
AJS

Austrian Journal of Statistics
June 2014, Volume 43/3-4, 181–193.
http://www.ajs.or.at/

On Outliers and Interventions in Count Time Series

following GLMs

Roland Fried
TU Dortmund

Tobias Liboschik
TU Dortmund

Hanan Elsaied
Suez Canal Univ.

S. Kitromilidou
Univ. of Cyprus

K. Fokianos
Univ. of Cyprus

Abstract

We discuss the analysis of count time series following generalised linear models in
the presence of outliers and intervention effects. Different modifications of such models
are formulated which allow to incorporate, detect and to a certain degree distinguish
extraordinary events (interventions) of different types in count time series retrospectively.
An outlook on extensions to the problem of robust parameter estimation, identification
of the model orders by robust estimation of autocorrelations and partial autocorrelations,
and online surveillance by sequential testing for outlyingness is provided.
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lance.

1. Introduction

Time series of counts are measured in various disciplines whenever a number of events is
counted during certain time periods. Examples are the monthly number of car accidents in a
region, the weekly number of new cases in epidemiology, the number of transactions at a stock
market per minute in finance, or the number of photon arrivals per microsecond in a biological
experiment. A natural modification of the popular autoregressive moving average (ARMA)
models for continuous variables is based on the assumption that the observation Yt at time
t is generated by a generalised linear model (GLM) conditionally on the past, choosing an
adequate distribution for count data like the Poisson and a link function η(·). This approach
of time series following a GLM is pursued e.g. by Kedem and Fokianos (2002). Focusing on
first order models, we consider time series (Yt : t ∈ N0) following a Poisson model

Yt|FYt−1 ∼ Pois(λt), (1)
η(λt) = β0 + β1η(Yt−1 + c) + γ1η(λt−1), t ≥ 1,

where FYt−1 stands for the σ-algebra created by {Yt−1, . . . , Y0, λ0}, while β0, β1, γ1 are unknown
parameters, and c is a known constant. Models employing other distributions like the negative
binomial could be treated similarly.
The natural choice for η is the logarithm, and this is the reason for adding the constant c to
Yt−1 in the term η(Yt−1+c), since we need to avoid difficulties arising from observations which
are equal to 0. Following Fokianos and Tjøstheim (2011), who develop ergodicity conditions
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for a subclass of the arising log–linear models, we set c = 1. Another choice for η which has
received some attention is the identity, η = id, see e.g. Ferland, Latour and Oraichi (2006).
In this case we can set c to 0. For ergodicity conditions for this model class see Fokianos,
Rahbek and Tjøstheim (2009).

We briefly discuss possible interpretations of models like those given in (1) in the context
of epidemiology, with Yt denoting the number of new cases observed at time t. For a fixed
population size, the conditional mean λt measures the risk of a person to fall ill at time t then.
Our model assumes that all effects on λt are linear after transformation to a suitable scale by
η. The term η(Yt−1 + c) in the second equation models the dependence of the transformed
conditional mean η(λt) and thus of the observation Yt on the previous value Yt−1, with β1

measuring the strength of this dependence. A large number of cases Yt−1 at time t − 1
can cause a large number of cases Yt at time t because the risk of infection increases. The
term η(λt−1) additionally describes that there can be periods of increased risk also because
of certain weather conditions or expositions, for instance, and γ1 measures the size of such
dependencies.

Given a model as formulated in (1), a basic question is whether it properly describes all the
observations of a given time series, or whether some observations have been influenced by
extraordinary effects, which are called interventions in what follows. Outlier and intervention
analysis for ARMA processes of continuous variables has been developed by Fox (1972), Box
and Tiao (1975), Tsay (1986), Chang, Tiao and Chen (1988) and Chen and Liu (1993), among
others. However, counts are positive and typically right-skewed, causing a need for especially
designed models and procedures.

The remainder of the paper is organised as follows. Section 2 generalises the intervention
models proposed by Fokianos and Fried (2010, 2012) for time series which are Poisson condi-
tionally on the past, with η being the identity and the log-link, respectively. Section 3 reviews
first attempts of robust fitting of models with known link function and model orders. Sec-
tion 4 reports a first study of model identification for the linear model applying the identity
link, using robust estimators of the autocorrelations and partial autocorrelations. Section 5
provides an outlook to surveillance, that is online monitoring by sequential outlier detection.

2. Models for Intervention Analysis

A possibility to introduce an extraordinary effect on a time series (Yt) generated by (1) is the
assumption that from a time point τ on the underlying conditional mean process is changed
by adding terms ωδt−τI(t ≥ τ) to η(λt), so that instead of (Yt) we observe a contaminated
process (Zt) generated from a model with contamination,

Zt|FZt−1 ∼ Pois(λct), (2)
η(λct) = β0 + β1η(Zt−1 + c) + γ1η(λct−1) + ωδt−τI(t ≥ τ), t ≥ 1.

In obvious notation, (λct) is the contaminated process of conditional means, which coincides
with (λt) until time τ − 1 and then becomes affected, while FZt−1 denotes the σ-algebra
representing the information on the past of the contaminated process and the initial values,
analogous to FYt−1. The new parameter ω determines the size of the effect, I(t ≥ τ) indicates
whether t ≥ τ or not, and δ ∈ [0, 1] determines whether the effect is concentrated on time τ
(in case of δ = 0), causing a spiky outlier, whether the whole level is shifted from time τ on
(δ = 1), or whether a geometrically decaying transient shift with rate δ ∈ (0, 1) occurs. Note
that even in case of δ = 0 the whole future of the process is affected by an intervention, since
its effect enters the dynamics both via Zt and η(λct), t ≥ τ . Continuing the explanations given
above in the context of epidemiology, an intervention according to (2) can be interpreted as
an internal change of the data generating process. For some reason, e.g. due to particular
weather conditions or other expositions, the conditional mean of the process (the risk) changes
in an unpredictable manner at time τ , and this changes the observation for that time point,
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and also the observations thereafter.

Liboschik et al. (2013) explore another intervention model in case of the identity link. In their
approach, an intervention affects the observation at time τ , but not the underlying conditional
mean. This can be understood as an external change, as the contaminated observation Zτ
equals the sum of the uncontaminated value Yτ plus a random number Cτ , which arises
because of extraordinary reasons and enters the dynamics of the process in the same way as
Yτ , while the underlying risk λτ initially is not affected. An example might be people being
infected due to external reasons, e.g. on a journey. The modified intervention model with a
general link function η reads

Zt|FZt−1 ∼ Pois(λct), (3)
η(λct) = η(λt) + ωδt−τI(t ≥ τ),
η(λt) = β0 + β1η(Zt−1 + c) + γ1η(λt−1), t ≥ 1.

The last two equations describing the conditional mean process can be summarised as

η(λct) = β0 + β1η(Zt−1 + c) + γ1

(
η(λct−1)− ωδt−1−τI(t− 1 ≥ τ)

)
+ ωδt−τI(t ≥ τ) .

This shows the difference to model (2) more clearly.

If the time point τ and the type of an intervention, i.e. the value of δ, both are known, an
intervention model as formulated in (2) or (3) can be fitted by maximising the conditional
likelihood iteratively, starting from suitable initial values. The existence of such a known
intervention can be confirmed by comparing the test statistics of the corresponding score
test to the upper percentiles of its asymptotical χ2

1-distribution, as described in the papers
mentioned above. If only the time point τ is unknown, but the type is known, simulation
experiments indicate that parametric bootstrap procedures work rather well: fit the model
without intervention effects and calculate the score test statistics for all time points. Use
the maximum of all score test statistics for all time points as the final test statistic. Then
generate artificial time series without interventions from the fitted model and calculate the
corresponding maximum score test statistic as well. Opt for an intervention at that time
point which maximises the score test statistic for the real data, if it is among the largest
100α-percent of all maximum score test statistics. If the type of the intervention is unknown
as well, the maximum score test statistics can be calculated for each type given either model
(2) or (3). The simulations suggest that preference should be given to level shifts (δ = 1)
if they turn out to be significant, since a level shift usually causes the test statistics for the
other types of intervention effects also to become large, while the reverse effect is much less
pronounced. Multiple interventions can be dealt with by estimating the effect of a detected
intervention and subtracting it from the time series, before the cleaned data are analysed with
respect to further interventions.

Note that the above intervention models are not able to describe so called additive outliers
representing e.g. pure measurement or reporting errors, i.e. the case where a single observation
is changed without any effects on the future of the process. Actually, such additive outliers
are difficult to deal with by a frequentist approach, since we would need to condition on
the unobserved value Yτ instead of the contaminated Zτ . Fried et al. (2013) develop a
Bayesian approach for additive outliers, applying Markov Chain Monte Carlo techniques.
Their simulation results provide evidence that in this way it is possible to deal with additive
outliers if there are several of them. A single or very few additive outliers pose difficulties to
a Bayesian approach based on little informative prior distributions, since they do not provide
enough information on that component of the underlying mixture distribution which causes
the outliers.

Furthermore it should be noted that we implicitly assume intervention effects to be additive
when using the identity link, and multiplicative on the original scale when using the log-link,
since for simplicity we introduce the intervention effects in the same way as the dependencies
on the past. Another assumption underlying the intervention models formulated above, and
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also the common outlier and intervention models which have been proposed for ARMA pro-
cesses in the literature, is that the dynamics of the process does not change and follows the
same model after an intervention as before it.

For an illustration we analyse an artificial time series of length n = 200 generated from model
(2) with η = id, β0 = 3, β1 = 0.4, γ1 = 0.3, an internal level shift of size ω1 = 4 at time
τ1 = 100 and an internal spike of size ω2 = 30 at time τ2 = 150.
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2. level shift with ω̂ = 4.46
(p−value: 0.0140)

External intervention model (3)

β̂0 = 3.83, β̂1 = 0.35, α̂1 = 0.26

Time t

Figure 1: Results obtained from fitting both intervention models to a time series with an
internal level shift at time 100 and an internal spike at time 150.

The results obtained from fitting both intervention models to these data are illustrated in
Figure 1. The spike and the level shift are detected when using either of these two models,
albeit with some differences between the estimated parameter values and outlier sizes, ac-
cording to the different influences of such patterns on the time series. These findings confirm
those of Liboschik et al. (2013): interventions can be detected successfully even if the wrong
model is used. This is good news and also bad news: it is good news since it implies a certain
robustness against model misspecification, but it makes a statement about the cause of an
intervention effect and about its mechanism (internal / external) difficult. More work on
model selection is needed for this.

3. Robust estimation

First attempts are available concerning the robust estimation of the model parameters in
the presence of outliers and intervention effects. This is even more important because of the
difficulties in specifying intervention effects correctly and because of the remaining difficulties
in dealing with a single or a few additive outliers outlined above.

M-estimators are a popular generalisation of (conditional) maximum likelihood estimators
which provide some robustness against outliers by replacing the log-likelihood or the score
function by more robust alternatives. An M-estimator of a parameter θ can be defined as the
solution of a score equation

n∑
t=1

ψ(yt, θ̂) = 0 . (4)

Maximum likelihood estimation is derived by choosing ψ(y, θ) as the derivative of the log-
density ln fθ(y) with respect to θ, i.e. as the usual score function, while ψ(y, θ) = y − θ
corresponds to least squares and ψ(y, θ) = sign(y − θ) to least absolute deviation estimation
of location. The popular Huber M-estimator of the location parameter θ in a location-scale
model with known (or preliminarily estimated) scale σ is derived from

ψ(y, θ) =
y − θ
σ

I(−kσ ≤ y − θ ≤ kσ) + k sign(y − θ)I(|y − θ| > kσ),
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where k is a tuning constant which determines the efficiency and the robustness of the resulting
estimator. For k = 0 we get least absolute deviations and for k → ∞ we get least squares.
The score function of the Huber M-estimator is monotone. This guarantees a unique solution
which can easily be determined iteratively starting from any initial value. The score function
of the Tukey M-estimator,

ψ(y, θ) =
y − θ
σ

(
k2 − (y − θ)2

σ2

)2

I(−kσ ≤ y − θ ≤ kσ),

however, is redescending to 0 as y−θ approaches ±kσ. This leads to the possibility of multiple
solutions of the defining score equations (4).

M-estimation of generalised linear models using the Huber ψ-function has been treated by
Cantoni and Ronchetti (2001). However, in our basic model (1) we regress on previous ob-
servations and previous conditional means, and it is well known that monotone M-estimators
like those based on the Huber function need further modifications to become robust against
outlying regressors. Cantoni and Ronchetti (2001) consider covariates following an elliptical
distribution and use weights based on robustly estimated Mahalanobis distances to down-
weight observations with outlying regressors. This approach is not natural in our context,
since we regress on previous observations, which are conditionally Poisson, or some transfor-
mation of them. Empirical work on model (2) with the log-link and γ1 = 0, that is a model
without feedback, indicates that in the cases of level shift and transient shift there are no
significant differences between the classical maximum likelihood estimation and the approach
based on Cantoni and Ronchetti (2001). This agrees with findings for Gaussian ARMA mod-
els, that maximum likelihood and least squares work rather well in case of outliers which
conform to the dynamics of the process. In the case of additive outliers, the weighted ap-
proach through robust Mahalanobis distances was found to perform much better than the
classical maximum likelihood estimation, especially as the number of outliers increases. In
fact, some further empirical work on the feedback case (γ1 6= 0) indicates that the Cantoni
and Ronchetti (2001) estimation approach performs better with weights (Kitromilidou and
Fokianos, 2014).

Maronna, Martin and Yohai (2006) recommend Tukey’s ψ-function since its redescending
behavior completely eliminates the influence of huge outliers and provides some robustness
even in the case of outlying regressors. However, we need to use highly robust initial parameter
estimates then, in order not to get trapped in a wrong solution when trying to solve (4)
iteratively. This and the discreteness and strong asymmetries of Poisson models pose further
problems which are not encountered in ordinary symmetric location-scale models. This will
briefly be illustrated in the context of independent Poisson data in the following.

Cadigan and Chen (2001) investigate a modification of the Huber score function for the
Poisson distribution. Under Poisson assumptions, the variance σ2 equals the mean θ, so that
we can replace σ by

√
θ in the above score functions, see also Elsaied (2012). Furthermore, the

expectation of ψ(Y, θ) has to be zero for getting asymptotically unbiased estimates. This can
be accomplished by introducing a bias correction a and replacing (y− θ)/σ by (y− θ)/

√
θ−a

in the above formulae. Given the need for a highly robust initial estimate when using the
Tukey ψ-function, we might want to apply the median of the data, but this only works if it
is not zero because of our scaling by

√
θ̂, and it provides only a very rough estimate if the

sample median is small. Elsaied (2012) proposes an adaptive estimate instead, combining the
sample median with an estimate derived from the frequency of zero observations.

The asymptotical distribution of an M-estimator under suitable regularity conditions is
N(θ, Vψ(θ)), with the asymptotical variance Vψ(θ) = E(ψ(Y, θ)/Bθ)2, where
Bθ = ∂Eψ(Y, θ)/∂θ, see e.g. Maronna, Martin and Yohai (2006). The relative efficiency of an
M-estimator as compared to the maximum likelihood estimator, which is the sample mean,
under these conditions thus becomes θ/Vψ(θ), and is illustrated in Figure 2. Note that an
estimator with a fixed tuning constant k does not achieve a desirable high level of efficiency
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Figure 2: Asymptotical efficiencies of the Huber and the Tukey M-estimator with different
tuning constants k for different values of the mean θ.

for all possible values of θ. For further investigations in this respect and a first approach to
robust M-estimation for model (1) with the identity link see Elsaied (2012).

4. Robust model identification

Besides the robust estimation of the parameters of a specific model, the proper identification
of the link function and the model orders gets more complicated in the presence of outliers.
In the following we provide a first robustness study for the identification of the model orders
in case of a linear model with the identity link.
Two common tools for the choice of the model orders of linear time series models are the
sample autocorrelation function (SACF) and the sample partial autocorrelation function
(SPACF). However, these are strongly affected by outlying observations so that there is a
need for robust and efficient alternatives. Let y = (y1, . . . , yn)′ be an observed time se-
ries. We consider estimation of the autocorrelation at lag h by a robust bivariate correlation
estimator applied to the vector yht = (y1+h, . . . , yn)′ and the vector of lagged observations
yht−h = (y1, . . . , yn−h)′. We consider the rank-based correlation estimators Spearman’s ρ,
Kendall’s τ and Gaussian rank (for a comparison in the bivariate context see Boudt et al.,
2012). Another class of autocorrelation estimators, which is based on an idea of Gnanadesikan
and Kettenring (1972), employs any robust univariate scale estimator v̂ar(·). We use a variant
bounded between -1 to 1 inclusive, which at lag h is given by

âcfGK(y;h) =
v̂ar(yht + yht−h)− v̂ar(yht − yht−h)
v̂ar(yht + yht−h) + v̂ar(yht − yht−h)

.

Ma and Genton (2000) study this Gnanadesikan-Kettenring (GK) approach in the Gaussian
framework, using the highly robust Qn estimator of scale proposed by Croux and Rousseeuw
(1992). We additionally consider the median absolute deviation from the median (MAD),
the 10% and 20% winsorised variance, the interquartile range (IQR), as well as the highly
robust Sn (Croux and Rousseeuw, 1992) and τ (Maronna and Zamar, 2002) estimators of
scale. Apart from the winsorised variance, these estimators are on the scale of the original
data and need to be squared.
We compare estimators which are corrected such that they achieve consistency at the normal
distribution. Note that the normal distribution is a limiting case of a Poisson distribution
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Figure 3: Efficiency of autocorrelation estimators at lag h = 1 relatively to the SACF. Time
series of length 100 are simulated from model (1) with the marginal mean given on the
horizontal axis and from a N(λt, λt) model with a marginal mean of 50 (points on the very
right of each plot).

with mean tending to infinity. However, we cannot expect this Fisher-consistency correction
to hold true, especially in the case of a clearly skewed Poisson distribution with a small mean.
Moreover, the marginal distribution of a time series from model (1) is strictly speaking only
Poisson under the null hypothesis of independence.

In our simulation study we generate time series with 100 observations from the first order
linear Poisson model (1) with η = id, c = 0 and γ1 = 0. We consider scenarios with a true
autocorrelation at lag h = 1 of zero (β1 = 0) and of 0.5 (β1 = 0.5). The results are averaged
over 10 000 repetitions for each scenario and reported as a function of the marginal mean
µ = β0/(1−β1). The shown relative efficiencies are the ratio of the mean square errors of the
SACF and the respective estimator.

The GK autocorrelation estimators based on Qn (see Figure 3), Sn, MAD and IQR are
unsuitable for small counts, as these estimators are unstable due to the high proportion
of ties in such data. It frequently happens that the scale estimations v̂ar(yht + yht−h) and
v̂ar(yht − yht−h) coincide, resulting in an autocorrelation estimate of zero, or that one or both
of them collapse to zero, resulting in an estimate of ±1 or a non-computable autocorrelation
estimation, respectively. Particularly for small marginal means, we get zero estimates with
high probability, causing a super-efficient performance if the true autocorrelation is zero.
Implosion, that is breakdown to zero, is a known problem of many robust scale estimators.
But not even the Qn estimator, which showed the best performance with respect to implosion
among many other alternatives in a study of Gather and Fried (2003), does perform acceptably
in the case of small counts. We also tried variants of the Qn using the 50%- and 75%-quantile
of the pairwise distances, instead of the 25%-quantile as it is usually employed. Yet, for
counts with low means none of these alternatives perform well. The τ estimator of scale
as implemented by Maronna and Zamar (2002) is based on the variance estimation of the
MAD and hence also performs poorly. We conclude that none of these popular highly robust
scale estimators seems to be appropriate for small counts. Particularly for a low winsoring
proportion, the winsorised variance estimator results in smaller problems with stability than
the estimators mentioned before and will be considered further.

Figure 3 reconfirms the result that the efficiency of the estimators relatively to the SACF
tends to its value achieved under a normal distribution. The Gaussian rank estimator has a
very high relative efficiency both for uncorrelated and autocorrelated data, which does not
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Figure 4: Efficiency of autocorrelation estimators at lag h = 1 for contaminated Poisson data
relatively to the SACF for uncontaminated Poisson data. We contaminated 5% of the 100
observations with additive outliers of size five times the marginal standard deviation. Left:
Patchy outliers in the centre. Right: Isolated outliers at arbitrarily chosen positions 17, 40,
55, 72 and 92.

depend a lot on the marginal mean. Spearman’s ρ correlation estimator behaves in a similar
fashion, but has a lower relative efficiency of about 90% on uncorrelated data. In contrast,
the relative efficiency of Kendall’s τ depends very much on the marginal mean. In case of
uncorrelated data its relative efficiency is below 50% for small means and even for large means
slightly below Spearman’s ρ.

To study the robustness properties of the estimators, we contaminate the time series of in-
dependent data, that is β1 = 0, with a patch of 5% additive outliers in the centre and the
autocorrelated ones with 5% of isolated additive outliers. The first outlier scenario is known
to bias the estimation towards one and the latter one biases towards zero, which is away from
the true values of zero and 0.5, respectively. For autocorrelation estimation when β1 = 0,
outlier patches are the worst case, whereas for time series with β1 > 0 they can even compen-
sate for an existing downward bias in finite samples. The simulation results in Figure 4 can
be interpreted as the loss of efficiency compared to the SACF for uncontaminated data from
the same model.

The outlier patch has a strong effect on the efficiency of the autocorrelation estimators for
uncorrelated data (see Figure 4 left). The ordinary SACF is not robust and drops down to a
relative efficiency of around 5%. The rank-based autocorrelation estimators show qualitatively
the same pattern of increasing relative efficiency for increasing marginal mean. The Gaussian
rank correlation, which has been the most efficient rank-based estimator for clean uncorrelated
data, is the least robust one, because it gives more influence to the largest and the smallest
observations. The 10%-winsorised variance has an efficiency of around 10% relatively to the
SACF for clean data, which also increases with the marginal mean to about 40%. The 20%-
winsorised variance is in principle slightly less efficient and shows a similar behaviour but is,
as for uncontaminated data, quite unstable for low means.

The same number of isolated outliers for moderately correlated data has a weaker effect on the
efficiency of the autocorrelation estimators than the outlier patch for uncorrelated data (see
Figure 4 right). Unlike in the latter situation, we observe a decreasing relative efficiency for
an increasing marginal mean for all estimators, except for the instability of the GK estimation
based on the 20%-winsorised variance, which has been discussed before. Again, the Gaussian
rank based estimator is the least efficient among the rank-based estimators, but this time
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Figure 5: Estimated PACF of a simulated INARCH(2) time series of length 100 with pa-
rameters β0 = 0.4, β1 = 0.5 and β2 = 0.3. Left: Clean data. Right: Contaminated with
five additive outliers of size five times the marginal standard deviation at arbitrarily chosen
positions 17, 40, 55, 72 and 92.

Kendall’s τ is much more efficient than Spearman’s ρ, particularly for low marginal means.

Because of the instability of most of the other estimators we recommend to use one of the
rank-based autocorrelation estimators for count time series with small counts. When choosing
an autocorrelation estimator one should take into account both, the desired efficiency at clean
data and the desired robustness properties.

We illustrate the usefulness of robust autocorrelation estimation for identification of the model
order with a simulated example. Consider a time series (Yt : t ∈ N0) from an integer-valued
ARCH model of unknown order p ∈ N0, called INARCH(p), with Yt|FYt−1 ∼ Pois(λt) and
conditional mean equation λt = β0 + β1Yt−1 + · · ·+ βpYt−p for t ≥ 1. We want to determine
the model order p. The time series (Yt : t ∈ N0) has the same second-order properties as an
AR(p) model (cf. Ferland et al., 2006). Hence, it is known that the partial autocorrelation
function (PACF) is non-zero for lags up to p and zero for larger lags. We obtain the estimated
partial autocorrelation function from the estimated autocorrelation function by applying the
Durbin-Levinson algorithm (see for example Morettin, 1984).

Looking at Figure 5, we see that one can correctly identify the model order of an INARCH(2)
model by looking at the SPACF or at the estimated PACF derived from the ACF estimation
based on Spearman’s ρ: both estimations are clearly larger than zero for the first two lags
and close to zero for all other lags. In case of a contamination with isolated outliers the
non-robust estimation with the SPACF is pushed towards zero, such that one might falsely
identify a model of order p = 0. As opposed to this, the robust estimation of the PACF with
Spearman’s ρ is not so strongly affected by the outliers and would still allow a correct model
specification.

Since the Spearman correlation coefficient measures monotone, but not necessarily linear de-
pendence, one might speculate about its possible value for the identification of the model
orders in case of models applying (monotone) link functions different from the identity. How-
ever, a thorough examination of this is beyond the scope of this work.

5. Surveillance

The methods for detection of intervention effects in count time series described above can be
applied retrospectively, i.e. when we observe the whole time series before it is analysed. An
open problem so far is how these models can be used for surveillance, i.e. online detection of
changes. This is an interesting problem for example in epidemiology, where we want to detect
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Figure 6: Simulated example for the proposed monitoring procedure. The value observed at
time 51 is beyond the 99.9% percentile of the prediction, but not the marginal distribution,
and would thus be identified as an outlier. A normal approximation would provide somewhat
different critical values but the same conclusion in this case.

the outbreak of an epidemic with only short time delays.

An intuitive approach is to compare an incoming observation yn+1 to its 1-step prediction
λ̂n+1, obtained by fitting model (1) from the data observed until time point n, plugging in the
estimated parameters into the formula for η(λn+1) and applying the inverse transform η−1.
Given such a model, there is evidence of an extraordinary effect at time n+ 1 if yn+1 is larger
than the upper 1 − αN percentile of a Poisson distribution with mean λ̂n+1. Assuming the
model and its parameters to be known exactly, choosing αN = 1−(1−α)1/N ensures that we do
not falsely detect any outlier with probability 1−α when applying this rule to N subsequent
predictions. This follows along the same lines as in Davies and Gather (1993), who treat
the independent case, since we control the probability of detecting an outlier conditionally
on the past FYn . As an example, for N = 50 predictions an individual level of αN = 0.1%
yields a global level of α = 4.9%. Other error probabilities αN can be chosen for tuning the
sensitivity and the specificity of the sequential detection procedure. For large means λ̂n+1 of
the prediction distribution one would also need to consider downward outliers. In this case
one defines, in the terminology of Davies and Gather (1993), an outlier identifier by a lower
and an upper bound both depending on αN .

We illustrate the approach outlined above with a simulated example. We generate a time
series from the first order linear Poisson model (1) with η = id, c = 0, β0 = 1, β1 = 0.3
and γ1 = 0.2 (see Figure 6 top). In order to assess whether observation y51 is notably large,
we fit the model on the previous observations y1, . . . , y50 and, based on this, compute its
1-step ahead prediction λ̂51. Compared with the 99, 9% percentile of the 1-step prediction
distribution for y51, a Poisson with mean λ̂51, the observed value y51 is large and therefore
identified as a potential outlier (see Figure 6 bottom left). In this case, one would have
come to the same decision if we compare y51 with the 99.9% percentile of a N(λ̂51, λ̂51), a
normal approximation of the 1-step prediction distribution. Note that we would not have
identified this observation as a potential outlier if we compare it with the 99.9% percentile
of the marginal distribution of the process (see Figure 6 bottom right). Since no analytical
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formula for this percentile is available, we approximated it by simulation of a time series with
100 000 observations.

An analysis of a single observation cannot tell us which type of intervention occurs, e.g.
whether there is a spiky outlier or a level shift. For this we need to wait some more time
points until further values yn+2, yn+3, . . . , yn+m are observed, with a suitably chosen delay
m ∈ N. Instead of its 1-step ahead prediction, a comparison of yn+h to its h-step ahead
prediction might be advantageous then, since the 1-step ahead prediction will strongly be
affected by a level shift at time n + 1 due to its use of yn+1, . . . , yn+h−1. To the best of our
knowledge, so far there are no simple formulae available for the conditional expectation of
Yn+h given FYn if h ≥ 2, which is the natural candidate for h-step ahead prediction, so that
we would need to rely on simulating the future given the fitted model, or use simple linear
predictions instead, sticking the previous predictions ŷt+h−1 = λ̂t+h−1 into the formula for
η(λ̂t+h) for h = 2, 3, . . . ,m. However, note that the conditional distribution of Yn+h given
FYn is not Poisson for h ≥ 2, so that there is need for more research on these models.
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