shall develop the background useful 
for dealing with the remainder of the paper. Most of what 
is presented in this section can be inferred from the work 
of Daubechies [ 101. The filter-bank approach to wavelets 
has also been presented by Vetterli [12], [15] and by Vai- 
dyanathan [ 161. Our notation in this paper will be similar 
to that in [16]. 

The wavelet transform provides a time-scale represen- 
tation of a signal which makes it possible to analyze sig- 
nals on various degrees of resolution. It is a representation 
of a signal in terms of a peculiar set of orthonormal func- 
tions. The peculiarity of this orthonormal family is that it 
is obtained by shifting and dilating a single function, often 
termed as the mother wavelet. Let x ( t )  be the signal under 
consideration. Mathematically, we can write its wavelet 
transform as 
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X,,, ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  q)  is referred to as the continuous wavelet trans- 
form (CWT) of the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( t ) .  It is thus named because 
the variables p and q are continuous variables. Note that 
the family of functions f ( ( t  - q) / p )  is generated from a 
single function f ( t )  by translations and dilations. p is the 
dilation parameter, whereas q is the translation parameter. 
This is a mapping from a one-dimensional continuous 
variable t ,  to a two dimensional continuous variable 
( p ,  q). If we restrict p and q to take discrete values, we 
obtain a mapping from a one-dimensional continuous 
variable to a two-dimensional discrete variable. This is 
called the discrete wavelet transform (DWT). 

In signal processing literature [ 151, [ 161, there has been 
defined a similar operation as the above for discrete time 
signals. We say, 

y k ( n )  = C h,(m)x(l,n - m) ,  0 I k I L (2.2) 
in 

is the discrete time wavelet transform (DTWT) of the sig- 
nal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (n) .  It is common to choose Zk = 2k + , 
L - 1, and ZL = 2L. This is the binary DTWT, often 
referred to simply as the DTWT [ 151, [ 161. The quantities 
yk(n), k = 0. . * , L are called the wavelet coefficients 
of the signal x ( n ) .  Equation (2.2) is a convolution fol- 
lowed by decimation by a factor I , .  The wavelet coeffi- 
cients can hence be visualized as being obtained by pass- 
ing the signal through a bank of L + 1 filters h,(n), and 
decimating the filter outputs by factor Zk. The condition 
that the filter bank be a maximally decimated system im- 
plies that C (1 / I k )  = 1. This viewpoint has been explained 
in [16]. Specifically, the binary DTWT (which we shall 
henceforth refer to as DTWT) can be obtained by passing 
the signal x ( n )  through a binary tree-structured analysis 
bank (as shown in Fig. l(a) for the case L = 3 ) .  Consider 
the corresponding binary tree-structured synthesis bank 
shown in Fig. l(b). It is well known [13] that it is possible 
to design such perfect-reconstruction tree-structured filter 
banks. For the perfect reconstruction system, the signal 
x ( n )  can be recovered from its wavelet coefficients as 

k = 0, * 

L 

x (n> = C Y k  (m)q!iiri (n) .  ( 2 . 3 )  
k = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn 

This is the “inverse” DTWT operation. The qkrr,(n) are 
termed the wavelet basis functions. The perfect recon- 
struction binary tree-structured analysis-synthesis system 
can be redrawn as a traditional filter bank as in Fig. 2(a). 
Fig. 2(b) shows the typical frequency responses of the 
analysis filters. Note that the amplitudes of the filters in- 
creases as the bandwidth decreases, keeping the energy in 
each of them equal. With reference to Fig. 2(a), it can be 
shown [15], [16] that the synthesis filters are related to 
the functions qkm(n )  as 

qk,,,(n) =fk (n  - 2,+’m), 

Vbr i  (n> = fL (n - 2Lm). 

k = 0, * . , L -  1 

(2.4) 

( 2 . 5 )  

(b) 

Fig. I .  A tree-structured filter bank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAused for generating wavelets. (a) The 
analysis bank. (b) The synthesis bank. 

‘18 ‘14 v 2  x 

(b) 

Fig. 2. (a) A four channel wavelet filter bank. (b) Typical appearances of 
magnitude responses of analysis filters in a three-level tree. 

For perfect reconstruction systems, therefore, every sig- 
nal can be represented in terms of a wavelet transform, 
and every signal can be recovered from its wavelet coef- 
ficients. Note that this is not the case with ordinary. Fou- 
rier transform. In fact, not all sequences have a Fourier 
trans form ! 
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Orthonormality 

thonormal if they satisfy the relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 101 
The wavelet basis functions in (2.3) are said to be or- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqkm(n)qt(n) = 6(k - 1)6(m - i). (2.6) 

In terms of the filter responses in a binary tree-structured 
filter bank, this is equivalent to the condition 

Cfk(n - 2k+'m)f7(n - 2'+l i )  = 6(k - 1)6(m - i ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 

n 

(*,7) 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  (a) A two channel filter hank. (h) A two channel bank drawn in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

terms o f  the polyphase matrix. 

n 

L - 1  

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. A tree-structured filter hank drawn in terms of the polyphase mat- 
rices. 

(2.10) 

l = O ; . * , L - l  shows the case L = 3. Let the polyphase matrix be 
paraunitary, i.e., it satisfies (1.3). Then, it has been 
shown in [ 161 that the wavelet basis generated by that tree 

Orthonormality of basis functions is often a very desir- 

(2.11) 

(2. is orthonormal. 

equivalent to able property in several applications. 

1 5 k ,  k ,  1 0,  * , L - 1 

(2.13) 

(FL(Z)F/(Z))J.ZI-I = 0, I = 0, . * * , L - 1 (2.14) 

( F L  (z)& (Z)) l ,L  = 1. (2.15) 

First, consider the case of a one-level "tree" shown in 
Fig. 3(a), redrawn as in Fig. 3(b), where R(z)  is the 
polyphase matrix of the filters F, ( z )  and F ,  ( z )  . It has been 
shown [16] that if the matrix R(z)  is paraunitary, then the 
filters satisfy the orthonormality condition 

Ch(n  - 2m)ff(n - 2i) 

= 6 ( k  - 1)6(m - i ) ,  

n 

k ,  1 = 0, I .  (2.16) 

In the z-domain, this becomes 

(Fk(Z)FL(Z))lz = 6(k - l ) ,  k ,  1 = 0, 1, (2.17) 

111. SOME RESULTS ON PARAUNITARY SYSTEMS 

In this section we present a few basic results pertaining 
to paraunitary systems. Some of them are straightforward, 
but many are fundamental. All are included here for the 
sake of completeness. 

Lemma I :  Let A ( z )  be a FIR transfer function such that 
( A  ( z ) ) l M  = 1 ,  and let A ( z )  have a factor of the form c(zM) .  
Then c (z )  = kz', for some constant k and integer 1. In 
other words, the M polyphase components of A ( z )  cannot 
have a common factor other than of the form kz'. 

Proof: Let 

A(z )  = c(zM)a(z).  (3.1) 

Hence, (c(zM)a(z) ) lM = 1 .  Using the noble identity 1111, 
we get 

c(z)[(a(z)) lhfI  = 1. (3.2) 

Since this is a product of two FIR functions, matching 
zeros on both sides of the above equation, we get c(z )  = 

which can be rewritten as kz'. 

components as in (1.1). If the q ( z )  i = 0,  . , M - 1 
had a common factor, A ( z )  could be written as in (3. l ) ,  
which we have shown is not possible unless the common 
factor is of the form kz'. Hence the M polyphase compo- 
nents of a function A ( z )  satisfying ( A  ( z ) ) l M  = 1 cannot 
have a common factor other than of the restricted form. 

Fk(z)Fl(z) + Fk(-z)F'(-z) = 26(k  - 1 ) .  (2.18) 
Now, A ( z )  can be written in terms Of its polyphase 

This can be shown [ 111 to be exactly equivalent to the 
condition that the filters Fo(z) and F ,  ( z )  form a PU-pair. 
When k = 1, we refer to (2.13) as the unit-energy condi- 
tion. Now consider a general L-level tree, drawn in terms 
of the polyphase matrix of the filters on all levels. Fig. 4 
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Lemma 2: Given a FIR transfer-function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(z )  satisfy- 
ing 

(A(z)&z))l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 (3.3) 

we can always find a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ( z )  such that A ( z )  and B ( z )  
form a PU-pair. 

Proof: Since A ( z )  is FIR, it can be multiplied by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz m  
(for some m positive or negative), so that C(z )  = zmA ( z )  
is causal with c(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0. Since A ( z )  satisfies (3.3), C(z) 
also satisfies (3.3). Hence from [ l  I], we know that the 
degree N of C(z )  is constrained to be odd. Choose 

D(z)  = z - N c ( - Z )  (3.4) 

and let B(z )  = z -"'D(z). If A ( z )  = ao(z2) + z - ' a l  ( z 2 )  
and B ( z )  = bo ( z  *) + z Ibl ( z  '), it can be verified that the 
above choice of B(z )  implies the relations 

(3.5) 

(3.6) ao ( z ) .  
It can be shown by direct substitution that with this choice, 
the filters A ( z )  and B ( z )  form a PU-pair. 

Note that condition (3.3) means that (A(z )A(z ) )  is a 
halfband filter [ 1 13. Equivalently, A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) is a spectral factor 
of a halfband filter. 

Lemma 3: Given a FIR transfer-function A ( z )  satisfy- 
ing (3.3), and a function P(z)  satisfying 

bo(z) = z - " - 1 ) / 2 -  

b, (z) = -z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(N- 1)P- 

a1 (2) 

(A(z )F(z ) ) l ,  = 0 (3.7) 

P(Z) = P(Z2)B(Z) (3.8) 

P ( z )  can always be written as 

where B(z )  is as defined in Lemma 2. 

polyphase components as 
Pro08 The functions can be written in terms of their 

(3.9) 

P(z) = po(z2) + z -'PI (z2b (3.10) 

Equation (3.7) can be written in terms of the polyphase 
components as 

a0 (ZIP0 (z> + a1 ( Z I P '  ( z )  = 0. (3.11) 

Note that by Lemma 1, if a. ( z )  and a l  ( z )  have a common 
factor, it is of the form kz'. Thus in order that (3.11) be 
satisfied, we need 

~ ( z )  = ao(z2) + z- 'a l (z2> 

Po ( z )  = P ( Z M I  (z>z -' 
PI ( z )  = -P ( z P 0  ( z )z  -' 

which means P(z)  can be written as in (3.8). 
Lemma 4: If A,(z),  i = 0 ,  - * * , M - 1 form a PU- 

set, then they cannot have a common factor except of the 
form kz'. 

Proof: Since A, ( z ) ,  i = 0, * * * , M - 1 form a PU- 
set, they satisfy [ l l ]  

(3.12) 

(3.13) 

M -  I 

C A, (z)A, ( z )  = M for all z .  (3.14) 
r = O  

If A , ( z ) ,  i = 0, . . . , M - 1 have common factor ( z  - 
zo) with zo # 0, the left-hand side would vanish at z = 

zo, violating (3.14). 
, M  

- 1 form a PU-set. Then, 
Lemma 5: Let the filters Gk(z) ,  k = 0, 1, 2, * 

(A(z)Gk(z)) lM = 0, fork = 0, 1, 2, - * , M -  1 

(3.15) 

implies A ( z )  = 0. 
Proof: Consider Fig. 5(a) redrawn as Fig. 5(b). E ( z )  

is the type I polyphase matrix of the filters Gk(z) ,  k = 0,  
1 , 2 ,  * * *  , M - 1. Apply an impulse 6 (n) as an input to 
the system. Equation (3.15) means that the output of the 
system y ( z )  = 0. Since the matrix E ( z )  is paraunitary, 
this means that v(z)  = 0. Hence the output of the filter 
A ( z )  in response to the impulse 6 (n )  is zero, i.e., A ( z )  = 
0. 

, M  
- 1 form a PU-set. Let a and b be relatively prime inte- 
gers, and let b be a factor of M .  If 

Lemma 6: Let the filters Gk(z) ,  k = 0, 1, 2, 

(A(z)Gk(z")) l ,  = 0, k = 0, 1, 2, * * , M -  1 

(3.16) 

then A ( I )  = 0.  
Proof: In Fig. 5(a), imagine that each Gk(z)  is re- 

placed with Gk(zU) ,  and the decimation factor is made b. 
This can be redrawn in terms of the polyphase matrix as 
in Fig. 6. Again, apply an impulse 6(n) as an input to the 
system. Equation (3.16) means that the output of the sys- 
tem y ( z )  = 0. Since the matrix E(z ) ,  which is the poly- 
phase matrix of the filters Gk ( z )  is paraunitary, the matrix 
E(zuM") is also paraunitary. This means that v(z) = 0. 
Now, since a and b are relatively prime, it can be shown 
that the output of the filter A ( z )  is zero, hence proving the 
Lemma. 

Lemma 7: Let A ( z )  be some rational transfer function, 
and let L be any integer. Then, there exists a C(z)  such 
that 

(A(Z)A(Z))lL = C(Z)C(Z). (3.17) 

Furthermore, if A(z )  is FIR, C(z )  is also FIR. 
Proof: Observe that A(e'">A*(e'") L 0, and so its 

any L-fold decimated version. Hence we can rewrite it as 
C(eJ")C* (e'"). By analytic continuation, we have (3.17). 

If A ( z )  is FIR, its L-fold decimated version is FIR, and 
so C(z )  is also FIR. 

IV. ORTHONORMAL WAVELETS A N D  BINARY TREE- 
STRUCTURED FILTER BANKS 

In this section, we study further the connection between 
orthonormality of wavelet bases and paraunitariness of 
matrices in a binary tree-structured filter bank. All wave- 
let bases we consider are of finite duration, or FIR, un- 
less stated otherwise. Finite duration wavelets have been 
referred to as "compactly supported wavelets" in [lo]. 
Consider a L-level binary tree-structured synthesis filter 
bank used traditionally for generating a wavelet basis, 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Demonstration for Lemma 5. (a) The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM channel filter bank. (b) 
The filter bank in terms of the polyphase matrix. 

Fig. 6 .  Demonstration for Lemma 6 

Fig. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA binary tree-structured synthesis bank in terms of the polyphase 
matrices. 

drawn in terms of the polyphase matrices of the filters. 
Fig. 4 is an example for L = 3. It is known [16] that if 
the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (z) is paraunitary , i .e., it satisfies (1.3), the 
wavelet basis generated by this tree-structure is ortho- 
normal. 

First, we shall consider a simple generalization of Fig. 
4. Consider Fig. 7 .  This is also a binary tree-structured 
synthesis filter bank, but the filters (and hence their 
polyphase matrix) on each level are different. We now 
prove: 

Theorem 1: Consider a L-level binary tree-structured 
filter bank. Let the polyphase matrices on each level, RI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  
i = o ,  . . .  , L - 1 be paraunitary. Then, the wavelet 
basis generated by this tree is orthonormal. 

Proof: The proof of this result is a straightforward 
generalization of the one given in [ 161, for tree structures 
having the same paraunitary matrix on each level. We 
present it here for the sake of completeness. 

We prove this result by induction. Consider a L-level 
tree (Fig. 8(a)) drawn as a traditional synthesis filter bank 
(Fig. 8(b)). The filters F k ( z )  are given by the relations 

(4.1) Fo(z) = H,,(z) 
k -  1 

Fk(z)  = HT1(z2 ' )  r=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn Gs,(z2') k = 1, . * * , L -  I 

(4.2) 
L - 2  

2 L - ' )  Gs,(z2').  (4.3) F L ( Z )  = Gs, j ( z  
r = O  

The tree has L + 1 branches. Fig. 9(a) shows two of these 
branches, with k 2 1. Suppose we add another level to 
the tree. This adds a new branch, and modifies the exist- 
ing branches as shown in Fig. 9(b). Assuming that a) the 
wavelet basis is orthonormal for the L-level tree, and that 
b) the new set of filters (GsL(z),  H,, ( z ) )  has a polyphase 
matrix which is paraunitary, we prove that the wavelet- 
basis generated by the (L + 1)-level tree is also ortho- 
normal. From the paraunitariness of their polyphase ma- 
trix, we know that 

(Gs,(z)GsL(z))J2 = 1 (H, , (Z)$ , (Z) )~  = 1 

(4.4) (Gs,(z)&(zN2 = 0. 

Orthonormality of the L-level tree implies 

( F ~ ( Z ) F ~ ( Z ) ) l 2 , + ~  = 6 ( k  - I ) ,  0 5 I I k 5 L - 1. 

(4.5) 

The three branches of the L + 1-level tree shown in Fig. 
9(b) can be redrawn as in Fig. 9(c), where 

S~(Z)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Fk(z2)GFL(z), &(z )  3 F,(z2)G,,(z). (4.6) 

Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(S, (z)Sl ( z ) ) l y  + 2 = (Fk (z2)F/  (z2)G,, (z)G,, (z))l, i  + 2 

(4.7) 

= (F,(Z)~/(Z)(G,,(Z)G,,  ( z ) ) 1 2 ) . 1 2 1 +  I 

(4.8) 6 ( k  - 1 ) .  

We have used (4.4) and (4.5) to arrive at the first answer. 
Also, 

( S k ( ~ ) $ , ( ~ ) ) . 1 2  = F ~ ( z )  ( G s L ( ~ ) R s L ( ~ ) ) J 2  (4.9) 

= 0  (4.10) 

using (4.4). This is sufficient to prove that the wavelet 
basis generated by the L + 1-level tree is orthonormal. 
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7.p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz+j FL (z) 

(b) 

Fig. 8. (a) A binary tree-structured synthesis bank. (b) A binary tree-struc- 
ture redrawn as a traditional filter bank. 

' (c) 
Fig. 9. (a) Two branches of a L-level tree. (b) Filters on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( L  + 1) level 

are added. (c) Tree resulting from the addition of one more level. 

We shall now consider the converse of the above ques- 
tion, namely, is it possible to generate all orthonormal 
wavelet bases using binary tree-structured filter banks? It 
turns out that this is true in the case of finite duration 
discrete-time orthonormal wavelets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 2: Every finite duration discrete-time ortho- 
normal wavelet basis can be generated by a binary tree- 
structured filter bank having paraunitary matrices on all 
levels. 

Proof: Let yk (m)  denote the wavelet coefficients at 
resolution k ,  and let vkm (n)  denote the wavelet basis func- 
tions. We recall that the original signal x ( n )  can be re- 
constructed from its wavelet coefficients as in (2.3). We 
also recall that in a tree-structured filter bank, the synthe- 
sis filters are related to the wavelet basis functions as in 
(2.4) and (2.5). Consider a binary tree-structured synthe- 
sis bank, drawn as a conventional filter bank in Fig. 8(b). 
Notice the increasing interpolation ratios. Since we are 
dealing with compactly supported bases, the filters Fk ( z )  
are FIR. We shall also assume that they are causal with 
fk(0) # 0. This assumption is not restrictive, since we are 
dealing with FIR functions, and any FIR function can be 
brought into this form by a suitable advance/delay oper- 
ation. Orthonormality of the wavelet basis implies (2.7) 
to (2.15). For the sake of convenience, we reproduce be- 
low the orthonormality condition in the z-domain, 

(Fk(Z)F/(Z))lytl = 6 ( k  - 1 ) ,  0 I k I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I L - 1 

(F[-(z)F/(z))12/+l = 0 

(Fl, ( Z P L  (z)) 12 ,  = 1 . 

I = 0, * * . , L -  1 

Our task is to show that a set of functions F,(z)  satis- 
fying the above condition can always be generated using 
a tree-structured filter-bank having paraunitary matrices 
on all levels. In other words, given the filters Fk(z)  in Fig. 
8(b), we want to obtain filters (Gs((z), H,,(z)) in Fig. 8(a) 
such that they form PU-pairs for all i. We now give a 
constructive proof showing that this is always possible. 

Choose 
HS(I(Z) = Fo(z).  (4.11) 

Hence from (2.13), 

(Hs" (z)fi,vn ( z ) ) J~  1. (4.12) 

Choose 

G,,(z) = zPNnfi.,,,(-z) (4.13) 

where No is the degree of H,,(z). Note that Gso(z) and 
H,,(z) are both FIR, and g,,,(O) # 0, h,,,(O) # 0. Lemma 
2 assures us that Gsn(z) and H,,(z) form a PU-pair. 

Now from (2.13) and (2.14), 

(F(z)Fo(z))L2 = o f o r j  = I ,  2, . . , L. (4.14) 

Hence by Lemma 3, the Fj ( z )  are expressible as 

(4.15) 

where the fi (z) are FIR and do not have a zero at infinity. 

F ,  (z)= f ;  (z')G.,,,(z). (4.16) 

F, ( z )  = f; ( z  2>G., (z) 

Now in particular, Fl (z) is expressible as 

Choose 

H,,  (2) = f ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4. (4.17) 
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From (2.13) we know that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( F I ( Z ) ~ l ( Z ) ) ~ 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 (4.18) 

therefore, 

(H,,(Z2)G,,(Z)ff,, (Z2)GSo(Z))14 = 1. (4.19) 

Using noble identity, this becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[H,, (z)BSl (z )  (Gso(~)GSo(~))J21 1 2  = 1 (4.20) 

and hence, from the fact that G&) belongs to a PU-pair, 

(4 ( z ) a  ( Z N ,  = 1. (4.21) 

Choose 

G,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) = z-"'R,, ( -z) (4.22) 

where N ,  is the degree of H,, ( z ) .  Hence G,, ( z )  and H,, (2) 

form a PU-pair, and both are FIR with g,,(O) # 0 and 
h,,(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0. 

Now from (2.13), 

( F , ( ~ ) F ,  ( z ) ) J ,  = o f o r j  = 2, . * , L. (4.23) 

Using (4.15) and (4.17) this becomes 

if; (z2)Gs,(z)G,,, (Z2)G,,(Z)I 1 4  = 0 (4.24) 

which simplifies to 

(f;(z)R,,(z))l2 = 0 j = 2, 3, * . , L. (4.25) 

Hence by Lemma 3, the f; ( z )  are expressible as 

j = 2, 3, * * * , L f; (4 = f," (z2)G,,(z) (4.26) 

where the filters f," ( z )  are FIR and do not have a zero at 
infinity. Hence using (4.15), we get 

& ( z )  = f l ' ( ~ ~ ) G , ~ ( z ~ ) G O ( z )  j = 2, - * , L .  (4.27) 

Now in particular, F2 ( z )  is expressible as 

~2 (z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi' ( z 4 ) ~ , ,  ( z 2 ) ~ , , ( z )  (4.28) 

with f; ( z )  being FIR. Hence choose 

H,, (z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf; (z) .  (4.29) 

Therefore, 

~ 2 ( z )  = H,,(z~)G,, ( Z ~ ) G , ~ ( Z ) .  (4.30) 

In general, since Fk ( z )  is orthogonal to F, (z) ,  for i = 

(4.31) 

0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,  2, * * , k - I ,  it can be expressed as 

Fk(z)  = Hsr (z2A)GJ ,_1 (z2A~1)  * * . G,,(z) 

and from the unit-energy property (2.13) we have 

(%A ( z > R ,  (7.1) 1 2  = 1 . (4.32) 

At every stage, the filters G,,(z) are chosen such that 

G,, (z)  = z-"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSA ( - Z) (4.33) 

where Nk is the degree of H,, ( z ) .  Hence the filters (Gst ( z ) ,  
H,,(z)) form PU-sets on all levels, They are all FIR, 
causal, and do not have a zero at infinity. 

In particular, on the final level we have 

F,-l(Z) = H,, - ,  (z2"I)G S L -  2 ( z 2 L - 2 )  . . . G,, ( z )  (4.34) 
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with 

WSL- I ( Z ) f i S L -  (z)) l2 = 1. (4.35) 

Since the function FL(z) is orthogonal to F, ( z ) ,  for i = 0, 
I ,  2, * * , L - 2, following the general procedure, it 
can be expressed as 

Gs, (2) (4.36) 2 L  ' )G ( z 2 L  ') , . . 
F L ( Z )  = g ( z  FL - 2 

where g(z) is FIR. Let GsL- I ( z )  = z-"" ' f i  S L -  I ( -d .  
Since FL(z)  is also orthonormal to FL- I ( z ) ,  by Lemma 3, 
g ( z )  = g' (z2)GsL- I ( z ) .  It can be verified that the unit-en- 
ergy condition (2.16) applied to FL(z) implies g' ( z )  = I .  
Thus, 

(4.37) F,(z) = GSL-, (z2" ' )G JL- I ( z 2 L - 2 )  , . . G,o(z) 

with G,, l ( z )  and HsL- , ( z )  forming a PU-pair. 
Thus, we have shown that given any finite duration dis- 

crete-time orthonormal basis F, (z ) ,  for i = 0, 1, 2, . * , 
L,  it is always possible to generate it using a tree-struc- 
tured filter bank having paraunitary matrices on all levels; 
i.e., Fig. 8(b) can always be redrawn as Fig. 8(a), with 

Now consider Fig. 8(a). We know that Gs,(z) belongs 
to a PU-pair, is causal, and g,,(O) # 0. Hence it cannot 
have a factor of the form c (z2 ) ,  other than a constant. 
Thus no factor (except a constant) of G,, ( z )  can be moved 
left across the interpolators. Also, since the filters (G,[(z), 
H ,  ( z ) )  on each level form a PU-pair, are causal, FIR, and 
without a zero at infinity, by Lemma 4,  they cannot have 
a common factor other than a constant. Hence no factor 
(except a constant) common to these two can be moved 
right across the interpolators. This gives the following 
corollary to the above theorem. 

Corollary I :  If a finite duration orthonormal wavelet 
basis is generated using a tree-structured filter bank, the 
polyphase matrices of the filters on each level have to sat- 
isfy the condition 

the filters (Gs,(z), HsI (z) )  forming PU-pairs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E,(z)E,(z) = c,z for all z ,  i = 0, . * . , L - 1. 

(4.38) 

From the above theorem, we have another corollary re- 
garding the linearity of phase of the wavelet basis. 

Corollary 2: If a orthonormal wavelet basis has filters 
with linear phase, the filters G,, ( z )  and H,, ( z )  on each level 
have the form clz-" + c2z-I2 for some constants 
cI and c2 and integers l I  and 12. 

To see this, note that orthonormality of the wavelet ba- 
sis implies that the polyphase matrices on each level have 
to satisfy (4.38). In particular, since Fo(z)  has linear 
phase, we know from [I41 that H,,(z) = cIz-'l + C ~ Z - ' ~ .  

Since Gs,(z) and H,,(z) form a PU-set, G,,(z) can also be 
written in such a form. Now, since F ,  ( z )  and G,, ( z )  both 
have linear phase, H,,(z)  also has linear phase, and it is 
therefore restricted to the form stated above. Therefore, 
G,,(z) also has this form. Continuing such an argument 
down the tree, we see that each of the filters Gs,(z) and 
H,,(z) have the form cI z-" + c2z-12. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. A nonuniform filter bank. 

V. ORTHONORMALITY OF WAVELET PACKETS 

The basis functions of a filter bank with nonuniform 
decimation ratios are called wavelet packets [ 11, [ 171. Fig. 
10 shows a schematic of such a filter bank. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy k ( n )  are 
the inputs to the synthesis filters, then (assuming that this 
is perfect reconstruction system) we can write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M 

x(n> = Y k ( m ) h ( n  - I k 4  (5.1) 
k = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  is the interpolator preceding Fk ( z ) ,  and M + 1 is 
the total number of filters. From the similarity of the above 
equation with ( 2 . 3 ) ,  we refer to the quantities y k ( n )  as the 
generalized wavelet coefficients. The set of functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, ( n  
- Ikm) is the generalized wavelet basis, or wavelet pack- 
ets. Analogous to (2 .6 ) ,  we say the basis functions are 
orthonormal if they satisfy the relations 

m 

c h(n - Zp2)f ; r .n - I / i )  = 6(k - 1)6(m - i). 
n =  - m  

(5 .2 )  

With a change of variables this can be rewritten as (see 
the Appendix) 

I 
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m 

C h ( n ) f F ( n  - glki) = 6(k - 1)6( i )  (5 .3 )  

where g l k  is the gcd of ( I k ,  I/).. In the z-domain, this be- 
comes 

n =  - - m  

VI. GENERALIZED TREE-STRUCTURES AND 

ORTHONORMAL BASES 

In Section I11 we saw that wavelet bases could be gen- 
erated using a binary tree-structured QMF filter bank. The 
wavelet basis functions were seen to be orthonormal if the 
filters on each level of the tree had a polyphase matrix 
which was paraunitary, and conversely. Fig. l(b) shows 
a binary tree-structured filter bank traditionally used for 
generating wavelet bases. Now consider a general tree- 
structured filter bank. Fig. 1 l(a) shows one such example 
of the synthesis bank. This is associated with a corre- 
sponding analysis bank not shown in the figure. 

Consider the binary tree-structured synthesis bank (Fig. 
l(b)), and a general tree-structured synthesis bank (Fig. 
1 l(a)). Comparing the two, we note two important differ- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(C) 

Fig. 11, (a) A generalized tree-structured synthesis bank. (b) A general- 
ized tree drawn as a traditional synthesis filter bank. (c) Typical responses 
of filters produced by a generalized tree. 

ences. First, (going right to left) we see that in a general 
tree, any branch on a certain level can divide further, 
whereas in a binary tree, only one of the two branches on 
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any level branches out further. Second, for a generalized 
tree, each level may have different number of filters, in 
contrast to a binary tree in which each level has exactly 
two filters. Thus, a maximally decimated filter bank in 
which one or more branches on any level split further into 
branches is called an “arbitrary tree structured” filter 
bank. In the context of generalized tree structures, we 
need to rigorously define what we mean by a “level.” In 
a tree-structured filter bank, filters whose outputs go into 
a single adder are said to be on the same level. Consider 
for example, Fig. 1 l(a). This tree has four levels, namely, 
i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Do(z) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ ( z ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 ( 2 ) ) ;  ii) (Ao(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAI ( z ) ) ;  iii) (Bo(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B1 ( z ) ) ;  iv) (CO(Z), CI ( z ) ,  C2(z)). To see this, note that for 
example, the outputs of the filters Do(z), D1 ( z )  and D2(2) 
go into a single adder (denoted by a heavy dot), and hence 
they are on the same level. On the other hand, the outputs 
of the filters DO ( z )  and BO ( z )  do not go into the same ad- 
der, and thus they are said to be on different levels. The 
word “level” used in the case of arbitrary trees does not 
have the strict connotation of “depth” as it does in the 
English language, or as in the case of binary trees (Fig. 
1). Consequently, for generalized trees the levels are not 
numbered as they are in the case of binary trees. We do 
define something called the “input level,” however. If 
none of the branches in a certain level further divide into 
branches (while going right to left in a synthesis core tree), 
such a level is called an “input level.” Note that there 
can exist more than one input level for a general tree, 
whereas a binary tree has a distinct input level. For ex- 
ample, Fig. 1 1 (a) has three input levels, namely, i) (DO ( z )  , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D1 (4, D2 ( z ) ) ;  ii) (Ao ( z ) ,  A I  ( z ) ) ;  iii) (BO (4,  BI ( z ) ) .  Note 
that (CO(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 ( z ) ,  C2(z))  is not an input level. 

We can guarantee perfect reconstruction property for 
such filter banks by appropriately choosing, filters on each 
level. The tree structure therefore gives rise to a set of 
wavelet packets. The generalized tree structure can be re- 
drawn as a traditional filter bank as in Fig. l l (b) .  Fig. 
1 l(c) shows typical appearances of frequency responses 
of such a tree structure. Taking a cue from traditional 
wavelet theory, we now ask the question: Is there a rela- 
tionship between the paraunitariness of filters on each 
level of the generalized tree and orthonormality of the re- 
sulting basis? The answer to this is provided by the two 
theorems in this section. 

In this section too, we are dealing with finite duration 
discrete functions. 

Theorem 3: If an arbitrary tree-structured FIR filter 
bank, such as one in Fig. l l (a) ,  has filters on each level 
forming PU-sets, then the functions fk (n - Zkm) gener- 
ated by that tree form an orthonormal basis. 

Pro08 We prove this result by induction. We know 
from [16] that the result is true for a 1-level tree, i.e., we 
know that if a set of filters have a polyphase matrix which 
is paraunitary, the filters form an orthonormal basis. We 
now assume that the result holds for a L-level tree, and 
adding levels to the tree, we show that the functions gen- 
erated by the new tree also form an orthonormal basis. 
Consider Fig. 12(a). The functions in both filter banks are 

I I79 
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e 

Fig. 12. (a) Two different filter banks. (b) The two filter banks in (a) are 
combined by adding one more level of filters. ( c )  Tree structure of (b) 
redrawn. 

assumed to be orthonormal, i.e., they satisfy 

We now combine these two by a common level to ob- 
tain the tree structure shown in Fig. 12(b). The M filters 
on the new level added are paraunitary, i.e., they satisfy 

(6.3) 

This new tree can be redrawn again as in Fig. 12(c), where 
the filters are given as 
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s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  = Q,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zM 1 TJ ( z )  

s, (z)  = Q, ( z M )  TJ (z ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(S, (z )$  ( Z ) ) J / , M  = 1 

(SdZ>S,(Z))lK3 = 0, g, = g c d ( W ,  4w9 

(6.6) 

(6.7) 

To prove orthogonality of the new basis, it is sufficient to 
show that 

(6.8) 

and that 

(6.9) 

(6.10) (Sk(Z)S, , (Z))1g4 = 0 ,  g4 = gcd(lkM, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ,W. 
Consider, 

( S k ( z ) S k ( z ) ) l / r M  = (Pk(Z') T(Z" T ( Z ) ) J / & .  

(6.11) 

Using the noble identity, this becomes 

(Pk(IPk(Z)(T,(Z) T ( z ) ) J M ) J / L  = ( ~ L ( Z ) ~ d Z ) ) h L  (6.12) 

= 1.  (6.13) 

This proves (6.8). The unit-energy property for the other 
transfer functions can be verified likewise. 

Now, since g3 = gcd(ZkM, ZIM) and gI = gcd(I,, I / ) ,  
we have g3 = M g l .  Hence, 

(Sk (Z )S / (Z ) ) . l g3  = (Pk(ZM> T ( ~ ) P / ( Z M ) T ( Z ) ) l M R ,  (6.14) 

= ( P k ( Z ) P / ( ( Z ) ( T , ( Z ) T ( Z ) ) 1 M ) l R ,  (6.15) 

= (Pk ( z )  P, ( Z ) ) J K ,  (6.16) 

= 0  (6.17) 

Now, g4 = gcd(J,M, ZkM) ,  so it is a multiple of M ;  let 
using (6.1). This proves (6.9). 

g, = aM.  Hence, 

(Sk ( z )  S, (z) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, = (Pk (zM 1 T (z)  e,, (ZM 1 i;J ( z ) )  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU M 

(6.18) 

= ( ~ ' ~ ( z ) & ( z ) ( T , ( z ) ~  (z))J,w)J0 (6.19) 

= (Pk (z)  e,, ( Z ) ( O ) ) J ,  (6.20) 

= 0  (6.21) 

which proves (6.10). Orthogonality of other pairs can 
similarly be verified. 

Hence we have shown that the functions generated by 
the new tree also form an orthonormal basis. Since any 
tree-structured filter bank can be synthesized by this pro- 
cess of adding new levels, it proves our theorem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

We now turn our attention to the converse of this result. 
Unfortunately, the exact converse of the result in the pre- 
vious theorem is not true. To see this, one only needs to 
consider a simple example of a tree-structured filter bank 
drawn in Fig. 1 l(a). This can be redrawn as in Fig. 1 l(b). 
Let the polyphase matrices of the filters in Fig. 1 l(a) be 
paraunitary. By the previous theorem, we know that the 
wavelet basis generated by this tree is orthonormal. Now 

Fig. 13. A filter bank which cannot be generated by a tree structure 

consider the filter bank shown in Fig. 13. P,(z) and P I  ( z )  
are the sum and difference of two filters in Fig. 1 l(b), as 
defined in the Fig. 13. Note that these filters form an or- 
thonormal basis too, however, these cannot be generated 
using a tree structure. The reason is as follows. For this 
filter bank to be represented as a tree, we need that Po(z) 
be expressible as A I (z3 )CO ( z )  or as Bo (z3 )C2 (z)  (compare 
with Fig. 1 l(b)). Neither is possible if Co(z) # C2(z). 
But since CO ( z )  and C2 ( z )  came from a PU-set to start 
with, the condition Co(z) # C2(z) is guaranteed (by or- 
thonormality). Thus, this filter bank cannot be generated 
using a tree structure. 

We can, however prove the following weaker result. 
7'heorem 4: Let Fk(z) be a set of FIR transfer functions 

satisfying (5.4). If they can be generated using a tree- 
structured filter bank, they can be generated specifically 
by a tree having PU-sets on all levels. 

Before proving this theorem we will prove the follow- 
ing two lemmas. 

Lemma 8: Let Fk(z) be a set of FIR basis functions 
which can be generated using a tree-structured filter bank, 
and let them satisfy the orthonormality condition (5.4). 
Then, the filters on an input level of the tree can be made 
to form a PU-set. 

Proof: Given the FIR nature of the transfer func- 
tions involved, we shall assume without loss of generality 
that they are all causal. Consider the filter bank shown in 
Fig. 14(a). The filters Q,(z), i = 0,  - * , M - 1 are the 
filters on an input level of the tree. This can be redrawn 
as in Fig. 14(b). We are told that the functions F,(z) form 
an orthonormal basis, i.e., they satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4). We are to 
show that it is possible to choose a set of filters Q,' (z) in 
Fig. 14(c) for the input level such they form a PU-set. 

Now, by orthonormality, 

(FL(z)F/(Z))lK6 = &k - 11, 

, M - 1 (6.22) g, = bM k ,  1 = 0, * 
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: I  

(C) 

Fig. 14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) A filter bank showing only one input level. (b) The filter bank 
in (a) redrawn as a traditional filter bank. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( c )  A filter bank showing only 
one input level with modified filters. 

I I81 

But by Lemma 7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( T , ( Z ) T ( Z ) ) b  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(z)&z) (6.26) 

for some FIR B(z) .  Substituting in (6.25) we have 

(Qk(z)Qi(Z)(B(Z)B(z))) l lc l  = 6(k - 1) .  (6.27) 

Define a new set of transfer functions 

Q,'(z) = Q,(z)B(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0, * * * , M - 1. (6.28) 

Hence, 

(Q ; (z )Q ; (z )~M = 6(k - 1 )  k ,  I = 0, * , M - 1. 

(6.29) 

This means that the functions Q;(z)  k = 0 ,  
form a PU-set. By Lemma 4, they cannot have a common 
factor, except a constant. Equation (6.25) now becomes 

, M - 1  - 

(Q;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) Q,! (z) (T: (z) F,' (z))J.~)S-M = 6(k - I )  (6.30) 

with 

(T:  (2)  F: (z))l, = 1. (6.31) 

Note that now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F~(z) = Q ; ( z ~ ) T : ( z ) ,  k = 0, * , M - 1. (6.32) 

This proves that the filters on an input level can be made 
to form a PU-set. In other words, Fig. 14(a) can be re- 
drawn as Fig. 14(c) where the Q; (z ) ,  k = 0, - - * , M - 
1 form a PU-set. 

Lemma 9: Consider Fig. 14(c), drawn alternatively as 
in Fig. 14(b). Let F,,,(z) be a set of orthonormal FIR func- 
tions satisfying (5.4). Remove an input level of the tree 
on which the filters formed a PU-set, i.e., remove the 
filters Q; (z ) ,  k = 0, . * , M - 1 and the interpolators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1 M)  in Fig. 14(c). Then the remaining part of the tree 
also gives an orthonormal basis. 

Proof: We showed in the previous Lemma that the 
filters Q:(Z)  i = 0, * * * , M - 1 constitute a PU-set on 
one input level of the tree. Removing these filters gives 
rise to a modified filter bank. We have to prove that the 
filters in this modified bank give an orthonormal basis, 
i.e., we have to show that 

(T: (z> T ;  (z))l, = 1 (6.33) 

and that 

(T, ' (dFP(z)) lg8 = 0, gx = gcd(b, 1,). (6.34) 

We have proved (6.33) while proving Lemma 8.  Hence 
we only need to prove (6.34). From the orthonormality of 
the original basis (Fig. 14(b)), we have 

( F k ( ~ ) F ~ ( p ) ) l ~ ,  = 0 k = 0, . , M -- 1 (6.35) 

where g7 = gcd(Mb, I,). Using (6.32), this becomes 

( Q ; ( Z h ) T : ( z ) ~ ~ ( z ) ) l R ,  = 0 k = 0,  * , M - 1. 

(6.36) 
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Now, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg g  is a factor of g7; let g7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc.g8, where c has to be 
a factor of M. Hence from the above equation we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( Q ; ( z ~ ) T / ( z ) F ~ ( ( z ) ) ~ ~ ~ . ~  = 0 k = 0, . . * , M - 1. 

(6.37) 
By using the noble identity, this becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( Q ; ( z ~ ” ~ ) ( ( T /  ( ~ ) F , ~ ( z ) ) l ~ ~ ) l ~  = 0 

k = O ; . .  , M -  1. (6.38) 

It can be verified that b /g8  is indeed an integer, enabling 
us to write (6.38). Let b/g8  = d. Then it can also be 
verified that d and c are relatively prime. Hence using 
Lemma 6, we get 

Vl mp (z)& = 0 (6.39) 

which completes the proof. 
Using the above two lemmas, Theorem 4 is easy to 

prove. 
Proof of Theorem 4: Consider the given filter bank 

which is known to have been generated by using a tree 
structure. The functions generated by this tree are given 
to form an orthonormal basis. Every tree has at least one 
input level. Using Lemma 8 we know that the filters on 
this input level can be made to form a paraunitary set. 
Remove these filters. By Lemma 9, the remaining tree 
also gives an orthonormal basis. Hence we can repeatedly 
apply Lemma 8 and Lemma 9 to finally reduce the given 
tree to a one-level tree. But we know from [16], that for 
aone level tree, if the functions form an orthonormal basis, 
the filters have a paraunitary polyphase matrix. This 

Note: A corollary similar to Corollary 1 can be proved 
in this case too. Namely, if an orthonormal basis is gen- 
erated by a generalized tree-structured filter bank, then 
the polyphase matrices on all levels have to satisfy (4.38). 
The proof involves mainly bookkeeping of constants while 
going over Lemmas 8 and 9, and we do not reproduce it 
here. 

proves Theorem 4. 

VII. IMPLEMENTATION OF PARAUNITARY FILTER BANKS 

Perfect-reconstruction QMF filter banks have been 
studied before [ 1 11, [ 131. The problem of design and im- 
plementation of such filter banks has been addressed by 
Vaidyanathan and Hoang in [ 181, In this paper the authors 
have described a lattice structure for realizing QMF banks. 
The resulting filters have a paraunitary polyphase matrix. 
Fig. 15 shows this lattice structure. This lattice is robust 
in the sense that the paraunitariness of polyphase matrices 
is preserved in spite of coefficient quantization. More- 
over, the lattice has a hierarchical property, i.e., higher 
order PU-pairs can be obtained from lower order PU-pairs 
simply by adding more lattice sections. Another impor- 
tant property of the lattice is that by changing the lattice 
coefficients we can generate all PU-sets. This property 
makes the lattice particularly important with reference to 
orthonormal wavelets. We showed in Section IV that all 
possible orthonormal wavelet bases could be generated 

. . 

Fig. 15. Lattice structure for implementing a two channel synthesis bank 
with paraunitary polyphase matrix. 

using a tree-structural filter bank which had paraunitary 
matrices on all levels. Thus, if we constructed the tree- 
structure using the above mentioned lattice, we could 
generate all orthonormal wavelet bases simply by manip- 
ulating the lattice coefficients. Moreover, orthonormality 
would be preserved under coefficient quantization. 

Extensions of this structure to M-channel filter banks 
can be found in [ 111. Results of Section VI indicate that 
the M-channel lattice could be used to realize the “gen- 
eralized wavelet bases” mentioned therein. 

VIII. CONCLUSIONS 

In this paper we have investigated the relationship be- 
tween orthonormality of wavelet basis and paraunitariness 
of matrices in a tree-structured filter bank. We started by 
proving a few interesting results on multirate paraunitary 
system in Section 111. Using these, in Section IV, we 
showed that a binary tree with paraunitary matrices on all 
levels (possibly different) generates an orthonormal 
wavelet basis. More importantly, we proved that all ortho- 
normal bases could be generated by a tree-structured filter 
bank having paraunitary polyphase matrices on all levels 
and that the polyphase matrices in fact have to be gener- 
alized paraunitary . Knowing the connection between 
paraunitariness and a special lattice structure, we con- 
clude that all orthonormal wavelet bases could be gener- 
ated by manipulating the coefficients of the lattice. Hence 
paraunitariness of polyphase matrices is a necessary and 
sufficient condition for wavelet orthonormality . 

In Section V, we have developed the equations govem- 
ing orthonormality for general discrete time bases. The 
relation derived in this section showed that the gcd of the 
two decimation factors plays a role in the orthonormality 
equation for two functions. 

Using these relations, in section VII, we studied the 
concept of orthonormality with respect to arbitrary tree 
structured filter banks. We showed that a tree with 
paraunitary polyphase matrices gives an orthonormal ba- 
sis; conversely, a set of orthonormal functions which can 
be generated using a tree can be generated specifically by 
a paraunitary tree. This proves the equivalence of paraun- 
itariness and orthonormality in the context of arbitrary tree 
structures. The generalized tree structure would be con- 
venient in the analysis of waveforms in which the fre- 
quency characteristics are not monotonic, as Fig. l l (c )  
suggests. 

APPENDIX 

Consider the orthonormality relation for generalized 
wavelets (5.2) reproduced below for the sake of conven- 
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ience: 
m 

h ( n  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzkm)fl“(n - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4i) 
n = - m  

= 6(k - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)6(m - i) for all integers m, i. 

Put ( n  - Zkm) = p .  Hence n = Zkm + p .  Therefore, the 
above equation becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W 

C f k ( p ) f ? @  - (Z/i - Zkm)) = 6(k - 1)6(m - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ) .  
p = - m  

( A .  1) 

Let g = gcd(Zk, I / ) .  Hence there exists a j  such that (Z,i 
- Zkm) = g j  for all y ,  i. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, by Euclid’s identity, there 
exist integers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ/ and Zk such that (Z/f/ - Zkfk) = g. Using 
these two facts, it can be shown that the condition (A.  1) 
is identical to the condition 

m 

f k @ ) f T ( p  - gi) = 6(k - 1)6(i).  (A.2) p =  - W 

where g is the gcd of ( Z k ,  Z/). A change of dummy vari- 
ables results in (5.3). 
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