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SUMMARY

A typical longitudinal study prospectively collects both repeated measures of a health status outcome as
well as covariates that are used either as the primary predictor of interest or as important adjustment fac-
tors. In many situations, all covariates are measured on the entire study cohort. However, in some scenarios
the primary covariates are time dependent yet may be ascertained retrospectively after completion of the
study. One common example would be covariate measurements based on stored biological specimens such
as blood plasma. While authors have previously proposed generalizations of the standard case–control de-
sign in which the clustered outcome measurements are used to selectively ascertain covariates (Neuhaus
and Jewell, 1990) and therefore provide resource efficient collection of information, these designs do not
appear to be commonly used. One potential barrier to the use of longitudinal outcome-dependent sampling
designs would be the lack of a flexible class of likelihood-based analysis methods. With the relatively re-
cent development of flexible and practical methods such as generalized linear mixed models (Breslow and
Clayton, 1993) and marginalized models for categorical longitudinal data (see Heagerty and Zeger, 2000,
for an overview), the class of likelihood-based methods is now sufficiently well developed to capture the
major forms of longitudinal correlation found in biomedical repeated measures data. Therefore, the goal
of this manuscript is to promote the consideration of outcome-dependent longitudinal sampling designs
and to both outline and evaluate the basic conditional likelihood analysis allowing for valid statistical
inference.
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736 J. S. SCHILDCROUT AND P. J. HEAGERTY

1. INTRODUCTION

We propose a retrospective, outcome-dependent sampling design for longitudinal binary response data
when we are limited by the costs associated with exposure ascertainment. In this design, a subset of indi-
viduals from a cohort study are included in the outcome-dependent sample based on the values contained
in their complete binary response vectors. We can properly account for the selective ascertainment with
estimation based on maximum conditional likelihood, and we show that in realistic scientific settings we
maintain nearly fully efficient estimates even when only a fraction of individuals from the original sample
are included in the outcome-dependent sample.

Outcome-dependent (or biased) sampling is often used in epidemiological studies with binary response
data. The case–control study (Anderson, 1972; Prentice and Pyke, 1979) is perhaps the most commonly
used outcome-dependent sampling design, and from it many other designs have emerged. An outcome-
dependent sampling design for correlated binary response data proposed by Neuhaus and Jewell (1990)
samples individual clusters with probability based on the sum of components in the response vector. With
this design and the assumption of an exchangeable within-cluster response dependence, certain regres-
sion parameters can be estimated with standard conditional logistic regression (CLR). The CLR approach
implicitly removes clusters without response variation (e.g. outcome vector is all 0s or all 1s), and com-
pared to estimation based on maximum likelihood of the generalized linear random intercept model, CLR
has been shown to be efficient for parameters corresponding to covariates that vary predominantly within
and not between clusters (Neuhaus and Lesperance, 1996; Neuhaus and Kalbfleisch, 1998). Outcome-
dependent sampling schemes are designed to target covariate sampling at those participants with highly
informative responses, and the work of Neuhaus and others makes clear that for time-varying covariate
parameters with correlated response data, participants who do not experience response variation may be
relatively uninformative.

Despite the work of Neuhaus and Jewell (1990), outcome-dependent sampling designs for repeated
measures data do not appear to be commonly used. A major epidemiologic issue for the application of the
design is the requirement that covariates must be able to be retrospectively ascertained. For any measure-
ment that can only be collected in real time, such as a physical performance measure, the design cannot
be used. However, with the recent instrumentation advances in molecular measurement technology (e.g.
genotypes, protein signatures, and RNA expression) and the common storage of biological specimens, we
feel that longitudinal outcome-dependent sampling designs warrant further consideration. We focus on
2 statistical variations of the original work of Neuhaus and Jewell: we discuss and evaluate conditional
likelihood–based methods that permit quite flexible and computationally practical correlation model as-
sumptions, and we focus on marginal regression models. We now comment on each of these aspects.

The original clustered data, conditional likelihood methods focused on a simple random intercept lo-
gistic regression model. Such a model conveniently allows use of standard CLR methods for analysis
yet may be naively simple in terms of characterizing the correlation structure for longitudinal observa-
tions. Marginalized models (see Diggle and others, 2002, Section 11.3) are a relatively new and flexi-
ble class of models for correlated binary response data. They provide a fully parametric alternative to
estimation with generalized estimating equations (Liang and Zeger, 1986) and a marginal model alterna-
tive to conditional generalized linear mixed models (GLMMs) (Stiratelli and others, 1984) or transition
models. Furthermore, marginalized models for binary data now permit a flexible class of dependence
models including random intercept (Heagerty, 1999), serial or Markov dependence (Heagerty, 2002),
and mixed random intercept with serial dependence (Schildcrout and Heagerty, 2007). The flexibility
in longitudinal dependence models allows selection of a valid likelihood that can properly characterize
the common forms of longitudinal correlation encountered with serial binary data. The validity of the
use of conditional likelihood for biased sampling critically depends on the proper specification of the
full multivariate likelihood, and therefore, adequate flexibility is necessary to provide proper inference.
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Software for marginalized models is available as an R package and can be downloaded from
http://faculty.washington.edu/heagerty.

Alternatively, one could consider conditionally specified GLMMs and the associated conditional like-
lihood analysis. GLMMs do allow generalization of the simple random intercept assumption by potentially
allowing random slopes and/or autocorrelated serial processes in place of a (static) random intercept. In
certain applications, the GLMM conditional regression coefficient may be of primary interest, while in
other situations the marginal regression parameter may be of interest. Indeed, there is a large and some-
times contentious literature that compares and contrasts marginal and conditional approaches and it is not
our goal to add to that discussion. We focus on marginalized models for 2 primary reasons: a sufficiently
flexible class of correlation models have been developed and therefore correct likelihood specification is
possible, and as opposed to GLMMs the regression parameter of interest has an interpretation (and value)
that is separated from the dependence model assumptions.

We introduce the study design in Section 2 and discuss estimation with maximum conditional like-
lihood in Section 3. Operating characteristics of the design and associated estimators are explored in
Section 4, and a strategy for study planning is proposed in Section 5. In Section 6, we illustrate the utility
of the design in an analysis that examines the relationship between respiratory infections and short-term
ambient ozone concentrations among children participating in the Children’s Health Study (CHS; Peters
and others, 1999a,b). A discussion follows in Section 7.

2. A LONGITUDINAL OUTCOME-DEPENDENT SAMPLING STUDY DESIGN

We propose an outcome-dependent sampling design for longitudinal binary response data, where the goal
is efficient estimation of parameters for time-varying exposures that are expensive to measure. Though
our interest is in longitudinal data, the results apply generally to correlated binary data. Considering
individuals’ binary response vectors {Yi }, i ∈ {1, 2, . . . , N }, from a prospective study, where i denotes
participant, and Yi = {Yi j }, j ∈ {1, 2, . . . , ni }, we propose sampling only those participants who exhibit
at least some response variation. If we let Si = ∑ni

j=1 Yi j , we sample those for whom 0 < Si < ni .
Thus, we concentrate our limited resources on the exposure ascertainment of “responders” or those who
we believe possess the vast majority of information toward estimating the regression target of inference.

Anderson (1972) and Prentice and Pyke (1979) showed that we may use a prospective logistic regres-
sion model for case–control data to estimate parameters corresponding to log-odds ratios while ignoring
the outcome-dependent sampling design. However, as discussed in Neuhaus and Jewell (1990) and Qaqish
and others (1997), ignorance of the sampling mechanism is no longer possible for valid parameter estima-
tion in the correlated data setting with cluster sampling. Toward estimating parameters with our approach,
we modify the likelihood to acknowledge the ascertainment mechanism, and this allows valid estimation
of all parameters.

3. ESTIMATION WITH MAXIMUM CONDITIONAL LIKELIHOOD

We now describe the conditional likelihood used to estimate regression parameters with our outcome-
dependent sampling strategy. Let Nr denote the number of participants who exhibited at least some re-
sponse variation during their observation period (e.g. all participants for whom 0 < Si < ni ). For par-
ticipant i in the outcome-dependent sample, the joint multivariate distribution of YYY i and XXXi is pr(YYY i =
yyyi , XXXi = xxxi |Ri = 1), where Ri is 1 if participant i is sampled and 0 otherwise. We factorize the joint
distribution of the sampled participants prospectively in a manner similar to the way Prentice and Pyke
(1979) did for univariate data, pr(YYY i = yyyi , XXXi = xxxi |Ri = 1) = pr(YYY i = yyyi |XXXi = xxxi , Ri = 1)pr(XXXi =
xxxi |Ri = 1), and we base inference on the conditional probability, pr(YYY i = yyyi |XXXi = xxxi , Ri = 1). Since
Ri = 1 corresponds to 0 < Si < ni , the conditional likelihood for sampled participants is
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738 J. S. SCHILDCROUT AND P. J. HEAGERTY

Lc =
Nr∏

i=1

pr(YYY i = yyyi |XXXi = xxxi , 0 < Si < ni )

=
Nr∏

i=1

pr(YYY i = yyyi |XXXi = xxxi )

1 − pr(Si = 0|XXXi = xxxi ) − pr(Si = ni |XXXi = xxxi )
=

Nr∏

i=1

Li

1 − Li(0) − Li(1)
, (3.1)

where (1) Li , (2) Li(0), and (3) Li(1) correspond to participant i’s contribution to the likelihood if simple
random subsampling was done (1) in general, (2) if Si = 0, and (3) if Si = ni . The denominator corrects
for the ascertainment mechanism. Note that the conditional likelihood is a straightforward and computa-
tionally simple modification of the prospective likelihood (i.e. the correction requires additional evaluation
of the terms Li(0) and Li(1)). Therefore, conditional likelihood computations are easily obtained provided
the likelihood calculations for pr(YYY i = yyyi |XXXi = xxxi ) are available.

3.1 Likelihood factorization

In Section 3, we described the conditional likelihood used to estimate parameters with the proposed study
design. While conditional maximum likelihood estimates for the outcome-dependent sample are consis-
tent for the same quantities as maximum likelihood estimates for the original cohort, the statistics upon
which we base inference are different. To gain insight into the scenarios under which our procedure is
efficient, we use a likelihood factorization. We factorize the likelihood from the original cohort (L) into 2
components: (1) the conditional likelihood (Lc) and (2) a “summary” multinomial likelihood (Ls).

If we reorder participant identifiers so that participants i ∈ {1, 2, . . . , Nr : Nr < N } exhibit response
variation (e.g. 0 < Si < ni ), participants i ∈ {Nr + 1, . . . , N 0: Nr + 1 � N 0 < N } exhibit no response
variation with Si = 0, and participants i ∈ {N 0 + 1, . . . , N } exhibit no response variation with Si = ni ,
then it can be shown that the likelihood for the parameters given the original cohort data, L , can be
factorized as follows (see Appendix for details):

L = Lc ×
N∏

i=1

(pi,0)
I (Si = 0)(pi,1)

I (Si = ni )(1 − pi,0 − pi,1)
1−I (Si = 0)−I (Si = ni )

︸ ︷︷ ︸
Ls

, (3.2)

where I (·) is 1 if · is true and 0 otherwise and Lc is the conditional likelihood based on the outcome-
dependent sample. The contribution, Ls, is the likelihood for parameters in a trinomial summary dis-
tribution, where pi,0 = pr(Si = 0|XXXi = xxxi ) and pi,1 = pr(Si = ni |XXXi = xxxi ). If l, lc, and ls rep-
resent the associated log-likelihoods and θθθ is the parameter vector, then the log-likelihood is the sum
l = lc + ls, the score vector is ∂l/∂θθθ = ∂lc/∂θθθ + ∂ls/∂θθθ, and the expected information matrix is
−E{∂2l/(∂θθθ∂θθθ t )} = −E{∂2lc/(∂θθθ∂θθθ t )} − E{∂2ls/(∂θθθ∂θθθ t )}.

Information loss with our design occurs to the extent that the coarse summary indicators, I (Si = 0),
I (Si = ni ), and 1 − I (Si = 0) − I (Si = ni ), contain information about the parameters of interest.
By drawing analogy to discussions of semi-individual–level studies (e.g. Sheppard, 2003), we expect the
covariate series sum for each participant,

∑
j xi j , to be the key piece of information contained in xxxi for

estimating model parameters from Ls. To demonstrate, let ρx ≡ σ 2
b /(σ 2

b + σ 2
w) denote the intracluster

correlation in covariate xxx = {xi j }, i ∈ {1, . . . , N }, j ∈ {1, . . . , ni }, where for equally sized clusters,
σ 2

w is the mean within-participant variance in xxx and σ 2
b is the variance of participant-specific means. If

ρx = 0 and clusters are of equal size, then
∑

j xi j = ∑
j xi ′ j for all i �= i ′, and we expect there to be little

to no information about the regression parameter in Ls. Therefore, nearly all information in L may be
contained in Lc. Alternatively, if ρx = 1,

∑
j xi j varies substantially from participant to participant, and
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the summary model may contain a large amount of information toward estimating the covariate parameter
resulting in significant efficiency losses with the conditional likelihood approach. The value of ρx has
been shown to impact operating characteristics of a number of estimators for correlated data models (e.g.
Fitzmaurice, 1995; Mancl and Leroux, 1996; Schildcrout and Heagerty, 2005).

We now describe the information decomposition as a function of ρx graphically using profile likeli-
hood surface plots. For illustration, we consider the first-order, marginalized transition model (Azzalini,
1994; Heagerty, 2002), and for each of ρx = {0, 0.5, 1}, we simulated a single data set of N = 400 indi-
viduals with ni = n = 14 repeated measurements per individual. The data-generating model is given by

logit(µm
i j ) = β0 + β1xi j ,

logit(µc
i j ) = �i j + γ yi j−1, (3.3)

where (β0, β1, γ ) = (−2.5, 0.5, 3.0) and xi j is normally distributed. The value �i j links µm
i j and µc

i j ,
and for further discussion see Heagerty (2002). The original cohort log-likelihood (l), the conditional log-
likelihood (lc), and summary log-likelihood (ls) were examined using a grid search on (β0, β1) values.
Log-likelihood values represented by each grid point were calculated using profile likelihood by fixing
the values of β0 and β1 and maximizing l and lc with respect to the nuisance dependence parameter γ . The
ls value was taken to be the difference between the maximized l and lc values once their global maxima
were aligned.

Figure 1 displays contours of the log-likelihood surfaces. The first, second, and third rows of these
plots correspond to log-likelihood surfaces when ρx was set equal to 0, 0.5, and 1, respectively, and the
columns represent l, lc, and ls from left to right. Contours are separated by 1-unit differences in maximized
log-likelihood values, with β1 on the x-axis and β0 on the y-axis. The ranges of all axes for a given ρx

value (within a row) were chosen to be 5 conditional maximum likelihood estimator standard errors wide.
Recall that our primary interest is in estimates of β1.

When ρx = 0, ls (upper right panel) contained almost no information about β1, while lc and l con-
tained approximately equal amounts of information (e.g. the curvature in the β1 direction was approxi-
mately equal in the upper left and upper center panels). However, lc contained far less information than l
for estimating β0, as evidenced by the substantial difference in curvature in the β0 direction between the
top center and top left panels. Equivalently, in ls there was significant curvature in the β0 direction (upper
right panel).

In the second and third rows of this figure, we illustrate that ls curvature in the β1 direction grew with
ρx (moving from the top right to lower right panels). Thus, as ρx increased from 0 to 1, proportionately
less information about β1 from l was contained in lc.

Using the likelihood factorization, we have shown that the full likelihood is the product of the con-
ditional likelihood and a summary likelihood. This allows a characterization of situations under which
our selective ascertainment mechanism and conditional likelihood approach are relatively efficient. Our
study design will likely be most efficient when ρx for the predictor of interest is close to zero. If it is
not, substantial efficiency losses may be incurred and the proposed design would not be recommended. A
more thorough examination is described in Section 4.

4. RELATIVE EFFICIENCY VERSUS A FULL COHORT ANALYSIS

Based on the results of Section 3.1, we presume that the utility of our study design depends highly
on the distribution of the target covariates. To examine the impact that select characteristics of a data
set have on the relative efficiency of maximum conditional likelihood estimators, we conducted a se-
ries of Monte Carlo calculations. We study the impact of (1) intracluster correlation in the covariate, xxx ,
ρx ∈ {1, 0.5, 0}; (2) number of participants, N ∈ {400, 4000}; (3) number of repeated measurements per
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740 J. S. SCHILDCROUT AND P. J. HEAGERTY

Fig. 1. Profile log-likelihood surface plots: A grid search was used for combinations of β0 and β1 values, and log-
likelihoods were maximized with respect to the marginalized transition model dependence parameter γ . Panels on
the left and center denote the original cohort log-likelihood surfaces and the outcome-dependent sample conditional
log-likelihood surfaces, respectively. Both sets of plots have been centered at their maxima. The panels on the right
represent the summary likelihood or the difference between the maximum likelihood and the conditional maximum
likelihood surfaces. The top, middle, and bottom rows depict surfaces for which ρx values are equal to 0, 0.5, and 1,
respectively. Each contour represents a log-likelihood value difference of 1, and the range (width and height) for all
plots in the same row is 5 conditional maximum likelihood standard error estimates wide.

participant, ni = n ∈ {7, 14}; (4) degree of response dependence, γ ∈ {1.5, 3.0}; (5) covariate effect size,
β1 ∈ {0.15, 0.50}; and (6) variation in cluster size ni ∈ {14, U (5, 23)}. Calculations were based on the
marginalized transition model described in Section 3.1.

Our primary interest was in the efficient estimation of β1. The intercept, β0, was set to a value that
yielded approximately 50% of participants in the outcome-dependent sample. For the scenario with N =
400 participants, average variances were calculated over 1000 replications, and with N = 4000, 500
replications were used. Relative variance (RV) and relative root mean square error (RRMSE) are defined
as 100 times the average variance and root mean square error estimates based on maximum likelihood
using the original cohort divided by the average variance and root mean square error estimates based on
maximum conditional likelihood using the outcome-dependent sample.

Table 1 shows the results from the relative efficiency study. Note that parameter estimates were approx-
imately unbiased. Variance estimates (not shown) were also approximately unbiased, although a 5% bias
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Table 1. Percent bias in conditional maximum likelihood estimates based on the outcome-dependent sam-
ple (ODS) and maximum likelihood estimates based on the original cohort (OC), and the RVs and RRM-
SEs from the 2 approaches. Statistics are reported as percentages, and empirical variances (as opposed
to average estimated variances) are used in calculations. RV and RRMSE are defined as 100 times the
estimate based on the OC analysis divided by the estimate based on the ODS analysis. For N = 400

(N = 4000), we used 1000 (500) replicates

N ni γ ρx β0 β1 Ave Nr β0 β1

Percent bias Relative efficiency Percent bias Relative efficiency

OC ODS RV RRMSE OC ODS RV RRMSE

As a function of ρx

4000 14 1.5 1 −2.75 0.15 2034 0 0 32 55 −1 0 37 60
0.5 2050 0 0 33 57 −1 −1 74 85
0 2046 0 0 32 56 1 1 100 99

400 14 1.5 1 −2.75 0.15 203 0 0 31 54 −1 −2 37 62
0.5 205 0 0 32 56 1 1 74 87
0 204 0 0 32 59 0 1 99 100

As a function of ni , γ, β1

4000 14 1.5 0 −2.75 0.15 2046 0 0 32 56 1 1 100 99
0.5 2180 0 0 38 61 0 0 98 100

4000 7 1.5 0 −2 0.15 1894 0 0 30 56 1 1 99 101
0.5 2015 0 0 34 61 0 0 95 97

4000 14 3 0 −2.5 0.15 1782 0 0 30 54 0 0 99 100
0.5 1976 0 0 37 60 0 0 96 97

4000 7 3 0 −1.75 0.15 1477 0 −1 26 47 0 −1 98 98
0.5 1685 0 −1 33 55 0 0 89 94

400 14 1.5 0 −2.75 0.15 204 0 0 32 59 0 1 99 100
0.5 218 0 0 38 60 0 0 98 99

400 7 1.5 0 −2 0.15 189 0 1 29 54 0 0 99 100
0.5 202 0 1 34 57 0 0 94 96

400 14 3 0 −2.5 0.15 178 0 0 30 53 1 1 99 100
0.5 198 0 1 37 63 1 1 96 98

400 7 3 0 −1.75 0.15 148 0 0 24 46 2 2 98 99
0.5 169 0 0 32 54 0 0 89 93

As a function of variation in ni

4000 14 3 0 −2.5 0.5 1976 0 0 37 60 0 0 96 97
U (5, 23) 1896 0 0 42 66 0 0 97 98

400 14 3 0 −2.5 0.5 198 0 1 37 63 1 1 96 98
U (5, 23) 189 0 0 42 63 0 0 97 98

was observed in the maximum conditional likelihood estimate of varβ̂1 when ρx = 1 and N = 400. This
may be due to relatively small sample size. For the intercept parameter, it is clear that estimates based on
the outcome-dependent sample are far less efficient than those based on the original cohort analysis. The
same is true for β1 when ρx = 1. However, with proportionately more within-participant variation in the
covariate, relative efficiency (as defined by RV and RRMSE) of the outcome-dependent sampling design
increases, and when ρx = 0, the efficiency is very high. This implies that 50% of participants who did not
exhibit response variation were almost completely uninformative for estimating the time-varying covariate
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742 J. S. SCHILDCROUT AND P. J. HEAGERTY

regression parameter. Even when ρx = 0.5, RVs were nearly 75%, indicating that the “nonresponders”
were relatively but not completely uninformative.

The relative efficiency of our study design depended to a far lesser degree on the other design features
studied, including sample size. There was some evidence that greater response dependence (larger γ
values) along with larger β1 values led to slightly lower relative efficiency; however, the impact was small
in comparison to the effect of ρx .

An important scenario under which the proposed design will be attractive is in the examination of
a time-varying covariate by genotype or biomarker interaction. In this scenario, the exposure may be
relatively easy to ascertain, but the genetic or biomarker measurement is costly. Again, we considered the
first-order marginalized transition model, but with the following mean model:

logit(µm
i j ) = β0 + β1xi j + β2 I (Gi = 1) + β3xi j I (Gi = 1).

For the time-varying exposure xi j , ρx was set to 0, and I (Gi = 1) was a binary value for the time-invariant
group (or genotype) covariate. Our interest is in the parameters describing sensitivity to fluctuations in
exposure (β1 and β3). The mean model parameters were fixed at the following values: β0 = −2.75, β1 =
0.15, β2 = 1.25, β3 = 0.35, and the transition component γ was set to 3. We studied scenarios in which
N equals 400 and 4000 participants in the original cohort and Gi = 1 in one-fourth of participants. Results
of our relative efficiency study were nearly identical for the N = 4000 and N = 400 cases. The rounded
relative efficiencies of our design and analysis to the original cohort analysis for β0, β1, β2, and β3 were
35%, 100%, 52%, and 99%, respectively. These results were anticipated as again we find that efficiency
is high for covariates that vary exclusively within participants and is low for those that vary exclusively
between participants.

It is worth noting that because participants with Gi = 1 had a greater predisposition for symptoms than
those with Gi = 0 (β2 = 1.25) and because they were more susceptible to the effects of xi j (β3 = 0.35),
they represented 36% of participants in the outcome-dependent samples on average as opposed to 25%
in the original cohort (i.e. they were oversampled in the outcome-dependent sample). If the effect of Gi

were such that they were undersampled, the relative efficiency of the interaction estimate may not be as
impressive as we see in this example.

5. STUDY PLANNING/DESIGN FEASIBILITY

We have proposed a design for settings in which baseline covariates and longitudinal follow-up are avail-
able for all participants, but where we do not have measurement of a key exposure. During the planning
phase of the study, it is possible to implement Monte Carlo techniques to examine the feasibility of ob-
taining relatively efficient inference using an outcome-dependent sampling design. Specifically, with the
baseline and longitudinal data, we can compute the precision (or power) that would be expected if an
outcome-dependent sampling design was adopted. In order to conduct such a sampling design evaluation,
we need to presume a distribution for the not yet ascertained covariate and then randomly assign a real-
ization from the covariate distribution given the baseline covariates and longitudinal data. For each such
realization, we can then conduct both the full cohort and the outcome-dependent sample analyses and
compare estimated standard errors. Replicating the approach and calculating average estimated variances
allow study planners to consider whether the anticipated exposure effects and interactions are likely to
be detected. Simulation under the null hypothesis is particularly straightforward since covariates can be
drawn from their marginal distribution (conditional on baseline covariates). More computational work is
necessary to simulate covariates under general effect sizes since the distribution of the covariates given
the outcomes needs to be determined using both the conditional, [Yi | Xi ], and the marginal covariate
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distribution, [Xi ]. This general design evaluation approach can be used for a variety of presumed co-
variate distributions and anticipated effect sizes, and we discuss this further in context of an example in
Section 6.1.

6. EXAMPLE: AIR POLLUTION EPIDEMIOLOGY

To illustrate a circumstance in which the proposed design could be implemented, we considered a subset
of the children participating in the CHS. CHS aims to examine the chronic effects of air pollution on
children residing in Southern California and details about this cohort, and the study design can be found
in Peters and others (1999a,b). The data set we considered was provided by Professor Kiros Berhane
and as stated by Berhane, “... is only intended to facilitate discussions on statistical methodology.” It
pertains to 1600 selected fourth and seventh graders at 5 annual clinic visits from 1993 to 1997. Ap-
proximately, 300 of these participants were removed due to missingness of key exposures or inadequate
follow-up.

The goal of our analysis was to examine the extent to which respiratory infections, assessed at the time
of the 5 annual clinic visits for each participant, were related to short-term ozone concentrations (average
of daytime ozone concentration the day of and the 3 days preceding the clinic visits). The respiratory
infection outcome was binary and was ascertained at the time of each visit. Since ozone is a respiratory
irritant, susceptible populations such as adolescents with asthma are thought to be particularly sensitive
to its effects (see, e.g. Yu and others, 2000; Mortimer and others, 2002; Gent and others, 2003; Bell
and others, 2005). Therefore, we consider a substudy that seeks to evaluate whether pollution-by-asthma
status interactions appear to be significant in this population. In CHS, the asthma status was determined
for all participants, and therefore, we can evaluate inference using the full cohort and using an outcome-
dependent subsample for which asthma would be hypothetically ascertained were it not already available.
Determination of patient comorbidity status is one example of a variable that may be moderately expensive
to obtain due to diagnostic procedures and therefore represents a candidate covariate for the proposed
design. A clinical diagnosis of asthma is based on a patient’s symptoms, medical history, a comprehensive
physical examination, and laboratory tests that measure pulmonary (lung) function. Thus, determination
of asthma status requires a clinical visit with diagnostic evaluation and is potentially costly in terms of
patient and family time and utilization of medical resources.

In many settings of air pollution epidemiology, ambient concentration effects on health outcomes
are thought to be small while the potential for confounding associated with season is enormous. We
acknowledged the potential impact of seasonal confounding in 2 ways. First, we included the 30-day
average ozone concentrations in our regression models. Since ozone concentrations are highly associated
with season, the adjustment should acknowledge a portion of seasonal effects. Second, we decomposed
4-day average concentration into between- and within-participant components and modeled them as sepa-
rate terms. Specifically, for participant i at year j , ozone concentration, xi j , was decomposed as follows:
xi j = (xi j − xi )+ xi . The between-participant component, xi , which was participant i’s average exposure
across annual visits, has ρx = 1, and the within-participant component xi j − xi has ρx = 0. Since these
components are orthogonal to one another and seasonal confounding tends to operate at the between-
participant level, parameter estimates for xi j − xi are likely to be less confounded by season. As discussed
by Neuhaus and Kalbfleisch (1998), avoiding this decomposition and simply modeling xi j implicitly
imply that between-participant and within-participant effects are identical. Such an assumption may not
be reasonable in a number of settings. In the present analysis, we are interested in the within-participant
ozone concentration, xi j − xi , and its interaction with the binary asthma status covariate.

Characteristics of the study population for the original cohort and for the outcome-dependent sample
are shown in Table 2. Of the 1286 participants who were in the original sample, 682 (53%) exhibited at
least some response variation, so savings with the proposed design could be significant. The proportion of
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Table 2. Baseline characteristics of the study population in the original cohort (OC) and the outcome-
dependent sample (ODS). The latter is a subset of the former, and binary covariates are shown as pro-
portions. There were 2 cohorts in this study sample, fourth graders and seventh graders. We show the
proportion in the seventh grade. We also display the 25th, 50th, and 75th percentiles of the 4-day average

ozone concentrations across all observed values

OC ODS

Number of subjects 1286 682
Number of observations 5341 2886
Proportion asthmatic at baseline 0.23 0.24
Proportion male 0.50 0.44
Proportion not white 0.15 0.14
Proportion with secondhand smoke exposure 0.38 0.36
Proportion in grade 7 0.34 0.37
Ozone concentrations (ppb) (35, 46, 61) (34, 44, 58)

participants who had been diagnosed with asthma at baseline, which is assumed to be unknown at study
conception, was similar between the 2 samples, as are most covariates. Since our conditional likelihood
acknowledges the study design, it does not matter that there are more males in the original sample than in
the outcome-dependent sample. However, we may anticipate that gender has an impact on the probability
of respiratory infection.

Table 3 shows the results of the analysis. For illustration, we considered the marginalized transition and
latent variable model (Schildcrout and Heagerty, 2007) which captures longitudinal response dependence
using a Markov transition component as well as a random intercept. Parameter estimates are displayed
for all covariates, and estimated, model-based standard errors are shown in parentheses. While not shown,
robust standard errors (White, 1982) agreed closely with model-based standard errors. There appeared to
be serial response dependence as the transition component parameter estimate γ̂ was approximately 0.6
using both approaches. However, long-range dependence appeared minimal as the variance component
estimate, ̂log(σ ), was approximately −1.4. The existence of serial association is common in longitudinal
data, and decaying dependence is not captured by assuming a simple random intercept–only model. With
both modeling approaches, we would conclude that there is insufficient evidence to support an association
between respiratory infections and short-term ozone concentrations irrespective of asthma status. Addi-
tionally, we cannot conclude that there is a difference between asthmatic and nonasthmatic children with
respect to ozone sensitivity. However, it is clear that the proposed design performed as we had expected.
For exclusively within-participant covariates (where ρx = 0), there was very little information loss as-
sociated with the proposed design. Estimated standard errors for the main effect of within-participant
ozone were 0.046 and 0.049 for the original cohort and the outcome-dependent sample–based analyses,
respectively. Likewise, estimated standard errors were nearly identical for the estimated interaction
with asthma status. As expected, our design was inefficient for participant-level covariate effects as
evidenced by estimated standard errors which were nearly twice those obtained from the full cohort
analysis.

6.1 A retrospective look at study feasibility

As discussed in Section 5, prior to ascertaining asthma status on individuals, it may be advisable to
use Monte Carlo techniques on assumed prevalences of being asthmatic along with the available data to
examine the expected regression standard errors for key parameter estimates under both full cohort and
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Table 3. Analysis of the children participating in CHS. We show parameter estimates (standard errors)
using maximum likelihood on the original cohort (OC) and maximum conditional likelihood on the
outcome-dependent sample (ODS). The OC pertains to 1286 subjects, and the ODS pertains to the
698 subjects who exhibited response variation among all subjects. We also display the observed ρx for

each covariate

Covariate ρx OC ODS

Intercept 1 −1.235 (0.079) −1.476 (0.202)

Asthmatic 1 0.112 (0.091) 0.291 (0.182)
p = 0.15† 0.110 0.225
p = 0.23† 0.093 0.191
p = 0.30† 0.085 0.175

Within-subject, 4-day average 0 −0.007 (0.046) 0.037 (0.049)
ozone (per 10 ppb)

p = 0.15† 0.045 0.047
p = 0.23† 0.046 0.048
p = 0.30† 0.047 0.049

Asthmatic × within-subject 0 0.037 (0.064) 0.039 (0.061)
ozone

p = 0.15† 0.077 0.076
p = 0.23† 0.065 0.064
p = 0.30† 0.060 0.059

Between-subject, 4-day 1 0.048 (0.057) 0.113 (0.080)
average ozone (per 10 ppb)

Thirty-day average ozone 0.72 −0.165 (0.06) −0.231 (0.067)
(per 10 ppb)

Male 1 −0.468 (0.079) −0.563 (0.171)

Noncaucasian 1 −0.377 (0.116) −0.377 (0.245)

Grade 7 (versus grade 4) 1 0.183 (0.081) 0.008 (0.168)

Secondhand smoke exposure 1 −0.039 (0.081) 0.104 (0.167)

Dependence model parameters

γ 0.603 (0.110) 0.603 (0.115)

log(σ ) −1.427 (0.848) −1.427 (0.627)

† Standard error estimates from our feasibility check, where p is the presumed proportion of asthmatic children
in the OC.

outcome-dependent sampling. For the purpose of this exercise, we assumed 3 asthma status prevalences:
p = 0.15, p = 0.23 (the actual value), and p = 0.30. In Table 3, we display the square root of the
average model-based variances (across 400 replicates) for key parameters. Note that estimated standard
errors approximated the observed standard errors very well and suggested that the outcome-dependent
sampling design would retain high efficiency for the target parameters. We believe that part of the reason
the feasibility check performed as well as it did was due to the fact that there was no evidence in favor of
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the alternative hypothesis for the asthma status and the asthma status by ozone concentration interaction
effects, and the null hypothesis was implicitly assumed in this feasibility check. Utilization of the general
approach under specific alternative hypotheses would require additional computational work to obtain the
necessary joint distribution of outcomes and covariates but would be appropriate in order to obtain power
calculations.

7. DISCUSSION

We have introduced an outcome-dependent sampling design for longitudinal or correlated binary response
data, where study resources are limited by the cost of exposure ascertainment. It is a special case of the
design proposed by Neuhaus and Jewell (1990) which suggested to sample with probability proportional
to the number of positive responses within the cluster. It may also be likened to the longitudinal data
case–cohort design proposed by Pfeiffer and others (2005). By sampling those who exhibit response
variation and by constructing a likelihood that conditions on the sampling design, we are able to estimate
all parameters that can be estimated from the original cohort via maximum likelihood analysis. With
properly specified dependence models, mean model parameter estimates were shown to be highly efficient
for targets in which variation occurs exclusively within participant (e.g. ρx ≈ 0). They are also highly
efficient for group by time-varying covariate interactions.

We discussed our design in generality; however, in simulations and in the example we appealed
to marginalized models rather than GLMMs. While the design and estimation strategy can be applied
to both classes of models, one reason we chose the marginalized model approach is that, as opposed to
GLMMs, mean model parameter interpretations do not rely on the specific dependence model choice.
In the outcome-dependent sampling setting, this allows use of conditional likelihood estimation under
alternative dependence model specifications in order to evaluate the sensitivity of inference to model
assumptions without changing the interpretation (or value) of the true target regression parameter. Such
flexibility can be important since the correct specification of the longitudinal data likelihood is required
to ensure valid regression inference under the biased sampling.

In many studies, the time-varying target exposure is not mean balanced (e.g. ρx �= 0). However, it
is often reasonable to decompose the covariate into between- and within-participant components. This
decomposition is discussed in Neuhaus and Kalbfleisch (1998). The advantage of avoiding this decom-
position (e.g. increased power) is in the assumption that we are able to combine between- and within-
participant covariate variations in order to estimate the corresponding parameter. In many circumstances,
this assumption may not be reasonable due to unmeasured confounding and an induced regression model
that contains the mean of the covariate (Palta and Yao, 1991). Even in air pollution epidemiology, where
between- and within-participant health effects of air pollutants are thought to be reasonably close to one
another, the potential for differential confounding at the between- versus within-participant level is sub-
stantial (see Sheppard, 2003). Thus, in many circumstances, this decomposition is reasonable, and in such
cases, our study design is highly efficient.

With the growing availability of long-term cohort studies and electronic medical and hospital records,
the retrospective construction of longitudinal studies is now relatively easy. We believe that our design and
associated analysis procedure can be useful in a large number of such settings in which all the information
needed for the analysis is available except for key exposures. By sampling only a fraction of the most
informative participants, we may save a large amount in costs while losing very little information toward
our estimation target.
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APPENDIX

Likelihood decomposition

Let Si = ∑ni
j=1 Yi j denote the sum of binary response for participant i , and assume that we reorder

identification numbers so that participants i ∈ {1, 2, . . . , Nr : Nr < N } exhibit response variation (e.g.
0 < Si < ni ), participants i ∈ {Nr + 1, . . . , N 0: NR + 1 � N 0 < N } exhibit no response variation with
Si = 0, and participants i ∈ {N 0 + 1, . . . , N } exhibit no response variation with Si = ni . We factorize
the original cohort likelihood, L , into the conditional likelihood, Lc, and the summary likelihood, Ls, as
follows:

L =
N∏

i=1

pr(YYY i = yyyi |XXXi = xxxi )

=
N∏

i=1

{
pr(YYY i = yyyi , 0 < Si < ni |XXXi = xxxi ) + pr(YYY i = yyyi , Si = 0|XXXi = xxxi )

+ pr(YYY i = yyyi , Si = ni |XXXi = xxxi )
}

=
Nr∏

i=1

pr(YYY i = yyyi , 0 < Si < ni |XXXi = xxxi )

N 0∏

i=Nr +1

pr(Si = 0|XXXi = xxxi )

N∏

i=N 0+1

pr(Si = ni |XXXi = xxxi )

=
Nr∏

i=1

pr(YYY i = yyyi |0 < Si < ni , XXXi = xxxi )

×
Nr∏

i=1

pr(0 < Si < ni |XXXi = xxxi )

N 0∏

i=Nr +1

pr(Si = 0|XXXi = xxxi )

N∏

i=N 0+1

pr(Si = ni |XXXi = xxxi )

= Lc ×
N∏

i=1

(pi,0)
I (Si = 0)(pi,1)

I (Si = ni )(1 − pi,0 − pi,1)
1−I (Si = 0)−I (Si = ni )

︸ ︷︷ ︸
Ls

,

where Lc represents the conditional likelihood based on the subcohort that has been selectively ascer-
tained. The contribution, Ls, is the likelihood for parameters in a trinomial summary distribution, and
pi,0 = pr(Si = 0|XXXi = xxxi ) and pi,1 = pr(Si = ni |XXXi = xxxi ).
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