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Abstract

This paper provides an analysis of the tradeoff between asymptotic bias (suboptimality
with unlimited data) and overfitting (additional suboptimality due to limited data) in
the context of reinforcement learning with partial observability. Our theoretical analysis
formally characterizes that while potentially increasing the asymptotic bias, a smaller
state representation decreases the risk of overfitting. This analysis relies on expressing
the quality of a state representation by bounding L1 error terms of the associated belief
states. Theoretical results are empirically illustrated when the state representation is a
truncated history of observations, both on synthetic POMDPs and on a large-scale POMDP
in the context of smartgrids, with real-world data. Finally, similarly to known results in
the fully observable setting, we also briefly discuss and empirically illustrate how using
function approximators and adapting the discount factor may enhance the tradeoff between
asymptotic bias and overfitting in the partially observable context.

1. Introduction

This paper studies sequential decision-making problems that may be modeled as Markov
Decision Processes (MDP) but for which the state is partially observable. This class of
problems is called Partially Observable Markov Decision Processes (POMDPs) (Sondik, 1978).
Within this setting, we focus on decision-making strategies computed using Reinforcement
Learning (RL). When the model of the environment is not available, RL approaches rely
on observations gathered through interactions with the (PO)MDP, and, although some RL
approaches have strong convergence guarantees, classic RL approaches are challenged by
data scarcity. When acquisition of new observations is possible (the “online” case), data
scarcity is gradually phased out using strategies balancing the exploration / exploitation
(E/E) tradeoff. The scientific literature related to this topic is vast; in particular, Bayesian
RL techniques (Ross, Pineau, Chaib-draa, & Kreitmann, 2011; Ghavamzadeh, Mannor,
Pineau, & Tamar, 2015) offer an elegant way of formalizing the E/E tradeoff.

However, such E/E strategies are not applicable when the acquisition of new observations
is not possible anymore. In the pure “batch” setting, the task is to learn the best possible
policy from a fixed set of transition samples (Farahmand, 2011; Lange, Gabel, & Riedmiller,
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2012). Within this context, we propose to revisit RL as a learning paradigm that faces,
similarly to supervised learning, a tradeoff between simultaneously minimizing two sources
of error: an asymptotic bias and an overfitting error. The asymptotic bias (also simply
called bias in the following) directly relates to the choice of the RL algorithm (and its
parameterization). Any RL algorithm defines a policy class as well as a procedure to search
within this class, and the bias may be defined as the performance gap between actual optimal
policies and the best policies within the policy class considered. This bias does not depend
on the set of observations. On the other hand, overfitting is an error term induced by the
fact that only a limited amount of data is available to the algorithm. This overfitting error
vanishes as the size and the quality of the dataset increase.

In this paper, we focus on studying the interactions between these two sources of
error, in a setting where the state is partially observable. Due to this particular setting,
one needs to build a state representation from the sequence of observations, actions and
rewards in a trajectory (Singh, Jaakkola, & Jordan, 1994; Aberdeen, 2003). By increasing
the cardinality of the state representation, the algorithm may be provided with a more
informative representation of the POMDP, but at the price of simultaneously increasing
the size of the set of candidate policies, thus also increasing the risk of overfitting. We
analyze this tradeoff in the case where the RL algorithm provides an optimal solution to
the frequentist-based MDP associated with the state representation (independently of the
method used by the learning algorithm to converge towards that solution). Our novel
analysis relies on expressing the quality of a state representation by bounding L1 error terms
of the associated belief states, thus introducing the concept of ǫ-sufficient statistics in the
hidden state dynamics.

Experimental results illustrate the theoretical findings on a distribution of synthetic
POMDPs as well as a large-scale POMDP with real-world data. In addition, we illustrate
the link between the variance observed when dealing with different datasets (directly linked
to the size of the dataset) and overfitting, where the link is that variance leads to overfitting
if we have a (too) large feature space.

By extending known results for MDPs, we also briefly discuss and illustrate how using
function approximators and adapting the discount factor play a role in the tradeoff between
bias and overfitting when the state is partially observable. This has the advantage of
providing the reader with an overview of key elements involved in the bias-overfitting
tradeoff, specifically for the POMDP case.

The remainder of the paper is organized as follows. Section 2 formalizes POMDPs,
(limited) sets of observations and state representations. Section 3 details the main contribu-
tion of this paper: an analysis of the bias-overfitting tradeoff in learning POMDPs in the
batch setting. Section 4 empirically illustrates the main theoretical results, while Section 5
concludes with a discussion of the findings

2. Formalization

We consider a discrete-time POMDP (Sondik, 1978) model M described by the tuple
(S,A, T,R,Ω, O, γ) where

• S is a finite set of states {1, . . . , NS},
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• A is a finite set of actions {1, . . . , NA},

• T : S×A×S → [0, 1] is the transition function (set of conditional transition probabilities
between states),

• R : S × A × S → R is the reward function, where R is a continuous set of possible
rewards in a range Rmax ∈ R

+ (e.g., [0, Rmax] without loss of generality),

• Ω is a finite set of observations {1, . . . , NΩ},

• O : S × Ω → [0, 1] is a set of conditional observation probabilities, and

• γ ∈ [0, 1) is the discount factor.

The initial state is drawn from an initial distribution b(s0). At each time step t ∈ N0, the
environment is in a state st ∈ S. At the same time, the agent receives an observation ωt ∈ Ω
which depends on the state of the environment with probability O(st, ωt) and the agent
has to take an action at ∈ A. Then, the environment transitions to state st+1 ∈ S with
probability T (st, at, st+1) and the agent receives a reward rt ∈ R equal to R(st, at, st+1).
In this paper, the conditional transition probabilities T , the reward function R and the
conditional observation probabilities O are unknown. The only information available to the
agent is the past experience it gathered while interacting with the POMDP. A POMDP is
illustrated in Fig. 1.

s0 s1 s2

ω0 ω1 ω2

H0 H1 H2

a0 a1 a2r0 r1

. . .

Policy Policy

Hidden
dynamics

Policy

Figure 1: Graphical model of a POMDP.

2.1 Processing a History of Data

Policies considered in this paper are mappings from (an ordered set of) observation(s) into
actions. A simple approach to build a space of candidate policies is to consider the set of
mappings taking only the very last observation(s) as input (Whitehead & Ballard, 1990).
However, in a POMDP setting, this leads to candidate policies that are likely not rich enough
to capture the system dynamics, thus suboptimal (Singh et al., 1994; Wolfe, 2006). The
alternative is to use a history of previously observed features to better estimate the hidden
state dynamics (McCallum, 1996; Littman & Sutton, 2002; Singh, James, & Rudary, 2004).
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We denote by Ht = Ω × (A × R × Ω)t the set of histories observed up to time t for t ∈ N0,

and by H =
∞⋃

t=0
Ht the space of all possible observable histories.

A straightforward approach is to take the whole history Ht ∈ H as input of candidate
policies. However, taking a too long history may have several drawbacks. Indeed, increasing
the size of the set of candidate optimal policies generally implies: (i) more computation to
search within this set (Littman, 1994; McCallum, 1996) and (ii) an increased risk of including
candidate policies suffering overfitting (see Section 3). In this paper, we are specifically
interested in minimizing the latter overfitting drawback while keeping an informative state
representation.

In this paper, we consider a mapping φ : H → φ(H), where φ(H) = {φ(H)|H ∈ H} is of
finite cardinality |φ(H)|. On the one hand, we will show that when φ discards information
from the whole history, the state representation φ(H) that the agent uses to take decision
might depart from sufficient statistics, which can hurt performance. On the other hand, we
will show that it is beneficial to use a mapping φ that has a low cardinality |φ(H)| to avoid
overfitting. This can be intuitively understood since a mapping φ(·) induces an upper bound
on the number of candidate policies: |Πφ(H)| ≤ |A||φ(H)|. In the following, we discuss this
tradeoff formally.

Let us first introduce a notion of information on the latent hidden state s through the
notion of belief state (Cassandra, Kaelbling, & Littman, 1994).

Definition 2.1. The belief state b(s|H) is defined as the vector of probabilities where the
ith component (i ∈ {1, . . . , NS}) is given by P(s = i | H), for any history H ∈ H.

Definition 2.2. The belief state bφ (s|φ(H)) is defined as the vector of probabilities where
the ith component (i ∈ {1, . . . , NS}) is given by P(s = i | φ(H)), for any history H ∈ H 1.

Among all possible mappings φ, we are particularly interested in the ones that extract
enough information from the history to accurately capture the corresponding belief state,
with the notion of sufficient statistics (Kaelbling, Littman, & Cassandra, 1998; Aberdeen,
Buffet, & Thomas, 2007). We thus define this notion in the context of the mapping φ.

Definition 2.3. In a POMDP M , a statistic φ(H) is a sufficient statistic at the condition
that ∀s ∈ S:

P(s | H) = P(s | φ(H)),

for H ∈ H. A mapping φ which provides sufficient statistics for all histories H ∈ H is called
a sufficient mapping and is denoted as φ0.

However, as mentioned previously, it may happen that a mapping φ does not capture
enough information from a history to contain the same information than the belief state.
One of the key notions on which our analysis relies is the one of “approximately sufficient
mappings”, i.e. mappings whose corresponding belief state lies in an L1-ball of radius ǫ
centered on b(·|H):

1. Note that s and H are random variables and their exact distribution will depend on the context that is
considered. For any given probability distribution DH over histories: H ∼ DH , the probability P (s|φ(H))
is the expectation of the state when φ(H) is observed: bφ(s | ϕ) = E

H∼DH ,ϕ=φ(H)
b(s | H).
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Definition 2.4. In a POMDP M , a statistic φ(H) is an ǫ-sufficient statistic at the condition
that it meets the following condition with ǫ ≥ 0 and with the L1 norm:

‖bφ(·|φ(H)) − b(·|H)‖1 ≤ ǫ,

for H ∈ H. A mapping φ that provides ǫ-sufficient statistics for all histories H ∈ H is called
an ǫ-sufficient mapping and is denoted as φǫ(H).

2.2 Working with a Limited Dataset

Let M(S,A,Ω, γ) be a set of POMDPs with fixed S, A, Ω, and γ. For any POMDP
M(T,R,O) ∈ M, we denote by DM,πs,Ntr,Nl

a random dataset generated according to a
probability distribution DM,πs,Ntr,Nl

over the set of Ntr trajectories of length Nl. One such
trajectory is defined as the observable history HNl

∈ HNl
obtained in M when starting from

s0 and following a stochastic sampling policy πs that ensures a non-zero probability of taking
any action given an observable history H ∈ H. For simplicity we denote DM,πs,Ntr,Nl

, simply
as D ∼ DM . For the purpose of the analysis, we also introduce the asymptotic dataset
D∞ = DM,πs,Ntr→∞,Nl→∞ that would be theoretically obtained in the case where one could
generate an infinite number of observations (Ntr → ∞ and Nl → ∞).

In this paper, the algorithm cannot generate additional data. The challenge is to
determine a high-performance policy (in the actual environment) while having only access
to a fixed dataset D. We formalize this hereafter.

2.3 Assessing the Performance of a Policy

Let us consider stationary and deterministic control policies π : φ(H) → A with π ∈ Π. Any
particular choice of φ induces a particular definition of the policy space Π. We introduce
V π

M (φ(H)) with H ∈ H as the expected return obtained over an infinite time horizon when
the system is controlled using policy π in the POMDP M . For any given distribution DH

over histories, this is defined as:

V π
M (φ(H)) = E

H′∼DH :

φ(H′)=φ(H)

V π
M (H ′ | φ),

with V π
M (H | φ) given by

V π
M (H | φ) = E

[ ∞∑

t=0

γtrt|s0 ∼ b(·|H), π

]
,

where we have P
(
ωt | st

)
= O(st, ωt), at = π(φ(Ht)), P

(
st+1|st, at

)
= T (st, at, st+1) and

rt = R
(
st, at, st+1

)
.

We also define π∗ as an optimal policy in M :

π∗ ∈ argmax
π:φ0(H)→A

V π
M (φ0(H0)),

where H0 is taken out of the distribution of initial observations (compatible with the
distribution b(s0) of initial states through the conditional observation probabilities).
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3. Bias-overfitting in RL with Partial Observability

In this section, we study the performance difference (or gap) between the expected return
that can be obtained following the policy built from limited data and the highest possible
expected return that we would obtain if the algorithm had access to the POMDP parameters.
In particular, we analyze how this performance gap can be decomposed into the sum of two
terms: a term related to an asymptotic bias (suboptimality with unlimited data) and a term
due to overfitting (additional suboptimality due to limited data).

3.1 Importance of the Feature Space

To study the importance of the feature space, let us assume that the policies built from
limited data are optimal according to frequentist statistics, which allows removing from the
analysis how the RL algorithm converges. In order to define the optimal policy according to
frequentist statistics, let us first introduce a frequentist-based (augmented) MDP from the
dataset D:

Definition 3.1. With M defined by (S,A, T,R,Ω, O, γ) and the dataset D built from in-
teractions with M , the frequentist-based augmented MDP M̂D,φ, also denoted for simplicity

M̂D = (Σ,A, T̂ , R̂,Γ), is defined with

• the state space: Σ = φ(H),

• the action space: A = A,

• the estimated transition function: for σ, σ′ ∈ Σ and a ∈ A, T̂ (σ, a, σ′) is the number of
times we observe the transition (σ, a) → σ′ divided by the number of times we observe
(σ, a) 2,

• the estimated reward function: for σ, σ′ ∈ Σ and a ∈ A, R̂(σ, a, σ′) is the mean of the
rewards observed for the tuple (σ, a, σ′) 3, and

• the discount factor Γ ≤ γ.

As long as the mapping φ is a sufficient mapping (thus denoted φ0), the asymptotic
frequentist-based MDP (when unlimited data is available) actually gathers the relevant
information from the actual POMDP. Indeed, when the POMDP is known (i.e. T,R,O
are known), the knowledge of Ht allows one to obtain the belief state b(st|Ht), calculated
recursively thanks to the Bayes rule based on b(st|Ht) = P (st|ωt, at, b(st−1|Ht−1)). It is
then possible to define, from the history H ∈ H and for any action a ∈ A, the expected

2. if any (σ, a) has never been encountered in a dataset, we arbitrarily set T̂ (σ, a, σ′) = 1/|Σ|, ∀σ′. The
theoretical results that follow are independent of how this case is treated.

3. if any (σ, a, σ′) has never been encountered in a dataset, we arbitrarily set R̂(σ, a, σ′) to the average of
rewards observed over the whole dataset D. The theoretical results that follow are independent of how
this case is treated.
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immediate reward as well as a transition function into the next observation ω′:

Rmodel−based(H, a) =
∑

s′∈S

∑

s∈S
b(s|H)T (s, a, s′)R(s, a, s′), and

Tmodel−based(H, a, ω′) =
∑

s′∈S

∑

s∈S
b(s|H)T (s, a, s′)

︸ ︷︷ ︸
next belief state

O
(
s′, ω′).

In the frequentist approach, this information is estimated directly from interactions with
the POMDP in R̂ and T̂ without any explicit knowledge of the POMDP parameters.

We introduce Vπ
M̂D

(σ) with σ ∈ Σ as the expected return obtained over an infinite time

horizon when the system is controlled using a policy π : Σ → A in the augmented decision
process M̂D:

Vπ
M̂D

(σ) = E

[ ∞∑

t=0

Γkr̂t|σ0 = σ, π

]
,

where r̂t is the reward s.t. r̂t = R̂(σt, at, σt+1) and the transition is defined by P(σt+1|σt, at) =
T̂ (σt, at, σt+1).

A policy π is defined to be better than or equal to a policy π′ if its expected return
is greater than or equal to that of π′ for all states. In an MDP, there is always at least
one policy that is better than or equal to all other policies and this is an optimal policy
(Sutton & Barto, 1998). In the augmented MDP M̂D, we denote the optimal policy as πD,φ

and we also call it the frequentist-based policy. Let us now decompose the error of using a
frequentist-based policy πD,φ in the actual POMDP:

E
D∼DM

[
V π∗

M (φ0(H)) − V
πD,φ

M (φ(H))
]

=
(
V π∗

M (φ0(H)) − V
πD∞,φ

M (φ(H))
)

︸ ︷︷ ︸
bias function of dataset D∞ (function of πs)

and frequentist-based policy πD∞,φ (function of φ and Γ)

+ E
D∼DM

[
V

πD∞,φ

M (φ(H)) − V
πD,φ

M (φ(H))
]

︸ ︷︷ ︸
overfitting due to finite dataset D (function of πs, Nl, Ntr)

in the context of frequentist-based policy πD,φ

(function of φ and Γ)

.

(1)

The term bias actually refers to an asymptotic bias when the size of the dataset tends to
infinity, while the term overfitting refers to the expected suboptimality due to the finite size
of the dataset (and thus due to the variance in the estimated transition function and reward
function).

Selecting the feature space φ(H) carefully allows building a class of policies that have
the potential to accurately capture information from data (low bias), but also generalize well
(low overfitting). On the one hand, using too many non-informative features will increase
overfitting, as stated in Theorem 3 below. On the other hand, a mapping φ(H) that discards
useful available information will suffer an asymptotic bias, as stated in Theorem 1 below
(arbitrarily large depending on the POMDP and on the features discarded).

We start by providing a bound on the bias, which is an original result based on the belief
states via the ǫ-sufficient statistic.
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Theorem 1. "Bound on the bias": Let M be a POMDP described by the 7-tuple
(S,A, T,R,Ω, O, γ). Let M̂D∞

be an augmented MDP (Σ,A, T̂ , R̂,Γ = γ) estimated, accord-
ing to Definition 3.1, from a dataset D∞. Then, for any ǫ-sufficient mapping φ = φǫ, the
asymptotic bias can be bounded as follows:

max
H∈H

(
V π∗

M (φ0(H)) − V
πD∞,φ

M (φ(H))
)
≤

2ǫRmax

(1 − γ)3
. (2)

Proof. We consider the frequentist-based MDP M̂D∞,φ0(Σ0,A, T̂ , R̂,Γ = γ), for H ∈ H and
a ∈ A, let us define

Q
πD∞,φ0

M̂D∞,φ0

(φ0(H), a) = R̂′(φ0(H), a) + γ
∑

ϕ∈φ0(H)

T̂ (φ0(H), a, ϕ)V
πD∞,φ0

M̂D∞,φ0

(ϕ),

where the reward

R̂′(φ0(H), a) =
∑

ϕ∈φ0(H)

T̂ (φ0(H), a, ϕ)R̂(φ0(H), a, ϕ).

Then the main part of the proof is to demonstrate Proposition 2 below. From there, by
applying Lemma 1 by Abel, Hershkowitz, and Littman (2016), we have:

∥∥∥V
πD∞,φ0
MD∞,φ0

− V
πD∞,φǫ

MD∞,φ0

∥∥∥
∞

≤
2 ǫRmax

1−γ

(1 − γ)2
=

2ǫRmax

(1 − γ)3
.

By further noticing that, when starting in s0, M̂D∞,φ0 and M provide an identical value

function for a given policy πD,φ and that πD∞,φ0 ∼ π∗, i.e. V π∗

M = V
πD∞,φ0

M , the theorem
follows.

Remark. As compared to Hutter (2014) and Abel et al. (2016), this bound relates directly
to the capacity of the mapping φ(H) to retrieve sufficient information on the latent hidden
state. As compared to PBVI (Pineau, Gordon, & Thrun, 2003) and similar approaches, we
do not make the assumption that T , R and O are known and, as such, they need to be
estimated from data.

We now provide Proposition 2, which is the key result required in the proof of Theorem 1.

Proposition 2. Let φǫ be an ǫ-sufficient mapping, and let φ0 be a sufficient mapping. Then,
for any H(1), H(2) such that φǫ(H

(1)) = φǫ(H
(2)), we have

max
a

∣∣∣∣Q
πD∞,φ0

M̂D∞,φ0

(φ0(H(1)), a) − Q
πD∞,φ0

M̂D∞,φ0

(φ0(H(2)), a)

∣∣∣∣ ≤ ǫ
Rmax

(1 − γ)
.

Proof. For this proposition, we rely on the fact that since φǫ(H
(1)) = φǫ(H

(2)), we are
able to bound the L1 error terms of the associated belief states of H(1) and H(2). This is
illustrated in Figure 2. From that bound, we then present two different ways of independent
interest to prove Proposition 2. The details of the proofs are given in Appendix A.1.
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History space H

Space of the
ǫ-sufficient statistics

Belief space

φǫ(H)

b(· | H)

H(1)

H(2)
b(s | H(1))

b(s | H(2))

‖·‖1 ≤ 2ǫ

φǫ(H
(1)) = φǫ(H

(2))

Figure 2: Illustration of the φǫ mapping and the belief for H(1), H(2) ∈ H: φǫ(H
(1)) =

φǫ(H
(2)).

The first proof makes use of a tree of possible future observations, rewards and corre-
sponding actions given a policy π, and we show that when starting from H(1), H(2) such
that φǫ(H

(1)) = φǫ(H
(2)), the bound holds.

We also provide an alternative proof that makes use of the formalism of the bisimulation
metric (Ferns, Panangaden, & Precup, 2004) along with the data processing inequality.
Intuitively, the proof relies on the fact that the histories H(1) and H(2) are close according to a
bisimulation metric that measures the behavioral similarity (future rewards and observations).
The data processing inequality is used for finding that distance as a function of the L1 error
terms of the associated belief states.

We now provide a bound on the overfitting error that monotonically grows with |φ(H)|.
Theorem 3 shows that using a large set of features allows a larger policy class, hence
potentially leading to a stronger drop in performance when the available dataset D is limited
(the bound decreases proportionally to 1√

n
). A theoretical analysis in the context of MDPs

with a finite dataset was performed by Jiang, Kulesza, and Singh (2015a).

Theorem 3. "Bound on the overfitting": Let M be a POMDP described by the 7-tuple
(S,A, T,R,Ω, O, γ). Let M̂D be an augmented MDP (Σ,A, T̂ , R̂,Γ = γ) estimated, according
to Definition 3.1, from a dataset D with the assumption that D has n transitions from any
possible pair (φ(H), a) ∈ φ(H) × A (sampled i.i.d according to DM ). Then the overfitting
due to using the frequentist-based policy πD,φ instead of πD∞,φ in the POMDP M can be
bounded as follows:

max
H∈H

(
V

πD∞,φ

M (φ(H)) − V
πD,φ

M (φ(H))
)
≤

2Rmax

(1 − γ)2

√√√√ 1

2n
ln

(
2|φ(H)||A|1+|φ(H)|

δ

)
, (3)

with probability at least 1 − δ.

Proof. The proof of Theorem 3 is deferred to Appendix A.2.
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Overall, Theorems 1 and 3 can help choose a good state representation for POMDPs as
they provide bounds on the two terms that appear in the bias-overfitting decomposition of
Equation 1. For example, an additional feature in the mapping φ has an overall positive
effect only if it provides a significant increase of information on the belief state (i.e. if it
allows one to obtain a more accurate knowledge of the underlying state of the MDP defined
by T and R when given φ(H)). This increase of information must be significant enough to
compensate for the additional risk of overfitting when choosing a large cardinality of φ(H).
Note that one could combine the two bounds to theoretically define an optimal choice of the
state representation with lower bound guarantees regarding the bias-overfitting tradeoff. In
practice, as the two bounds are loose, other techniques described in Section 3.3 are usually
more useful.

Related work Partial observability is very common in real world domains and though
there has been many works in state abstraction and homomorphisms in the MDP setting
(Ravindran & Barto, 2004; Ferns et al., 2004), there has been relatively little in the POMDP
setting. One related work in POMDPs by Castro, Panangaden, and Precup (2009) has
discussed the parallel between the notion of bisimulation and a notion of trace equivalence,
under which states are considered equivalent if they generate the same conditional probability
distributions over observation sequences (where the conditioning is on action sequences).

In this paper, we introduce the definition of ǫ-sufficient statistics in POMDPs and derive
bounds for the bias based on this property. An insightful part of the proof of Proposition
2 is to use the bisimulation metric (Ferns et al., 2004) and the data processing inequality.
Note that the bisimulation metrics may also be used to take into account how the errors
on the belief states may have less of an impact at the condition that the hidden states
affected by these errors are close according to the bisimulation metric. In case there is some
knowledge on the underlying dynamics, one could also extend the notion of the bisimulation
metric to allow certain distinct actions to be essentially equivalent (Arun-Kumar, 2006).
In that context, Taylor, Precup, and Panagaden (2009) have generalized the notion of
the bisimulation metric to a lax bisimulation metric, which may take into account some
symmetries and special structures.

3.2 Discussion on Function Approximators

As described earlier, a straightforward mapping φ(·) may be obtained by discarding some
features from the observable history. In addition, the theoretical work developed in this
paper can be useful to understand how a specific design of deep neural networks may work
well (or not). Indeed, deep neural networks can be seen as a composition of many learnable
mappings (constrained by the design of the neural network) and we provide bounds that
depend on the property of a given mapping φ of the inputs (e.g., the first layers of a deep
Q-network). If there is, for instance, an attention mechanism in the first layers of a deep
neural network, the mapping made up of those first layers can be analyzed through the
bounds developed in our work (e.g., it should not discard important observations that
prevent the mapping to be close to some sufficient statistics). As another example, our work
helps explain why basic recurrence in a neural network may not be well-suited for POMDPs
that require a long history of observations for approaching some sufficient statistics. Indeed,
basic recurrent cells are known to have difficulties to convey the long-term dependencies in
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sequences (i.e. features from the first time steps in a long time series) and LSTMs (Hochreiter
& Schmidhuber, 1997) or other variants should be preferred.

Note that we could add a theorem showing that using, for instance, Rademacher complex-
ity would allow providing other bounds (potentially tighter) than Theorem 3. However, such
a bound is usually of little interest in practice, specifically concerning deep learning, because
the bounds based on complexity measures fail to provide insights on the generalization
capabilities of neural networks (Zhang, Bengio, Hardt, Recht, & Vinyals, 2016). Indeed, it
has been empirically demonstrated that deep neural networks have strong generalization
capabilities even with a high number of parameters (hence a potentially large complexity). In
other words, a very loose bound on the overfitting error due to a large number of parameters
may not lead to a performance drop in practice.

3.3 Selection of the Parameters with Validation or Cross-Validation to

Balance the Bias-Overfitting Tradeoff

In the batch setting case, the selection of the policy parameters to effectively balance the
bias-overfitting tradeoff can be done similarly to that in supervised learning (e.g., cross-
validation) as long as the performance criterion can be estimated from a subset of the
trajectories from the dataset D not used during training (validation set). One possibility is
to fit an MDP model from data via the frequentist approach (or regression), and evaluate
the policy against the model (with Monte-Carlo simulations). Another approach is to use
the idea of importance sampling (Precup, 2000). A mix of the two approaches has also been
developed (Jiang & Li, 2016; Thomas & Brunskill, 2016).

Importance of the discount factor Γ used in the training phase: Besides the
elements related to feature selection and function approximators, artificially lowering the
discount factor can also be used to improve the performance of the policy when solving
MDPs with limited data (Petrik & Scherrer, 2009; Jiang, Kulesza, Singh, & Lewis, 2015b).
In the partially observable setting, these results can be transferred to the frequentist-based
MDP (Σ,A, T̂ , R̂,Γ) by choosing Γ < γ, which introduces a bias but reduces the risk of
overfitting.

4. Experiments

This section provides empirical illustrations of the theoretical results both on synthetic
POMDPs and on a large-scale POMDP in the context of smartgrids, with real-world data.
On the synthetic POMDPs, we first illustrate the main theoretical results of this paper
related to the state representation of POMDPs and we also illustrate the use of function
approximators and the training discount factor Γ. On the large-scale POMDP, we illustrate
that an efficient feature selection process can be useful, even when used in addition to
function approximators and a biased discount factor.

4.1 Synthetic POMDPs

In order to be representative of a diversity of environments, we provide results on a distribu-
tion of POMDPs.
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4.1.1 Protocol

We randomly sample NP POMDPs such that NS = 5, NA = 2 and NΩ = 5 (except when
stated otherwise) from a distribution P that we refer to as Random POMDP. The distribution
P is fully determined by specifying a distribution over the set of possible transition functions
T (·, ·, ·), a distribution over the set of reward functions R(·, ·, ·), and a distribution over the
set of possible conditional observation probabilities O(·, ·).

Random transition functions T (·, ·, ·) are drawn by assigning, for each entry (s, a, s′), a
zero value with probability 3/4, and, with probability 1/4, a non-zero entry with a value
drawn uniformly in [0, 1]. For all (s, a), if all T (s, a, s′) are zeros, we enforce one non-zero
value for a random s′ ∈ S. Values are normalized. Random reward functions are generated
by associating to all possible (s, a, s′) a reward sampled uniformly and independently from
[−1, 1]. Random conditional observation probabilities O(·, ·) are generated in the following
way: the probability of observing o(i) when in state s(i) is equal to 0.5, while all other values
are chosen uniformly randomly so that it is normalized for any s. For all POMDPs, we have
γ = 1 and Γ = 0.95 if not stated otherwise and we truncate the trajectories to a length of
Nl = 100 time steps.

For each generated POMDP P ∼ P, we generate 20 datasets D ∈ DP where DP is a
probability distribution over all possible sets of n trajectories (n ∈ [2, 5000]); where each
trajectory is made up of a history H100 of 100 time steps, when starting from an initial state
s0 ∈ S and taking uniform random decisions. Each dataset D induces a policy πD,φ, and we
want to evaluate the expected return of this policy while discarding the variance related to
the stochasticity of the transitions, observations and rewards. To do so, policies are tested
with 1000 rollouts of the policy. For each POMDP P , we are then able to get an estimate of
the average score µP which is defined as:

µP = E
D∼DP

E




Nl∑

t=0

γtrt|s0, πD,φ


 .

We are also able to get an estimate of a parametric variance σ2
P defined as:

σ2
P = Var

D∼DP

E




Nl∑

t=0

γtrt|s0, πD,φ


 .

4.1.2 History Processing

We show experimentally that any additional feature from the history Ht is likely to reduce
the asymptotic bias, but may also increase the overfitting. For any history length h, we
consider the mapping φh that extracts the current observation and the last h−1 (observation,
action) tuples. In the experiments, we compare the policies πD,φh

for h = 1, 2, 3.

The values E
P ∼P

µP and E
P ∼P

σP are displayed in Figure 3. One can observe that a small

set of features (small history) appears to be a better choice (in terms of total bias) when the
dataset is small (only a few trajectories). With an increasing number of trajectories, the
optimal choice in terms of number of features (h = 1, 2 or 3) also increases. In addition, one
can also observe that the expected variance of the score decreases as the number of samples
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Figure 3: Evolution (as a function of the size of the dataset) of estimated values of E
P ∼P

µP ±

E
P ∼P

σP computed from a sample of NP = 50 POMDPs drawn from P. The bars

are used to represent the variance observed when dealing with different datasets
drawn from a distribution; note that this is not a usual error bar.

increases. As the variance decreases, the risk of overfitting also decreases, and it becomes
possible to target a larger policy class (using a larger feature set).

The overfitting error is also linked to the variance of the value function estimates in the
frequentist-based MDP. When these estimates have a large variance, an overfitting term
appears because of a higher chance of picking one of the suboptimal policies, as illustrated
in Figure 4.

4.1.3 Function Approximator and Discount Factor

We also illustrate the effect of using function approximators on the bias-overfitting tradeoff.
To do so, we process the output of the state representation φ(·) into a deep Q-learning
scheme (technical details are given in Appendix A.3). We can see in Figure 5 that deep
Q-learning policies suffer less overfitting as compared to the frequentist-based approach
(lower degradation of performance in the low-data regime) even though using a large set of
features still leads to more overfitting than a small set of features. We also see that deep
Q-learning policies do not introduce an important asymptotic bias (identical performance
when a lot of data is available) because the neural network architecture is rich enough. Note
that the variance is slightly larger than in Figure 3, and does not vanish to 0 with additional
data. This is due to the additional stochasticity induced when building the Q-value function
with neural networks (note that when performing the same experiments while taking the
average recommendation of several Q-value functions, this variance decreases with the
number of Q-value functions).

Finally, we empirically illustrate in Figure 6 the effect of modifying the discount factor Γ.
When the training discount factor is lower than the one used in the actual POMDP (Γ < γ),
there is an additional bias term, while when a high discount factor is used (Γ close to 1)
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Figure 4: Illustrations of the return estimates in the augmented MDP M̂D (h = 2) for three
different policies. The policies are selected specifically for illustration purposes
based on the criterion V πD

M ; the best performing (in green), the worst performing
(in red) and the median performing were selected in a set of 50 policies built when
D ∼ D has 5 trajectories of data from the actual POMDP. On the actual POMDP,
the expected returns are V π1

M = 28, V π2
M = 33, V π3

M = 42 (in general, these values
need not be the same as the expected value of the probability distribution in the
two graphs).

with a limited amount of data, overfitting increases. In our experiments, the influence of
the discount factor is more subtle as compared to the impact of the state representation
and the function approximator. The influence is nonetheless clear: it is better to have a low
discount factor when only a few data points are available, and it is better to have a high
discount factor when a lot of data is available, which is in line with previous analyses for
MDPs (Jiang et al., 2015b).

4.2 Real-world Application in Smartgrids

The microgrid model considered here was introduced by François-Lavet, Taralla, Ernst, and
Fonteneau (2016) and we next describe the main elements 4.

4.2.1 Microgrid Benchmark

The microgrid is powered by photovoltaic (PV) panels combined with both long-term storage
(hydrogen-based) and short-term storage (such as, for instance, LiFePO4 batteries). These
two types of storage aim at fulfilling, at best, the demand by addressing the seasonal and
daily fluctuations of solar irradiance. Distinguishing short- from long-term storage is mainly
a question of cost: batteries are too expensive to be used for addressing seasonal variations.

4. The source code is available at https://github.com/VinF/deer/.
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Figure 5: Evolution (as a function of the size of the dataset) of estimated values of E
P ∼P

µP ±

E
P ∼P

σP computed from a sample of NP = 50 POMDPs drawn from P (same as

Figure 3) with neural network as a function approximator. The bars are used to
represent the variance observed when dealing with different datasets drawn from
a distribution; this is not a usual error bar.
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Figure 6: Evolution in the frequentist-based case (as a function of the size of the dataset)
of estimated values of E

P ∼P
µP ± E

P ∼P
σP computed from a sample of NP = 10

POMDPs drawn from P with NS = 8 and NΩ = 8 (h = 3). The bars are used to
represent the variance observed when dealing with different datasets drawn from
a distribution; this is not a usual error bar.

Operating the microgrid is formalized as a POMDP over discrete time steps of one hour.
The observations at each time step are made up of the consumption (ct), the production
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(ψt) and the level of energy in the battery (sB
t ). The mapping φ(·) is defined such that

φ(Ht) =
[
[ct−hc , . . . , ct−1], [ψt−hp , . . . , ψt−1], sB

t

]
,

where hc = hp are the lengths of the time series considered for the consumption and
production, respectively.

The instantaneous reward signal rt is obtained by adding the revenues generated by the
hydrogen production rH2 and the penalties r− due to the value of loss load:

rt = r(at, dt) = rH2(at) + r−(at, dt), (4)

where dt denotes the net electricity demand, which is the difference between the local
consumption ct and the local production of electricity ψt. The penalty r− is proportional to
the total amount of energy that was not supplied to meet the demand, with the cost incurred
per kilowatt-hour (kWh) not supplied within the microgrid set to 2 e/kWh (corresponding
to a value of loss load). The revenues (or cost) generated by the hydrogen production rH2

is proportional to the total amount of energy transformed (or consumed) in the form of
hydrogen, where the revenue (or cost) per kWh of hydrogen produced (or used) is set to 0.1
e/kWh.

A synthetic residential consumption profile is considered with a daily consumption of
18kWh. The PV production profile comes from actual data of a residential customer located
in Belgium (average production changes by a factor of about 1:5 between summer and winter).
A fixed sizing of the microgrid is considered. The size of the battery is xB = 15kWh, the
instantaneous power of the hydrogen storage is xH2 = 1.1kW and the peak power generation
of the PV installation is xP V = 12kWp (kWp stands for kilowatt-peak, which is the maximum
electric power that can be supplied by the PV panels).

The action at is an element of the action space made up of three discrete actions:
A = {a(0), a(1), a(2)}. The possible actions relate to whether the microgrid creates hydrogen
from electricity, creates electricity from hydrogen or leaves the long-term storage unused.
The battery adapts to store excess electrical power (except when the battery is full) while
avoiding any loss load (except when the battery is empty, which leads to negative rewards).

Note that in this specific application, using a history of observations from the previous
time steps provides information on the latent features (of the state of the POMDP) such as
the time of the day, the weather, the season (PV production and consumption time series
are conditionally dependent on these latent features).

Also note that the dynamics of the system depend on exogenous time series (production
and consumption time series) for which the agent only has finite data. In order to evaluate
the capacity of the agent to generalize, we can break down the exogenous time series into a
part that will be used for training and one part that will be used for validation (François-
Lavet et al., 2016). The final performance is then evaluated on the environment with unseen
time series.

4.2.2 Splitting the Times Series to Avoid Overfitting

In this microgrid domain, the agent is provided with up to two years of actual past realizations
of the consumption (ct) and the production (ψt). These past realizations are split into a
training environment (one year) and a validation environment (one year). The training
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environment is used to train the policy, while the validation environment is used at each
epoch 5 to estimate how well the policy performs on the undiscounted sum of rewards, and
it selects the best (approximated) Q-network denoted Q̃∗ before overfitting (by selecting
a discount factor lower than the maximum and by using early stopping). It also has the
advantage of picking up the Q-network at an epoch less affected by instabilities. The selected
trained Q-network is then used in a test environment (y = 3) to provide an independent
estimation of how well the resulting policy performs. Technical details relative to the deep
Q-network algorithm used are given in Appendix B.1.

To empirically demonstrate the effect of the bias-overfitting tradeoff, we artificially
reduce the diversity of the training and validation time-series by a factor κ = {1, 2, 4, 8, 16}.
Overall, the time series for training and validation should still be as close to 365 days
as possible (the epochs are run on approximately the same given number of time steps
for all cases). In addition, the true underlying processes should be respected as closely
as possible by (i) guaranteeing that the succession of the seasons are not corrupted and
(ii) guaranteeing that consecutive days in the original time series should be kept consecutive
whenever possible.

In order to do so, the time series of one year are divided into four seasons. Each season
is then split into κ blocs of the same number of days. For each season, data reduction is
done by replicating one of the blocs instead on all remaining blocs of the same season. This
artificial reduction on the available data is illustrated on Figure 7.

1,2 a,b A,B α, β

1,1 a,a A,A α,α

2,2 b,b B,B β,β
or

Original time series are supposed to be
generated under 4 different processes.

The original time series is thus divided
into 4 seasons (such that in each season

the number of days is divisible by κ).

Within each season, data reduction
is done by replicating a fraction κ of
the time series (here κ = 2). With
this process, κ new time series are

obtained from one original time series.

Figure 7: Illustration of how the quantity of data in a time series of one year is artificially
reduced by a factor κ = 2 while guaranteeing that the specificity of the seasons
are essentially preserved. This schema applies for both the consumption and the
production time-series and for both the training time series and validation time
series.

4.2.3 Results of the Experiments

The purpose of the experiments is to illustrate the theoretical results, and are given in
Figure 8. On the one hand, using a long history may pose problems relative to overfitting

5. An epoch is defined as the set of all iterations required to go through the whole year of the exogenous
time series ct and ψt. Each iteration is made up of a transition of one time-step in the environment as
well as a gradient step of all parameters θ of the Q-network.
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when the amount of training data is limited. On the other hand, using a long history of
observations allows achieving a good operation when enough data is available (information
on the latent features are preserved).
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Figure 8: Evolution of the performance of the policy in the test setting (one year of unseen
past time series for both the consumption and production). Using a relatively
short history of observations is beneficial when the amount of data is limited
while a longer history of observations leads to improved results when the amount
of data increases (lower κ means that more data is available). For each point,
the mean and the standard deviation are calculated over 23 different runs of the
Deep Q-network algorithm (over different ways to split the time series defined in
appendix and for different random seeds).

As already noted, there is a close link between (i) choosing a function approximator and
(ii) selecting features, since the function approximator characterizes how the features will be
treated into higher levels of abstraction (a fortiori it can thus give more or less weight to
some features). Notwithstanding, this example shows that, in general, the use of function
approximators may still benefit from an efficient feature selection process. Indeed, we still
observe a tradeoff between bias and overfitting in this microgrid application, even with the
convolutional architecture of the deep Q-network.

5. Conclusion and Future Works

This paper discusses the bias-overfitting tradeoff of batch RL algorithms in the context
of POMDPs. Most current RL works compare algorithms in an online setting, where the
performance depends on many factors such as improved exploration, better generalization,
or better numerical efficiency of the gradient step (in the case of deep RL). In contrast, this
paper is focused on one source of sub-optimality related to generalization from limited data
in the case of POMDPs. In that context, we propose an analysis showing that, similarly to
supervised learning techniques, RL may face a bias-overfitting dilemma in situations where
the policy class is too large compared to the batch of data. In such situations, we show
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that it may be preferable to concede an asymptotic bias in order to reduce overfitting. This
(favorable) asymptotic bias may be introduced through different manners: (i) downsizing
the state representation, (ii) using specific types of function approximators and (iii) lowering
the discount factor.

The main theoretical results of this paper relate to the state representation; the originality
of the setting proposed in this paper compared to Maillard, Ryabko, and Munos (2011),
Ortner, Maillard, and Ryabko (2014) and the related work is mainly to formalize the problem
in a batch setting (limited set of tuples) instead of the online setting, where they investigate
the E/E dilemma. As compared to Jiang et al. (2015b), the originality is to consider a
partially observable setting. We introduce the notion of the ǫ-sufficient statistics and showed
that it allows us to formalize the intuition of the bias-overfitting trade-off in a rigorous
way and provides new insights compared to the MDP case. In particular, the bound of
Theorem 1 is a new result based on L1 error terms of the associated belief states. There are
also interesting insights from the techniques used to derive that bound, where we use the
formalism of bisimulation metrics and the data processing inequality.

The work proposed in this paper may also be of interest in online settings because,
at each stage, obtaining a performant policy from given data is part of the solution to
an efficient exploration/exploitation tradeoff. For instance, optimizing the bias-overfitting
tradeoff suggests that it can be beneficial to dynamically adapt the feature space and the
function approximator. This can be done through ad hoc regularization or by adapting
the neural network architecture, using for instance the NET2NET transformation (Chen,
Goodfellow, & Shlens, 2015).
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Appendix A. Proofs

A.1 Proof of Proposition 2

Proposition 2 Let φǫ be an ǫ-sufficient mapping, and let φ0 be a sufficient mapping.
Then, for any H(1), H(2) such that φǫ(H

(1)) = φǫ(H
(2)), we have

max
a

∣∣∣∣Q
πD∞,φ0

M̂D∞,φ0

(φ0(H(1)), a) − Q
πD∞,φ0

M̂D∞,φ0

(φ0(H(2)), a)

∣∣∣∣ ≤ ǫ
Rmax

(1 − γ)
.

Proof. We first define the notion of a policy conditioned on a previous history. Let π :
φ0(H) → A. Given a history H ∈ H we define πH : (A × Ω)∗ → A by πH(a1ω1 · · · akωk) =
π(φ0(Ha1ω1 · · · akωk)), i.e. πH is the policy π conditioned on having previously observed
the history H 6.

6. To simplify notations, one can consider that the rewards are included in the observations ω.
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Given a history H ∈ H we can then define the Q-value of a state s ∈ S and an action
a ∈ A in the underlying MDP following π and assuming that H has been observed:

QπH (s, a) =R′(s, a)

+ γEs1|s,aEω1|s1
R′(s1, a1 = πH(aω1))

+ γ2
Es1|s,aEω1|s1

Es2|s1,a1
Eω2|s2

R′(s2, πH(aω1a1ω2))

+ · · ·

where R′(s, a) = Es′|s,aR(s, a, s′). Note that Qπ
M̂D∞,φ0

(φ0(H), a) = Es∼bφ0
(·|φ0(H))Q

πH (s, a)

for any history H ∈ H and any action a ∈ A since φ0 is a sufficient mapping.
We can now prove the proposition. Let a ∈ A. Let π∗ = πD∞,φ0 be the optimal policy in

M̂ and let πi = π∗
Hi

be the optimal policy conditioned on having observed Hi for i = 1, 2.
Since π∗ is optimal we have

Qπ∗

(φ0(H(1)), a) = Es∼bφ0
(·|φ0(H1))Q

π1(s, a)

≥ Es∼bφ0
(·|φ0(H1))Q

π2(s, a)

and

Qπ∗

(φ0(H(2)), a) = Es∼bφ0
(·|φ0(H2))Q

π2(s, a)

≥ Es∼bφ0
(·|φ0(H2))Q

π1(s, a).

We then have

Qπ∗

M̂D∞,φ0

(φ0(H(1)), a) − Qπ∗

M̂D∞,φ0

(φ0(H(2)), a)

= Es∼bφ0
(·|φ0(H1))Q

π1(s, a) − Es∼bφ0
(·|φ0(H2))Q

π2(s, a)

≤ Es∼bφ0
(·|φ0(H1))Q

π1(s, a) − Es∼bφ0
(·|φ0(H2))Q

π1(s, a)

=
∑

s∈S

(
b(s|H(1)) − b(s|H(2))

)
Qπ1(s, a)

≤
ǫ

1 − γ
Rmax ,

where we used the facts that b(·|H(1)) − b(·|H(2)) is a vector of L1-norm less than 2ǫ (by
Lemma 4) whose components sum to zero and |Qπ1(s, a) − Qπ1(s′, a)| ≤ Rmax

1−γ
for any

s, s′ ∈ S.
Applying the same argument mutatis mutandis we obtain Qπ∗

M̂D∞,φ0

(φ0(H(2)), a) −

Qπ∗

M̂D∞,φ0

(φ0(H(1)), a) ≤ ǫ
1−γ

Rmax from which the result follows.

Alternative proof. An alternative proof of independent interest makes use of the formalism
of the bisimulation metric (Ferns et al., 2004) along with the data processing inequality. Let
us consider d ∈ M, where M is the set of all semi-metrics on Σ0 with distance at most 1.
We fix a particular d as follows: ∀σ(1), σ(2) ∈ Σ0:

d(σ(1), σ(2)) = max
a

(
cR

∣∣∣R̂′
(
σ(1), a

)
− R̂′

(
σ(2), a

)∣∣∣

+cTdP

(
T̂ (σ(1), a, ·), T̂ (σ(2), a, ·)

))
,
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where dP is some probability metric, and where cR, cT ≥ 0 are such that cR + cT ≤ 1. We
define F : M → M by

F (d)(σ(1), σ(2)) = max
a

(
cR

∣∣∣R̂′
(
σ(1), a

)
− R̂′

(
σ(2), a

)∣∣∣

+cTTK(d)
(
T̂ (σ(1), a, ·), T̂ (σ(2), a, ·)

))
.

where TK(d) is the Kantorovich metric induced by d. From Lemma 5, F has a least fixed-
point dfix, and it is a bisimulation metric. From Lemmas 6, 7 (using the data processing
inequality), we have ∀σ(1), σ(2) ∈ Σ0 that

dfix(σ(1), σ(2)) ≤
1

2
‖b(· | σ(1)) − b(· | σ(2))‖1Rmax.

Using Lemma 8, it follows that

max
a

∣∣∣∣Q
πD∞,φ0

M̂D∞,φ0

(φ0(H(1)), a) − Q
πD∞,φ0

M̂D∞,φ0

(φ0(H(2)), a)

∣∣∣∣ ≤ ǫ
Rmax

(1 − γ)
.

Lemma 4. Let H(1), H(2) ∈ H be two histories such that φǫ(H
(1)) = φǫ(H

(2)). Then,

‖b(·|H(1)) − b(·|H(2))‖1≤ 2ǫ.

Proof.
∥∥∥b(· | H(1))− b(· | H(2))

∥∥∥
1

=
∥∥∥b(· | H(1)) − bφǫ

(
· | φǫ(H

(1))
)

+bφǫ

(
· | φǫ(H

(2))
)

− b(· | H(2))
∥∥∥

1

≤
∥∥∥b(· | H(1)) − bφǫ

(
· | φǫ(H

(1))
)∥∥∥

1

+
∥∥∥bφǫ

(
· | φǫ(H

(2))
)

− b(· | H(2))
∥∥∥

1

≤2ǫ,

Lemma 5. Let cR, cT ≥ 0 and cR + cT ≤ 1. Define F : M → M by

F (d)(σ(1), σ(2)) = max
a

(
cR

∣∣∣R̂′
(
σ(1), a

)
− R̂′

(
σ(2), a

)∣∣∣

+cTTK(d)
(
T̂ (σ(1), a, ·), T̂ (σ(2), a, ·)

))
.

Then F has a least fixed-point, dfix, and dfix is a bisimulation metric.

Proof. See proof of Theorem 4.5 by Ferns et al. (2004).

Lemma 6. Let H(1), H(2) ∈ H such that

‖b(· | φ0(H(1)) − b(· | φ0(H(2))‖1≤ 2ǫ.

Then
max

a

∣∣∣R̂′
(
φ0(H(1)), a

)
− R̂′

(
φ0(H(2)), a

)∣∣∣ ≤ ǫRmax.
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Proof. This follows directly from the fact that ∀H:

R̂′(φ0(H), a) =
∑

s∈S
P(s|φ0(H))R′(s, a),

where R′(s, a) = Es′|s,aR(s, a, s′).

Lemma 7. Let H(1), H(2) ∈ H such that
∥∥∥b(· | φ0(H(1)) − b(· | φ0(H(2))

∥∥∥
1

≤ 2ǫ.

Then
∑

ω∈Ω

∥∥∥P
(
ω | φ0(H(1)), a

)
b(· | φ0(H(1)), a, ω)

−P

(
ω | φ0(H(2)), a

)
b(· | φ0(H(2)), a, ω)

∥∥∥
1

≤ 2ǫ.

Proof. For any a ∈ A by direct application of the data processing inequality (DPI) in the
special case of the total variation:

∥∥∥b
(
.|φ0(H(1)), a

)
− b

(
.|φ0(H(2)), a

)∥∥∥
1

≤ 2ǫ.

Moreover, as illustrated on Figure 9 and once more by application of the DPI in the
context of the special case of the total variation, we have that

1

2
EQY

∣∣∣∣
PY

QY
− 1

∣∣∣∣ ≤
1

2
EQX

∣∣∣∣
PX

QX
− 1

∣∣∣∣ .

with the distributions

• PX = P

(
s|φ0(H(1)), a

)
,

• QX = P

(
s|φ0(H(2)), a

)
,

• PY = P

(
ω, s | φ0(H(1)), a

)
, and

• QY = P

(
ω, s | φ0(H(2)), a

)
.

Note that the output distributions is on the tuple (ω, s).
Since the right hand-side in the aforementioned DPI can be bounded by ǫ:

1

2

∑

s∈S
P

(
s|φ0(H(2)), a

)
∣∣∣∣∣∣

P

(
s|φ0(H(1)), a

)

P
(
s|φ0(H(2)), a

) − 1

∣∣∣∣∣∣
≤ ǫ,

we have

1

2

∑

ω∈Ω

∑

s∈S

∣∣∣P
(
ω | φ0(H(1)), a

)
P

(
s | φ0(H(1)), a, ω

)

−P

(
ω | φ0(H(2)), a

)
P

(
s | φ0(H(2)), a, ω

)∣∣∣ ≤ ǫ.
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H(1)

H(2)

H(1) + a+ ω1

H(1) + a+ ω2

H(2) + a+ ω1

H(2) + a+ ω2

Figure 9: Illustration of the two histories H(1) and H(2). Here we illustrate only for one
given action a and two possible observations ω1 and ω2. The dashed line illustrates

the key relation between H(1) and H(2), which is
∥∥∥b(· | H(1)) − b(· | H(2))

∥∥∥
1

≤ 2ǫ.

In expectation, this relation is preserved through the action and observations.

This can be rewritten as:

∑

ω∈Ω

∥∥∥P
(
ω | φ0(H(1)), a

)
b(· | φ0(H(1)), a, ω)

−P

(
ω | φ0(H(2)), a

)
b(· | φ0(H(2)), a, ω)

∥∥∥
1

≤ 2ǫ.

Lemma 8. Suppose γ ≤ cT . Then ∀σ(1), σ(2) ∈ Σ0:

cR max
a

∣∣∣Q∗(σ(1), a) − Q∗(σ(2), a)
∣∣∣ ≤ dfix(σ(1), σ(2))

where Q∗ stands for Q
πD∞,φ0

M̂D∞,φ0

.

Proof. The proof is done using the same techniques than the proof of Theorem 5.1 by Ferns
et al. (2004). Let us first prove that

max
a

cR

∣∣∣Qn(σ(1), a) − Qn(σ(2), a)
∣∣∣ ≤ dn(σ(1), σ(2))

where F (dn(σ(1), σ(2))) = dn+1(σ(1), σ(2)), and

Qn+1(φ0(H), a) = R̂′(φ0(H), a) + γ
∑

ϕ∈φ0(H)

T̂ (φ0(H), a, ϕ)Vn(ϕ),

with Vn(ϕ) = max
a′

Qn(ϕ, a′). The result would then follow by taking the limit.
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∀H(1), H(2) ∈ H: φǫ(H
(1)) = φǫ(H

(2)), it follows that

cR max
a

∣∣∣Qn+1

(
φ0(H(1)), a

)
− Qn+1

(
φ0(H(2)), a

)∣∣∣

≤ cRmax
a

(∣∣∣R̂′
(
φ0(H(1)), a

)
− R̂′

(
φ0(H(2)), a

)∣∣∣

+ γ
∣∣∣T̂ (φ0(H(1)), a, ·)Vn (·)) − T̂ (φ0(H(1)), a, ·)Vn (·))

∣∣∣
)

≤ max
a

(
cR

∣∣∣R̂′
(
φ0(H(1)), a

)
− R̂′

(
φ0(H(2)), a

)∣∣∣

+ cT

∣∣∣∣
(
T̂ (φ0(H(1)), a, ·) − T̂ (φ0(H(2)), a, ·)

) cRγ

cT

Vn(·)|

)

≤ max
a

(
cR

∣∣∣R̂′
(
φ0(H(1)), a

)
− R̂′

(
φ0(H(2)), a

)∣∣∣

+ cTTK(dn)
(
T̂ (φ0(H(1)), a, ·) − T̂ (φ0(H(2)), a, ·)

))

= F
(
dn

(
φ0(H(1)), φ0(H(2))

))

= dn+1

(
φ0(H(1)), φ0(H(2))

)
,

where we have used the fact that { cRγ
cT

Vn(u) : u ∈ Σ} is a feasible solution to the primal LP
defined by the Kantorovich distance.

A.2 Proof of Theorem 3

Sketch of the proof The idea of the proof is first to bound the difference between
value functions following different policies by a bound between value functions estimated
in different environments but following the same policy (more precisely a max over a set
of policies of such a bound). Once that is done, a bound in probability using Hoeffding’s
inequality can be obtained.

Let us denote ϕ ∈ φ(H):

V
πD∞,φ

M (ϕ) − V
πD,φ

M (ϕ) =(V
πD∞,φ

M (ϕ) − V
πD∞,φ

M̂D
(ϕ)) − (V

πD,φ

M (ϕ) − V
πD,φ

M̂D
(ϕ))

+ (V
πD∞,φ

M̂D
(ϕ) − V

πD,φ

M̂D
(ϕ))

≤(V
πD∞,φ

M (ϕ) − V
πD∞,φ

M̂D
(ϕ)) − (V

πD,φ

M (ϕ) − V
πD,φ

M̂D
(ϕ))

≤ 2 max
π∈{πD∞,φ,πD,φ}

∣∣∣V π
M (ϕ) − Vπ

M̂D
(ϕ)
∣∣∣ .

It follows that ∀H

V
πD∞,φ

M (ϕ) − V
πD,φ

M (ϕ) ≤ 2 max
π∈{πD∞,φ,πD,φ}

max
ϕ∈φ(H)

∣∣∣Qπ
M (ϕ, π(ϕ)) − Qπ

M̂D
(ϕ, π(ϕ))

∣∣∣

≤ 2 max
π∈{πD∞,φ,πD,φ}

max
ϕ∈φ(H),a∈A

∣∣∣Qπ
M (ϕ, a) − Qπ

M̂D
(ϕ, a)

∣∣∣ ,
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where Qπ
M (ϕ, a) is the action-value function for policy π in M with a ∈ A. Similarly

Qπ
M̂

(ϕ, a) is the action-value function for policy π in M̂ .

By Lemma 9, we have:

V
πD∞,φ

M (ϕ) − V
πD,φ

M (ϕ) ≤
2

1 − γ
max

π∈{πD∞,φ,πD,φ}
max

ϕ∈φ(H),a∈A
∣∣∣∣∣∣
R̂′(ϕ, a) + γ

∑

ϕ′∈φ(H)

T̂ (ϕ, a, ϕ′)V π
M (ϕ′) −Qπ

M (ϕ, a)

∣∣∣∣∣∣
,

where R̂′(φ0(H), a) =
∑

ϕ∈φ0(H) T̂ (φ0(H), a, ϕ)R̂(φ0(H), a, ϕ).

With R ∈ [0, Rmax], we notice that R̂′(ϕ, a) + γ
∑

ϕ′∈φ(H) T̂ (ϕ, a, ϕ′)V π
M (ϕ′) is the mean

of i.i.d. variables bounded in the interval [0,Rmax

1−γ
] and with mean Qπ

M (ϕ, a) for any policy

π : φ(H) → A. Therefore, according to Hoeffding’s inequality (Hoeffding, 1963), we have
with n the number of tuples for every pair (ϕ, a):

P

{∣∣∣∣∣∣
R̂′(ϕ, a) + γ

∑

ϕ′∈φ(H)

T̂ (ϕ, a, ϕ′)V π
M (ϕ′) −Qπ

M (ϕ, a)

∣∣∣∣∣∣
> t

}

≤ 2 exp

(
−2nt2

(Rmax/(1 − γ))
2

)
.

(5)

As we want to obtain a bound over all pairs (ϕ, a) and a union bound on all policies
π ∈ Π s.t. |Π| = |A||φ(H)| (indeed Equation 5 does not hold for πD,φ alone because that
policy is not chosen randomly), we want the right-hand side of equation 5 to be δ

|Π||φ(H)||A| .

This gives t(δ) =
(

Rmax

1−γ

)√(
1

2n
ln
(

2|Π||φ(H)||A|
δ

))
and we conclude that:

max
ϕ∈φ(H)

(
V

πD∞,φ

M (ϕ) − V
πD,φ

M (ϕ)
)

≤
2Rmax

(1 − γ)2

√√√√ 1

2n
ln

(
2|φ(H)||A|1+|φ(H)|

δ

)

with probability at least 1 − δ.

Lemma 9. For any M = (S,A, T,R,Ω, O, γ) and the frequentist-based augmented MDP
M̂ = (Σ,A, T̂ , R̂,Γ) defined from M according to definition 3.1, we have ∀π : φ(H) → A:

max
ϕ∈φ(H),a∈A

∣∣∣Qπ
M (ϕ, a) − Qπ

M̂D
(ϕ, a)

∣∣∣ ≤
1

1 − γ
max

ϕ∈φ(H),a∈A∣∣∣∣∣∣
R̂′(ϕ, a) + γ

∑

ϕ′∈φ(H)

T̂ (ϕ, a, ϕ′)V π
M (ϕ′) −Qπ

M (ϕ, a)

∣∣∣∣∣∣
.

Proof. Given any policy π, let us define Q0,Q1, ...,Qm s.t. Q0(ϕ, a) = Qπ
M (ϕ, a) and

Qm(ϕ, a) = R̂′(ϕ, a) + γ
∑

ϕ′∈φ(H) T̂ (ϕ, a, ϕ′)Vm−1(ϕ′), where Vm−1(ϕ) = Qm−1 (ϕ, π(ϕ)).
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We have

‖Qm − Qm−1‖∞ ≤ γ max
ϕ∈φ(H),a∈A

∣∣∣∣∣∣

∑

ϕ′∈φ(H)

T̂ (ϕ, a, ϕ′)(Vm−1 − Vm−2)(ϕ′)

∣∣∣∣∣∣

≤ γ ‖(Vm−1 − Vm−2)(ϕ)‖∞
≤ γ ‖(Qm−1 − Qm−2)(ϕ, a)‖∞ .

Taking the limit of m → ∞,Qm → Qπ
M̂

, we have

∥∥∥Qπ
M̂D

−Qπ
M

∥∥∥
∞

≤
1

1 − γ
‖Q1 −Q0‖∞

which completes the proof.

A.3 Q-learning with Neural Network as a Function Approximator: Technical

Details of Figure 5

The neural network is made up of three intermediate fully connected layers with 20, 50
and 20 neurons with ReLu activation function and is trained with Q-learning. Weights are
initialized with a Glorot uniform initializer (Glorot & Bengio, 2010). It is trained using a
target Q-network with a freeze interval (see (Mnih, Kavukcuoglu, Silver, et al., 2015)) of
100 mini-batch gradient descent steps. It uses an RMSprop update rule (learning rate of
0.005, ρ = 0.9), mini-batches of size 32 and 20000 mini-batch gradient descent steps.

Appendix B. Algorithmic Details

B.1 Microgrid Benchmark

B.1.1 Neural Network Architecture

The inputs of the neural network architecture are provided by φ(Ht) (normalized into [0,1]),
and the outputs represent the Q-values for each discretized action.

The neural network processes the time series (when hc > 2 and hp > 2) thanks to a set
of convolutions with 16 filters of 2 × 1 with stride 1, followed by a convolution with 16 filters
of 2 × 2 with stride 1. The combination of the output of the convolutions and the non-time
series inputs is then followed by two fully-connected layers with 50 and 20 neurons. The
activation function used is the Rectified Linear Unit (ReLU) except for the output layer
where no activation function is used. A sketch of the structure of the neural network is
provided in Figure 10.

B.1.2 Hyperparameters Used in DQN

The different hyperparameters used for the DQN algorithm (Mnih et al., 2015) are provided
in Table 1.
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Input #1

Input #2

Input #3...

Fully-connected
layersConvolutions Outputs

Figure 10: Sketch of the structure of the neural network architecture. The neural network
processes the time series using a set of convolutional layers. The output of the
convolutions and the other inputs are followed by fully-connected layers and the
output layer.

Table 1: Main parameters of the DQN algorithm. The integer k refers to the iteration
number from the beginning of the training and the integer l refers to the epoch
number.

Parameter

Update rule RMSprop (ρRMS = 0.9) (Tieleman, 2012)
Initial learning rate α0=0.0002
Learning rate update rule αl+1 = 0.99αl

RMS decay 0.9
Initial discount factor γ0=0.9
Discount factor update rule γl+1 = min(0.98, 1 − 0.99(1 − γl))

Parameter of the ǫ-greedy ǫ = max(0.3, 1 − k
500.000)

Replay memory size 1000000
Batch size 32
Freeze interval 1000 iterations
Initialization of the NN layers Glorot uniform (Glorot & Bengio, 2010)
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