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ON OVERLOAD IN A STORAGE MODEL, WITH A SELF-SIMILAR
AND INFINITELY DIVISIBLE INPUT

BY J. M. P. ALBIN1 AND GENNADY SAMORODNITSKY2

Chalmers University of Technology and Cornell University

Let {X(t)}t≥0 be a locally bounded and infinitely divisible stochastic
process, with no Gaussian component, that is self-similar with index H > 0.
Pick constants γ > H and c > 0. Let ν be the Lévy measure on R[0,∞)

of X, and suppose that R(u) ≡ ν({y ∈ R[0,∞) : supt≥0 y(t)/(1 + ctγ ) > u})
is suitably “heavy tailed” as u → ∞ (e.g., subexponential with positive
decrease). For the “storage process” Y(t) ≡ sups≥t (X(s)−X(t)−c(s− t)γ ),

we show that P{sups∈[0,t (u)] Y(s) > u} ∼ P{Y(t̂(u)) > u} as u → ∞,

when 0 ≤ t̂ (u) ≤ t (u) do not grow too fast with u [e.g., t (u) = o(u1/γ )].

1. Introduction. Let X = {X(t)}t≥0 be an infinitely divisible (i.d.) stochastic
process, with no Gaussian component, that is self-similar with index H > 0
(H -s.s.).

Given constants c > 0 and γ > H , we consider the storage process

Y (t) = sup
s≥t

(
X(s) − X(t) − c(s − t)γ

)
for t ≥ 0.(1.1)

Intuitively, an H -s.s. process grows as tH with time t , and so γ > H should
make Y finite valued. Nevertheless, this is not so in general (see Example 2). The
assumptions in our theorems will, however, ensure such finiteness of Y . The reason
for the name “storage process” comes from the case γ = 1, with X(t) denoting the
total inflow into a storage facility by time t , and c the (demand) rate at which stock
at the facility is depleted; then Y (t) tells how much extra storage capacity one will
need in the future over what is being used at time t . For an input process X with
stationary increments (s.i.), the storage process Y is stationary (if finite).

The process Y has been used in financial applications under the name of
“drawdown” [e.g., Dacorogna, Gençay, Müller and Pictet (2001)], and is important
in queueing applications; for example, to model teletraffic, when X is Gaussian
H -s.s.s.i. (i.e., fractional Brownian motion), with H ≥ 1

2 and linear service γ = 1
[e.g., Norros (1994) and Piterbarg (2001)]. In this case, building on Hüsler and
Piterbarg (1999), Piterbarg [(2001), Theorem 5] gave a version of the remarkable
property (1.2), that was a triggering influence for us. Recognizing this, we name
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that property after him. However, the Gaussian problem Piterbarg studied is very
different from ours with i.d. processes, and his proof, by Gaussian field theory,
does not relate to non-Gaussian settings.

In Section 3 we study the probability for overload during a time interval,

P
{

sup
s∈[0,t]

Y (s) > u

}
as u → ∞.

If for each choice of a constant t > 0, it holds that

lim
u→∞

P{sups∈[0,t] Y (s) > u}
P{Y (t̂(u)) > u} = 1 whenever 0 ≤ t̂ (u) ≤ t,(1.2a)

then we say that the process Y has the Piterbarg property. The similar statement,
for which the length t = t (u) of the interval may depend on the level u,

lim
u→∞

P{sups∈[0,t (u)] Y (s) > u}
P{Y (t̂(u)) > u} = 1 whenever 0 ≤ t̂ (u) ≤ t (u),(1.2b)

will be referred to as the generalized Piterbarg property.
One indication of the unusual behavior of Y is that (1.2) implies, as u → ∞,

P

{
n⋂

i=1

{Y (t̂i) > u}
∣∣∣ sup
s∈[0,t]

Y (s) > u

}

≥ 1 −
n∑

i=1

(
1 − P{Y (t̂i) > u}

P{sups∈[0,t] Y (s) > u}
)

→ 1.

Thus overload periods within [0, t] are long enough to include any t̂1, . . . , t̂n ∈
[0, t].

This last conclusion leads us naturally to the question whether one can replace
the minimum

∧n
i=1 Y (t̂i) taken over a finite collection of points in [0, t] by the

infimum over the entire interval. That is, we would like to know if

lim
u→∞

P{sups∈[0,t] Y (s) > u}
P{infs∈[0,t] Y (s) > u} = 1.(1.2c)

This we call the strong Piterbarg property, whether or not t is a function of u.
With ν being the Lévy measure on R[0,∞) of X (see Section 2.3), denote

R(u) ≡ 1 ∧ ν

({
y ∈ R(0,∞)∩Q : sup

t∈(0,∞)∩Q

y(t)

1 + ctγ
> u

})
for u ∈ R.(1.3)

We will make assumptions about “heavy tails” for the function R (e.g., subex-
ponentiality together with positive decrease; see Section 2.1). Under additional
technical assumptions on X, we establish the generalized Piterbarg property, when
t (u) does not grow too fast with u [e.g., t (u) = o(u1/γ )]. Under the same assump-
tions we will show that the strong Piterbarg property holds as well. Under certain
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weaker assumptions, we prove a weaker so-called O-version of (1.2), that is, that
the probability ratios in (1.2) are bounded away from zero and infinity.

Our main “external tool” in proofs is Theorem 2.1 on subexponential function-
als of i.d. processes by Rosiński and Samorodnitsky (1993); see Section 2.3.

The Piterbarg properties are quite unusual. For example, only a degenerate
α-stable or Gaussian process Y can have them; see Example 7.

In Section 4, we give a discussion, with examples of application, and
counterexamples, for i.d. H -s.s. processes X given as stochastic integrals with
respect to heavy-tailed i.d. random measures (see Section 2.3). This includes
α-stable processes.

2. Classes of functions and stochastic processes. It will be convenient to
devote a separate section to describe classes of functions and stochastic processes,
that feature in the rest of the article. In addition, some basic relations between these
classes, and some important representation properties, are listed for easy reference.

2.1. Classes of functions. In this section, f : R → (0,∞) denotes a nonin-
creasing function with limu→∞ f (u) = 0, and g : R → (0,∞) a measurable func-
tion.

The function f is subexponential, f ∈ S, if there exist independent identically
distributed random variables ξ and η, such that

f (u) ∼ P{ξ > u} and P{ξ + η > u} ∼ 2P{ξ > u} as u → ∞.

The function f is O-regularly varying, f ∈ OR, if

lim inf
u→∞

f (λu)

f (u)
> 0 for some λ > 1.

The function f has positive decrease, f ∈ PD, if

lim sup
u→∞

f (λu)

f (u)
< 1 for some λ > 1.

The function f is extended regularly varying, f ∈ ER, if

lim inf
u→∞

f (λu)

f (u)
≥ λ−b for λ ≥ 1, for some constant b ≥ 0.

NOTE. The definitions of OR, PD and ER are more complicated than those
given above for a general nonmonotone f .

The function g is regularly varying with index ρ ∈ R, g ∈ RV(ρ), if

lim
u→∞

g(λu)

g(u)
= λρ for λ ≥ 1 (or, equivalently, for λ > 0).

Here the convergence must, in fact, be locally uniform.
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Notice that the function g ◦ log belongs to RV(0), which we denote g ∈ L, if

lim
u→∞

g(u + λ)

g(u)
= 1 for λ ≥ 0 (or, equivalently, for λ ∈ R).

We have ER ∩ PD ⊆ OR ∩ PD ∩ S, and a monotone f ∈ ⋃
ρ<0 RV(ρ) belongs

to all these classes. Further, OR ∩ L ⊆ S ⊆ L.
The classes of functions above, and the listed relations between them, are well

known from the literature. See, for example, Bingham, Goldie and Teugels (1987).

2.2. Classes of stochastic processes. In the remainder of this article, X =
{X(t)}t≥0 denotes a separable stochastic process, that is continuous in probability
and locally bounded (bounded on any given compact interval) a.s., and is defined
on a complete probability space (�,F,P). We refer to these requirements as
Condition X. Depending on the context, further requirements on X will be imposed
later.

We write {X̃(t)}t≥0
d= X when the finite-dimensional distributions (f.d.d.’s) of

the processes X̃ and X agree. For example, X is stationary, if X(· + h)
d= X for

h ≥ 0.
The process X has stationary increments, if

X(· + h) − X(h)
d= X − X(0) for each h ≥ 0.

The process X is self-similar with index H > 0 (H -s.s.), if

a−HX(a·) d= X for each a > 0.

The process X is infinitely divisible (i.d.), if for each n ∈ N, there exist
independent processes {X̃1(t)}t≥0, . . . , {X̃n(t)}t≥0, such that

X̃1
d= · · · d= X̃n and X̃1 + · · · + X̃n

d= X.

The process X is α-stable, α ∈ (0,2], if for each n ∈ N, there exists a constant
process Cn, such that, taking independent copies {X̃k}nk=1 of X,

n−1/α(X̃1 + · · · + X̃n) + Cn
d= X.

In particular, it turns out, the process X is Gaussian if and only if it is two-stable.
The process X is strictly α-stable if, taking independent copies {X̃k}∞k=1 of X,

n−1/α(X̃1 + · · · + X̃n)
d= X for n ∈ N.

A process X is H -s.s. if and only if the Lamperti transformed process
e−H ·X(e·) is stationary [Lamperti (1962)].

α-stable processes are i.d. Clearly, an α-stable process X is strictly α-stable if

it is symmetric α-stable (SαS) (α-stable with X
d= − X).

Of course, the classes of processes mentioned above are all quite basic, as are the
indicated relations between. See, for example, Samorodnitsky and Taqqu (1994)
for further information, and for an extensive bibliography.
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2.3. I.d. stochastic processes. The f.d.d.’s of an i.d. process {X(t)}t∈T , T =
[0,∞), with no Gaussian component, can be described by means of a Lévy
measure ν on the cylindrical σ -algebra B on RT , and a localization parameter
µ ∈ RT .

Let πτ be the projection of RT on Rτ , and let Bτ be the Borel sets in Rτ , for
τ ∈ T ≡ {τ ⊆ T : 1 ≤ #τ < ∞}. According to Maruyama (1970), a measure ν

on B is a Lévy measure for X, if ν ◦ π−1
τ is a Lévy measure on Bτ [i.e,

if 1 ∧ | · |2 ∈ L1(Rτ , ν ◦ π−1
τ )] for each τ ∈ T , and there exists a µ ∈ RT such

that

E
{
ei〈θ,X〉} = exp

{
i〈θ,µ〉 +

∫
RT

(
ei〈θ,x〉 − 1 − i〈θ, κ(x)〉)dν(x)

}
(2.1)

for θ ∈ R(T ).

Here we use the notation

R(T ) = {
x ∈ RT : #{t ∈ T :x(t) �= 0} < ∞}

,

〈x, y〉 = ∑
t∈T

x(t)y(t) for x ∈ R(T ) and y ∈ RT ,

κ(x)(t) = x(t)1[−1,1](|x(t)|) for x ∈ RT and t ∈ T .

[A general i.d. X can be represented as X
d= X1 + X2, with X1 and X2

independent, X1 i.d. with no Gaussian component as in (2.1), and X2 zero-mean
Gaussian

E
{
ei〈θ,X2〉} = exp

{
−1

2

∑
s,t∈T,θ(s),θ(t) �=0

θ(s)θ(t)E{X2(s)X2(t)}
}

for θ ∈ R(T ).]
We now turn to the task of constructing and representing i.d. processes.
Let (S,S, λ) be a σ -finite measure space, and put S0 ≡ {A ∈ S :λ(A) < ∞}.

An (independently scattered) i.d. random measure (with no Gaussian component),
with control measure λ, is a map M :S0 → L0(�,F) such that, for A ∈ S0,

E
{
eiθM(A)} = exp

{∫
A

(
iθm +

∫
R

(
eiθx − 1 − iθκ(x)

)
ρ(·, dx)

)
dλ

}
(2.2)

for θ ∈ R.

Here the localization m ∈ L0(S) satisfies {1Am}A∈S0 ⊆ L1(S,λ), while ρ(s, ·) is
a Lévy measure on R for s ∈ S, such that ρ(·,B) ∈ L0(S) for Borel sets B ⊆ R,
and

F(A × ·) ≡
∫
A

ρ(s, ·)λ(ds) is a Lévy measure on R for each A ∈ S0.(2.3)
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The stochastic integral
∫
S f dM is well defined (in a P-sense), for f ∈ L0(S)

with ∫
S

∫
R
(1 ∧ |xf |2)ρ(·, dx) dλ

∨
∫
S

∣∣∣∣mf +
∫

R

(
κ(xf ) − f κ(x)

)
ρ(·, dx)

∣∣∣∣dλ < ∞
(2.4)

[Rajput and Rosiński (1989), Section 2]. In that case,
∫
S f dM is i.d., with

E
{

exp
(
iθ

∫
S
f dM

)}

= exp
{∫

S

(
iθmf +

∫
R

(
eiθxf − 1 − iθκ(x)f

)
ρ(·, dx)

)
dλ

}
.

(2.5)

In the language of (2.1), the (process consisting of a) single i.d. random variable∫
S f dM has Lévy measure ν on R, and localization parameter µ ∈ R, given by

ν(B) = F
({(s, x) ∈ S × R :xf (s) ∈ B}),

µ =
∫
S

(
mf +

∫
R

(
κ(xf ) − κ(x)f

)
ρ(·, dx)

)
dλ.

In particular, for example, by Feller [(1971), page 571],
∫
S f dM is nonnegative,

if and only if

xf (s) ≥ 0 a.e. (F ),∫
S

(
mf −

∫
R

κ(x)fρ(·, dx)

)
dλ ≥ 0,

∫
S

∫
R
(1 ∧ |xf |)ρ(·, dx) dλ < ∞.

(2.6)

Pick ft ∈ L0(S) satisfying (2.4) for t ≥ 0. The following process is i.d.:

X
d=

{∫
S
ft dM

}
t≥0

(2.7)

with Lévy measure in (2.1) given by ν = F ◦ T −1
f , where S × R � (s, x) �→

Tf (s, x) = xf(·)(s) ∈ R[0,∞). With Q+ = (0,∞) ∩ Q, the function R in (1.3) thus
satisfies

R(u) = 1 ∧
∫
S
ρ

(
s,R

∖[ −u

supt∈Q+ ft(s)−/(1 + ctγ )
,

u

supt∈Q+ ft(s)+/(1 + ctγ )

])
dλ(s).

(2.8)
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By (2.5), the process X in (2.7) is H -s.s., if and only if∫
S

(
ima−H

n∑
j=1

θjfatj

+
∫

R

(
exp

(
ixa−H

n∑
j=1

θjfatj

)
− 1 − iκ(x)a−H

n∑
j=1

θfatj

)
ρ(·, dx)

)
dλ

(2.9)

does not depend on a > 0 for any choice of n ∈ N, t1, . . . , tn ≥ 0 and
θ1, . . . , θn ∈ R. Similarly, X is H -s.s.s.i., if and only if X(0) = 0, and, with obvious
notation,∫

S

(
ima−H 〈θ, fat+h − fh〉

+
∫

R

(
eixa−H 〈θ,fat+h−fh〉 − 1 − iκ(x)a−H 〈θ, fat+h − fh〉

)
ρ(·, dx)

)
dλ

does not depend on a,h > 0 for any choice of n ∈ N, t1, . . . , tn ≥ 0 and
θ1, . . . , θn ∈ R.

Notice that X(0) = 0, if and only if mf0 = 0 a.e. (λ) and xf0(s) = 0 a.e. (F ).

EXAMPLE 1. Define a Lévy measure µ on R with
∫ 1
−1 |x|dµ(x) < ∞,

by µ((−∞,−x)) = r(−x) and µ((x,∞)) = r(x) for x ≥ 0 [µ({0}) = 0], for a
nonnegative r ∈ L0(R) ∩ L1([−1,1]) that is monotone and vanishes at infinity on
both half-lines.

Pick an H > 0. Let M be an i.d. random measure on (0,∞) (equipped with the
Borel σ -algebra), with Lebesgue control measure, and with

ρ(s,B) = Hs−1µ(s−HB) and m(s) =
∫

R
κ(x)ρ(s, dx).

Pick f ∈ L0((0,∞)) satisfying (2.4). Consider the i.d. process X in (2.7), where

ft (s) =
{

f (s/t), if t > 0,
0, if t = 0,

for s > 0.(2.10)

This process X is H -s.s., since the integral (2.9) evaluates to∫ ∞
0

∫
R

(
exp

(
ixa−H

n∑
j=1

θjf
(
s/(atj )

)) − 1

)
Hµ(s−Hdx)

s
ds

=
∫ ∞

0

∫
R

(
exp

(
ix̃

n∑
j=1

θjf (s̃/tj )

)
− 1

)
Hµ(s̃−H dx̃)

s̃
ds̃.

Moreover, we get that X is P-continuous, from the fact that

E
{
eiθ(X(t+h)−X(t))}

= exp
{∫ ∞

0

∫
R

(
eiθx(f (s/(t+h))−f (s/t)) − 1

)Hµ(s−Hdx)

s
ds

}
.
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If f = 1(0,1], then X has independent increments, so that P-continuity and
separability give local boundedness [e.g., Sato (1999), Theorem 11.5].

We conclude this section by stating a special case of Rosiński and Samorodnitsky
[(1993), Theorem 2.1], that is sufficient for our needs, for easy reference.

THEOREM A. Let {X(t)}t∈T be an i.d. stochastic process with no Gaussian
component, and with Lévy measure ν given by (2.1). Assume that the parameter
space T is countable, and that

P
{

sup
t∈T

|Z(t)| < ∞
}

= 1.

If the function

H(u) ≡ 1 ∧ ν

({
y ∈ RT : sup

t∈T

y(t) > u

})

is subexponential, then we have

lim
u→∞

1

H(u)
P

{
sup
t∈T

Z(t) > u

}
= 1.

2.4. Representation of H -s.s. α-stable processes. Let X be strictly α-stable
H -s.s., with α ∈ (0,2). In the case α = 1, assume in addition that X is SαS.

Let w0 ∈ L0(S) be positive, and pick a constant β ∈ [−1,1] (β = 0 if α = 1).
Let M be an i.d. random measure (see Section 2.3), with control measure λ, and
with

ρ(s, dx) = w0(s)
(
(1 − β)1(−∞,0)(x) + (1 + β)1(0,∞)(x)

) dx

(2α)|x|α+1 ,

m(s) =




∫
R

κ(x)ρ(s, dx), if α < 1,

0, if α = 1,∫
R
[κ(x) − x)]ρ(s, dx), if α > 1.

We say that M is a strictly α-stable random measure. [It is an exercise to deduce
from (2.2) that M(A) is strictly α-stable (SαS if α = 1), for A ∈ S0.]

There exists {ft}t≥0 ⊆ Lα(S,w0λ) [which is what (2.4) reduces to here], such
that X satisfies (2.7), for some β ∈ [−1,1] (e.g., β = ±1 works if α �= 1).

Now a process given by (2.7) is strictly α-stable. Denoting x〈α〉 = |x|α sign(x),
(2.5) shows that X is H -s.s., if and only if f0 = 0 a.e. (λ), and the following
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integrals do not depend on a > 0 for any choice of n ∈ N, t1, . . . , tn ≥ 0 and
θ1, . . . , θn ∈ R:∫

S

∣∣∣∣∣a−H
n∑

j=1

θjfatj

∣∣∣∣∣
α

w0 dλ and β

∫
S

(
a−H

n∑
j=1

θjfatj

)〈α〉
w0 dλ.

Further, X is H -s.s.s.i., if and only if f0 = 0 a.e. (λ), and the following integrals do
not depend on a,h > 0 for any choice of n ∈ N, t1, . . . , tn ≥ 0 and θ1, . . . , θn ∈ R:∫

S

∣∣∣∣∣a−H
n∑

j=1

θj

(
fatj +h − fh

)∣∣∣∣∣
α

w0 dλ

and

β

∫
S

(
a−H

n∑
j=1

θj

(
fatj+h − fh

))〈α〉
w0 dλ.

REMARK. Much is known about the class of H -s.s.s.i. α-stable processes,
that is very rich for α < 2, unlike the Gaussian case. See, for example,
Samorodnitsky and Taqqu (1994), Surgailis, Rosínski, Mandrekar and Cambanis
(1998), Burnecki, Rosiński and Weron (1998) and Pipiras and Taqqu (2002a, b).

For H ∈ (1/α,1] with α > 1, and for H = 1/α > 1, it is known that (separable)
H -s.s.s.i. α-stable processes are locally bounded. For other values of H and α,
local boundedness is not determined by H and α, and there exist both locally
bounded and unbounded processes. Precise conditions for local boundedness are
known for α < 1. See Kôno and Maejima (1991) and Samorodnitsky and Taqqu
(1990, 1994).

3. Overload and the Piterbarg properties. Here we first study the probabil-
ity for overload P{Y (t) > u}, and then the Piterbarg properties (1.2).

The next assumptions limit the effect of the left tail of X on the right tail of Y :

lim sup
u→∞

P{X(1) < −ε(t (u)u−1/γ )−H u1−H/γ }
R(u1−H/γ )

< ∞ for all ε > 0,(3.1)

lim
u→∞

P{X(1) < −ε(t (u)u−1/γ )−H v(u1−H/γ )}
R(u1−H/γ )

= 0 for some ε > 0.(3.2)

Here (3.1) is used together with the growth condition indicated in the Introduction

lim sup
u→∞

t (u)

u1/γ
< ∞.(3.3)

In (3.2), v : R → (0,∞) is a suitably selected function, with the following
properties:

lim sup
u→∞

v(u)

u
< ∞ and lim

u→∞
t (u)

u1/γ (v(u1−H/γ )/u1−H/γ )1/(H∧1)
= 0.(3.4)
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In the hypothesis of Theorem 1, (3.1) follows from (3.3) [by (3.11) and
R ∈ OR], while (3.2) follows from (3.4) [by (3.20) and R ∈ PD], provided that

lim sup
u→∞

P{X(1) < −u}
P{sups∈[0,1] X(s) > u} < ∞.(3.5)

Notice that (3.5) holds if, for example, X(1) is symmetric or nonnegative.

THEOREM 1. Let X be H -s.s. and i.d. with no Gaussian component, satisfying
Condition X. Consider the process Y , given by (1.1), with c > 0 and γ > H

constants. Suppose that the function R, given by (1.3) [with ν given by (2.1)],
belongs to S ∩ PD. Then Y (t) < ∞ a.s. for each t ≥ 0, and

lim
u→∞

P{Y (0) > u}
R(u1−H/γ )

= 1.(3.6)

(i) If X is s.i., then for t (u) ≥ 0,

lim
u→∞

P{Y (t (u)) > u}
R(u1−H/γ )

= 1.(3.7)

(ii) If R ∈ OR and t (u) ≥ 0 satisfies (3.1) and (3.3), then we have

0 < lim inf
u→∞

P{Y (t (u)) > u}
R(u1−H/γ )

≤ lim sup
u→∞

P{Y (t (u)) > u}
R(u1−H/γ )

< ∞.(3.8)

(iii) If there exists a function v satisfying (3.4), such that

lim
u→∞

R(u − v(u))

R(u)
= 1,(3.9)

and such that (3.2) holds, then (3.7) holds.

PROOF. Let R ∈ S ∩ PD, and denote ĉ = 2γ /c. For every t ≥ 0, we have,
for u > 0,

P{Y (t) > u} ≤ P
{
X(t) < −u

2

}

+ P
{

sup
t≤s<2t

X(s) >
u

2

}
+ P

{
sup
s≥2t

(
X(s) − sγ /ĉ

)
>

u

2

}
.
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Since X is locally bounded, the first two terms on the right go to zero as u → ∞.
Furthermore, we can bound from above the third term by

P
{

sup
0≤s≤u1/γ

X(s) >
u

2

}
+

∞∑
j=0

P
{

sup
2j u1/γ ≤s≤2j+1u1/γ

X(s) >
2γju

ĉ

}

= P
{

sup
s∈[0,1]

X(s) >
u1−H/γ

2

}

+
∞∑

j=0

P
{

sup
s∈[1/2,1]

X(s) >
2(γ−H)ju1−H/γ

ĉ

}

≤ 2
∞∑

j=0

P
{

sup
s∈[0,1]

X(s)

1 + csγ
>

2(γ−H)ju1−H/γ

(1 + c)(2 ∨ ĉ)

}
.

(3.10)

Here R ∈ S, together with Theorem A, gives

lim sup
u→∞

1

R(u)
P

{
sup

s∈[0,1]
X(s) > (1 + c)u

}

≤ lim sup
u→∞

1

R(u)
P

{
sup

s∈[0,1]
X(s)

1 + csγ
> u

}
≤ 1.

(3.11)

Here and in future applications of Theorem A, we use that the process under
consideration is separable and P-continuous. Hence it is enough to consider
suprema over any countable dense subset of the parameter space of that process
[e.g., Samorodnitsky and Taqqu (1994), Exercise 9.3], which we take to be the
rational numbers in the interior of the parameter space (when that parameter space
is an interval).

Our R ∈ PD has a so-called upper Matuszewska index a < 0 [e.g., Bingham,
Goldie and Teugel (1987), page 71] such that, given −a ∈ (a,0) and λ0 > 0,

R(λu)

R(u)
≤ Cλ−a for λ ≥ λ0 and u large enough,

for some C > 0. Hence the right-hand side of (3.10) is at most

2
∞∑

j=0

2R

(
2(γ−H)ju1−H/γ

(1 + c)(2 ∨ ĉ)

)

≤ 4C(1 + c)a(2 ∨ ĉ)a

( ∞∑
j=0

2−a(γ−H)j

)
R(u1−H/γ )

for u large enough. This proves the fact that Y (t) < ∞ a.s. �
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Further, by self-similarity and Theorem A [cf. (3.11)],

P{Y (0) > u} = P
{

sup
s≥0

X(s)

1 + csγ
> u1−H/γ

}

∼ R(u1−H/γ ) as u → ∞.

(3.12)

PROOF OF (i). For X s.i., Y is stationary, and so (3.7) is the same thing
as (3.6). �

PROOF OF (ii). By (3.3), we have, for some θ ∈ (0,1), for all u large enough,

θ ≤ inf
s≥tu−1/γ

1 + c(s − tu−1/γ )γ

1 + csγ
≤ sup

s≥tu−1/γ

1 + c(s − tu−1/γ )γ

1 + csγ
≤ 1(3.13)

[where t = t (u)]. Using self-similarity, we therefore obtain, for u large enough,

P{Y (t) > u} = P
{

sup
s≥tu−1/γ

X(s) − X(tu−1/γ )

1 + c(s − tu−1/γ )γ
> u1−H/γ

}



≥ P
{

sup
s≥tu−1/γ

X(s) − X(tu−1/γ )

1 + csγ
> u1−H/γ

}
,

≤ P
{

sup
s≥0

X(s) − X(tu−1/γ )

1 + csγ
> θu1−H/γ

}
.

(3.14)

Notice that, denoting

η1(u) = (tu−1/γ )−H
(
1 + c(Ktu−1/γ )γ

)
,

η2(u) = (tu−1/γ )−H
(
1 ∨ (Ktu−1/γ )

)γ
,

for a constant K ≥ 1, we obtain

P
{

sup
s≥tu−1/γ

X(s) − X(tu−1/γ )

1 + csγ
> u1−H/γ

}

≥ P
{

sup
s≥Ktu−1/γ

X(s) − X(tu−1/γ )

1 + csγ
> u1−H/γ

}

≥ P
{

sup
s≥Ktu−1/γ

X(s)

1 + csγ
> 2u1−H/γ

}

− P
{
X(tu−1/γ ) >

(
1 + c(Ktu−1/γ )γ

)
u1−H/γ

}
= P

{
sup
s≥1

X(s)

1 + c(Ktu−1/γ )γ sγ
> 2(Ktu−1/γ )−H u1−H/γ

}

− P{X(1) > η1(u)u1−H/γ }(3.15)



832 J. M. P. ALBIN AND G. SAMORODNITSKY

≥ P
{

sup
s≥1

X(s)

1 + csγ
>

2η2(u)u1−H/γ

KH

}

− P
{

sup
s≥0

X(s)

1 + csγ
>

η1(u)u1−H/γ

1 + c

}
.

Here we have, picking a constant L ≥ 1,

P
{

sup
s≥0

X(s)

1 + csγ
> u

}

≤ P
{

sup
s≥L−1

X(s)

1 + csγ
> u

}
+ P

{
sup

0≤s≤L−1

X(s)

1 + csγ
> u

}

= P
{

sup
s≥1

X(s/L)

1 + c(s/L)γ
> u

}
+ P

{
sup

0≤s≤1

X(s/L)

1 + csγ

1 + csγ

1 + c(s/L)γ
> u

}

≤ P
{

sup
s≥1

X(s)

1 + csγ
>

u

Lγ−H

}
+ P

{
sup
s≥0

X(s)

1 + csγ
>

LHu

1 + c

}
.

It follows from (3.12) and the fact that R ∈ PD that, if L is large enough, then

lim sup
u→∞

P
{

sup
s≥0

X(s)

1 + csγ
>

LHu

1 + c

}/
P

{
sup
s≥0

X(s)

1 + csγ
> u

}
<

1

2
.

Fixing L such that this relation holds, we get immediately

P
{

sup
s≥1

X(s)

1 + csγ
>

u

Lγ−H

}
≥ 1

2
P

{
sup
s≥0

X(s)

1 + csγ
> u

}

for u large enough. Therefore, by (3.12),

lim inf
u→∞

1

R(Lγ−Hu)
P

{
sup
s≥1

X(s)

1 + csγ
> u

}
≥ 1

2
.(3.16)

Since R ∈ PD, and lim supu→∞ η2(u)/η1(u) < ∞, we get from (3.12)
and (3.16),

lim inf
u→∞ P

{
sup
s≥1

X(s)

1 + csγ
>

2η2(u)u1−H/γ

KH

}

× P
{

sup
s≥0

X(s)

1 + csγ
>

η1(u)u1−H/γ

1 + c

}−1

≥ 1

2
lim inf
u→∞ R

(
2Lγ−Hη2(u)u1−H/γ

KH

)/
R

(
η1(u)u1−H/γ

1 + c

)

≥ 2

(3.17)
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for all K large enough [where ηi(u)u1−H/γ → ∞ for i = 1,2]. Fixing K ≥ 1 such
that (3.17) holds, we may apply (3.16) and (3.17) on the last row of (3.15), to get

lim inf
u→∞

1

R(u1−H/γ )
P

{
sup

s≥tu−1/γ

X(s) − X(tu−1/γ )

1 + csγ
> u1−H/γ

}

≥ 1

2
lim inf
u→∞

1

R(u1−H/γ )
P

{
sup
s≥1

X(s)

1 + csγ
>

2η2(u)u1−H/γ

KH

}

≥ 1

4
lim inf
u→∞

R(2K−HLγ−H η2(u)u1−H/γ )

R(u1−H/γ )

> 0,

using R ∈ OR for the last inequality. By (3.14), this gives the lower bound in (3.8).
The corresponding upper bound in (3.8) follows from (3.14). This is so because

lim sup
u→∞

1

R(u1−H/γ )
P

{
sup
s≥0

X(s) − X(tu−1/γ )

1 + csγ
> θu1−H/γ

}

≤ lim sup
u→∞

1

R(u1−H/γ )
P

{
sup
s≥0

X(s)

1 + csγ
>

θ

2
u1−H/γ

}

+ lim sup
u→∞

P{−X(tu−1/γ ) > (θ/2)u1−H/γ }
R(u1−H/γ )

,

which is finite, by (3.1) and (3.12), together with self-similarity and R ∈ OR. �

PROOF OF (iii). We have

1 − O
(
(tu−1/γ )γ∧1) ≤ inf

s≥tu−1/γ

1 + c(s − tu−1/γ )γ

1 + csγ

≤ sup
s≥tu−1/γ

1 + c(s − tu−1/γ )γ

1 + csγ

≤ 1

(3.18)

as u → ∞. Here (3.4) shows that, with obvious notation,

O
(
(tu−1/γ )γ∧1) ≤ o

((
v(u1−H/γ )/u1−H/γ

)(γ∧1)/(H∧1)
)

≤ o
(
v(u1−H/γ )/u1−H/γ

)
.

This gives us the following version of (3.14), that for u large enough:

P{Y (t) > u}




≥ P
{

sup
s≥tu−1/γ

X(s) − X(tu−1/γ )

1 + csγ
> u1−H/γ

}
,

≤ P
{

sup
s≥0

X(s) − X(tu−1/γ )

1 + csγ
> u1−H/γ − εv(u1−H/γ )

}
.

(3.19)
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To bound the ratio in (3.7) from below, use self-similarity, (3.4) and (3.12),
to get

P
{

sup
s∈[0,tu−1/γ ]

X(s) > εv(u1−H/γ )

}

≤ P
{

sup
s≥0

X(s)

1 + csγ
>

εv(u1−H/γ )

(1 + c)(tu−1/γ )H

}

≤ P
{

sup
s≥0

X(s)

1 + csγ
> Ku1−H/γ

}

∼ R
(
Ku1−H/γ

)
as u → ∞,

(3.20)

for any constant K ≥ 1. Hence (3.19), together with (3.9) and (3.12), give that

lim inf
u→∞

P{Y (t) > u}
R(u1−H/γ )

≥ lim inf
u→∞

1

R(u1−H/γ )
P

{
sup
s≥0

X(s)

1 + csγ
> u1−H/γ − 2εv(u1−H/γ )

}

− lim sup
u→∞

P{X(tu−1/γ ) > εv(u1−H/γ )}
R(u1−H/γ )

− lim sup
u→∞

1

R(u1−H/γ )
P

{
sup

s∈[0,tu−1/γ )

X(s) > εv(u1−H/γ )

}

≥ 1 − 2 lim sup
u→∞

R(Ku1−H/γ )

R(u1−H/γ )
→ 1 as K → ∞,

since R ∈ PD. Of course, this establishes that

lim inf
u→∞

P{Y (t) > u}
R(u1−H/γ )

≥ 1.

On the other hand, since (3.9) and monotonicity of R give R(u−λv(u)) ∼ R(u)

for any λ ∈ R, (3.19) together with (3.2), (3.9) and (3.12), show that

lim sup
u→∞

P{Y (t) > u}
R(u1−H/γ )

≤ lim sup
u→∞

1

R(u1−H/γ )
P

{
sup
s≥0

X(s)

1 + csγ
> u1−H/γ − 2εv(u1−H/γ )

}

+ lim sup
u→∞

P{−X(1) > ε(tu−1/γ )−H v(u1−H/γ )}
R(u1−H/γ )

= 1 + 0. �
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To establish the Piterbarg property, we make use of the following assumptions:

lim sup
u→∞

P{infs∈[0,1] X(s) < −ε(t (u)u−1/γ )−Hu1−H/γ }
R(u1−H/γ )

< ∞
(3.21)

for all ε > 0,

lim
u→∞

P{infs∈[0,1] X(s) < −ε(t (u)u−1/γ )−Hv(u1−H/γ )}
R(u1−H/γ )

= 0
(3.22)

for some ε > 0.

Assumption (3.21) will be used together with the growth condition (3.3), while in
assumption (3.22), v is a suitably selected function that satisfies (3.4).

In the hypothesis of Theorem 2, (3.21) follows from (3.3) [by (3.11) and
R ∈ OR], while (3.22) follows from (3.4) [by (3.20) and monotonicity of R], when

lim sup
u→∞

P{infs∈[0,1] X(s) < −u}
P{sups∈[0,1] X(s) > u} < ∞.(3.23)

Clearly, (3.23) holds for X symmetric or nonnegative. Otherwise, (3.21)
and (3.22) could possibly be verified by Theorem A, for − infs∈[0,1] X(s) subex-
ponential, or by Albin [(1998), Theorem 3 and Sections 8 and 9].

THEOREM 2. Let X be H -s.s. and i.d. with no Gaussian component, satisfying
Condition X. Consider the process Y , given by (1.1), together with the function R,
given by (1.3), where c > 0 and γ > H are constants.

(i) Let R ∈ S∩OR∩PD. If (3.3) and (3.21) hold, we have, for 0 ≤ t̂ (u) ≤ t (u),

1 ≤ lim inf
u→∞

P{sups∈[0,t (u)] Y (s) > u}
P{Y (t̂(u)) > u}

≤ lim sup
u→∞

P{sups∈[0,t (u)] Y (s) > u}
P{Y (t̂(u)) > u} < ∞.

(ii) Let R ∈ S ∩ PD. Take t (u) and v such that (3.4), (3.9) and (3.22) hold. The
process Y has the strong Piterbarg property (1.2c).

PROOF OF (i). It is enough to show the upper bound. Using (3.13) and (3.14),
we get

P
{

sup
s∈[0,t]

Y (s) > u

}

= P
{

sup
0≤r≤tu−1/γ

sup
s≥r

X(s) − X(r)

1 + c(s − r)γ
> u1−H/γ

}

≤ P
{

sup
s≥0

X(s)

1 + csγ
>

θu1−H/γ

2

}
+ P

{
sup

0≤r≤tu−1/γ

−X(r) >
θu1−H/γ

2

}
(3.24)
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for some θ ∈ (0,1). Therefore, self-similarity, (3.12), (3.21) and R ∈ OR, give

lim sup
u→∞

P{sups∈[0,t] Y (s) > u}
R(u1−H/γ )

< ∞.

Now the upper bound desired follows from (3.8) [notice that (3.21) implies (3.1)].
�

PROOF OF (ii). Using (3.18) together with (3.4), as in the last paragraph of
the proof of part (iii) of Theorem 1, we may readily modify the estimate (3.24) to
obtain

P
{

sup
s∈[0,t]

Y (s) > u

}

≤ P
{

sup
s≥0

X(s)

1 + csγ
> u1−H/γ − εv(u1−H/γ )

}

+ P
{

sup
0≤r≤tu−1/γ

−X(r) > εv(u1−H/γ )

}
.

By application of (3.9) together with (3.12) and (3.22), this shows that

lim sup
u→∞

P{sups∈[0,t] Y (s) > u}
R(u1−H/γ )

≤ 1.

On the other hand,

P
{

inf
s∈[0,t]Y (s) > u

}

= P
{

inf
0≤r≤tu−1/γ

sup
s≥r

X(s) − X(r)

1 + c(s − r)γ
> u1−H/γ

}

≥ P
{

inf
0≤r≤tu−1/γ

(
sup
s≥r

X(s)

1 + c(s − r)γ
− X(r)+

)
> u1−H/γ

}

≥ P
{

inf
0≤r≤tu−1/γ

sup
s≥r

X(s)

1 + csγ
− sup

0≤r≤tu−1/γ

X(r)+ > u1−H/γ

}

= P
{

sup
s≥tu−1/γ

X(s)

1 + csγ
− sup

0≤r≤tu−1/γ

X(r)+ > u1−H/γ

}
,

and, as was established in the proof of Theorem 1, this gives us

lim inf
u→∞

P{infs∈[0,t] Y (s) > u}
R(u1−H/γ )

≥ 1.

Hence the strong Piterbarg property. �

Here are two easy corollaries to Theorems 1 and 2, that make use of (3.23):
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COROLLARY 1. Let X be H -s.s. and i.d. with no Gaussian component,
satisfying Condition X. Let the function R belong to S ∩ PD, and assume
that (3.23) holds.

(i) The Piterbarg property holds for γ ≤ H + (H ∧ 1).
(ii) If (3.9) holds for v(u) = (1 ∨ u)β , for some β ∈ (0,1), then the Piterbarg

property holds for γ < H + (H ∧ 1)/(1 − β). Hence, if (3.9) holds for v(u) =
(1 ∨ u)β , for each β ∈ (0,1), then the Piterbarg property holds for any γ > H .

PROOF OF (i). By part (ii) of Theorem 2, together with an inspection
of (3.4), it is enough to exhibit a positive function v, with limu→∞ v(u) = ∞ and
lim supu→∞ v(u)/u < ∞, that satisfies (3.9). This is easy: Let b0 = 0, b1 = 1 and

bi+1 = inf
{
u ≥ max(bi,2i) : inf

x≥u

R(x)

R(x − i)
≥ 1 − 1

i

}
for i ≥ 1.

Since R ∈ S ⊆ L (see Section 2.1), this is an increasing to infinity sequence of
finite nonnegative numbers, and we may now choose

v(u) = i if u ∈ [bi, bi+1) for i ≥ 1 and v(u) = 1 for u < 1. �

PROOF OF (ii). Once again, the result follows from part (ii) of Theorem 2,
by means of checking that (3.4) holds for γ < H + (H ∧ 1)/(1 − β), when
v(u) = (u ∨ 1)β . �

In Part II of Example 5, below we see that the Piterbarg property may be absent,
when, in the notation of part (ii) of Corollary 1, γ ≥ H + 1/(1 − β).

COROLLARY 2. Let X be H -s.s. and i.d. with no Gaussian component,
satisfying Condition X. Let the function R belong to S ∩ PD, and assume
that (3.23) holds.

(i) The strong Piterbarg property holds for t (u) ≥ 0 such that

lim sup
u→∞

t (u)

u1/γ−(1−H/γ )/(H∧1)
< ∞.

(ii) If (3.9) holds for v(u) = (1 ∨ u)β , for some β ∈ (0,1), then the strong
Piterbarg property holds for t (u) ≥ 0 such that

lim
u→∞

t (u)

u1/γ−(1−β)(1−H/γ )/(H∧1)
= 0.(3.25)

(iii) If (3.9) holds for every v(u) = o(u), then the strong Piterbarg property
holds for each t (u) = o(u1/γ ).

Corollary 2 is proved in the same way as Corollary 1.
Notice that the intervals with length t (u) as in (3.25), for which the strong

Piterbarg property holds, do in fact shrink with u, unless γ < H +(H ∧1)/(1−β).
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4. Discussion and examples. Here we present points of view on the results
of Section 3. Examples are given, where the input process X is represented in the
form of a stochastic integral, with respect to an i.d. random measure.

We first exemplify that the storage process does not have to be finite valued, in
general. (Obviously, this does not happen under the assumptions of our results.)

EXAMPLE 2. For standard Brownian {B(t)}t≥0 motion, and a nondecreasing
function f : (0,∞) → (0,∞), by the Kolmogorov–Petrowski integral test,{

B(t) ≤ √
2tf (t) for t ≥ T, for some T = T (ω) < ∞}

is a zero-one event, or in other words,

P
{
B(t) ≤ √

2tf (t) ultimately as t → ∞} = 0 or 1,

with the probability being 1 if and only if∫ ∞
t0

f (t)

t
exp{−f (t)2}dt < ∞ for some t0 ≥ 0

[e.g., Bingham (1986), page 436]. From this we get that

P
{
B(t)2

2t
≤ ln ln t + 3 ln ln ln t

2
ultimately as t → ∞

}
= 0.(4.1)

Consider the following H -s.s. process X:

X(t) = tH exp
{

exp
[
B(t)2

2t

]}
for t > 0.(4.2)

From (4.1) it follows readily that

lim sup
t→∞

X(t)

tγ
= ∞ w.p.1 for γ ∈ R.

Hence, the storage process Y (t) in (1.1), with input X given by (4.2), is not finite

valued for any t ≥ 0. [Incidentally, using the fact that {tB(1/t)}t≥0
d= {B(t)}t≥0

together with (4.1), it can be seen that the process X is not bounded at zero.]

4.1. I.d. H -s.s. processes. In this section, X denotes the i.d. H -s.s. process
given in Example 1, which is assumed to satisfy Condition X. Notice that, by (2.6),
X is nonnegative, if f is nonnegative (nonpositive) and r is zero on (−∞,0]
([0,∞)).

Denoting, for s > 0,

σ+(s)−1 = sH sup
t∈Q+

f (s/t)+

1 + ctγ
and σ−(s)−1 = sH sup

t∈Q+

f (s/t)−

1 + ctγ
,
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we have, by (2.8), for u large enough,

R(u) = H

∫ ∞
0

µ
(
R \ [−σ−(s)u,σ+(s)u]) ds

s

= H

∫ ∞
0

(
r
(
σ+(s)u

) + r
(−σ−(s)u

)) ds

s
.

(4.3)

EXAMPLE 3. Let r be symmetric, with r ∈ RV(−ρ) for some ρ > 0. By (2.2),
it follows that X is symmetric. Assume that for some ε > 0,∫ ∞

0

(
σ+(s)−(ρ+ε) + σ−(s)−(ρ+ε)

) ds

s
< ∞.(4.4)

Then by (4.3), we have

R(u) ∼ H

∫ ∞
0

(
σ+(s)−ρ + σ−(s)−ρ

) ds

s
r(u) as u → ∞.(4.5)

Thus part (ii) of Corollary 1 shows that the Piterbarg property holds for γ > H ,
and part (iii) of Corollary 2 gives the strong Piterbarg property for t (u) = o(u1/γ ).

In Example 3, symmetry gives us (3.23), for free. Without symmetry, we may
still establish the Piterbarg properties, by direct verification of (3.23) [or (3.22)].

EXAMPLE 4. Take f nonnegative, and not identically zero. Assume that

r ∈ RV(−ρ) and r(−·) ∈ RV(−ρ) with lim sup
u→∞

r(−u)

r(u)
< ∞,

for some constant ρ > 0. Under the condition (4.4), we see that (4.5) holds with
σ−(s) = 0. Further, as in (4.5) by Theorem A, the limit in (3.23) is(∫ ∞

0
sHρ sup

r∈(s,∞)∩Q

f (r)ρ
ds

s

/∫ ∞
0

sHρ sup
r∈(s,∞)∩Q

f (r)ρ
ds

s

)

× lim sup
u→∞

r(−u)

r(u)
< ∞.

Hence the Piterbarg properties hold in the same way as in Example 3.

EXAMPLE 5 —Part I. Pick constants A > 0 and α ∈ (0,1), and consider

r(x) = g(x)e−Axα

for x ≥ 0 and r(x) = 0 for x < 0,(4.6)

where g ∈ RV(ρ) with ρ ∈ R. Take f nonnegative, so that X is nonnegative.
Let σ+(s) take its minimal value at a unique ŝ > 0, where σ+ is two times

continuously differentiable at ŝ, with σ ′′+(ŝ) > 0. By Taylor expansion in (4.3), we
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have

R(u) = Hu−α/2
∫ ∞
−ŝuα/2

g(σ+(ŝ + s/uα/2)u)

ŝ + s/uα/2 e−A(σ+(ŝ+s/uα/2))αuα

ds

∼ Hσ+(ŝ)ρ

ŝ
g(u)u−α/2

∫
R

exp
{
−A

(
σ+(ŝ) + 1

2
σ ′′+(ŝ)s2/uα

)α

uα

}
ds

∼
√

2πHσ+(ŝ)ρ

ŝ
√

Aασ ′′+(ŝ)/σ+(ŝ)1−α
g(u)u−α/2e−Aσ+(ŝ)αuα

as u → ∞.

(4.7)

Hence, part (ii) of Corollaries 1 and 2 applies, for β < 1 − α, to give the Piterbarg
property for γ < H + (H ∧ 1)/α, and the strong Piterbarg property for t ≥ 0 with

lim
u→∞

t (u)

u1/γ−a(1−H/γ )/(H∧1)
= 0 for some a > α.

EXAMPLE 5 —Part II. Here we continue the study of the case when r is given
by (4.6), in the particular case when f = 1(0,1] (so that X has independent incre-
ments). We show that, in this case, the Piterbarg property is absent, if γ ≥ H +1/α.

By Theorem 1 and (3.24), the Piterbarg property is absent when

lim sup
u→∞

1

R(u)
P

{
sup

0≤r≤t/u1/(γ −H)

sup
s≥r

X(s) − X(r)

1 + c(s − r)γ
> u

}
> 1.(4.8)

Theorem A does not apply here, since suprema are taken over regions that depend
on u. However, the arguments for that theorem in Rosiński and Samorodnitsky
(1993) produce an asymptotic lower bound, for the probability in (4.8), which
implies the following sufficient condition for (4.8):

lim sup
u→∞

1

R(u)

× ν

{
y ∈ R(0,∞)∩Q : sup

r∈(0,t/u1/(γ −H))∩Q

sup
s∈(r,∞)∩Q

y(s) − y(r)

1 + c(s − r)γ
> u

}

> 1.

(4.9)

Denoting the numerator in (4.9) by Rt(u), we have, by the inequalities γ ≥
H + 1/α and (1 − x)H ≤ 1 − (H ∧ 1)x for x ∈ [0,1], together with (4.7)
[cf. (4.3)],

Rt(u) = H

∫ ∞
0

µ

({
x > 0 :yHx sup

0≤r≤t/u1/(γ −H)

sup
s≥r

1(0,s](y) − 1(0,r](y)

1 + c(s − t)γ
> u

})
dy

y

= H

∫ t/u1/(γ −H)

0
r(y−Hu)

dy

y

+ H

∫ ∞
t/u1/(γ −H)

r

(
1 + c(y − t/u1/(γ−H))γ

yH
u

)
dy

y
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≥ H

∫ ∞
t/u1/(γ −H)

r

(
σ

(
y − t/u1/(γ−H)

)(y − t/u1/(γ−H)

y

)H

u

)
dy

y

≥ H

∫ ∞
t/u1/(γ −H)

r

(
σ

(
y − t/u1/(γ−H))(1 − (H ∧ 1)

t/uα

y

)
u

)
dy

y

∼ Hσ(ŝ)ρ

ŝ
g(u)u−α/2

×
∫

R
exp

{
−A

(
σ(ŝ) + 1

2
σ ′′(ŝ)s2/uα

)α(
uα − (H ∧ 1)

t

ŝ

)}
ds

∼ R(u) exp
{
Aσ(ŝ)α(H ∧ 1)

t

ŝ

}
as u → ∞.

This gives (4.9). [If nervous about this calculation, shrink the domain of integration
from [t/u1/(γ−H),∞) to ŝ ± K/uα/2, and send K ↑ ∞ at the end.]

4.2. α-stable processes. First we consider a storage process Y , with an
α-stable H -s.s. input process X.

EXAMPLE 6. Let X be a strictly α-stable H -s.s. process, that satisfies
Condition X, and is given by (2.7), where M is a strictly α-stable random measure
(SαS if α = 1). By calculations similar to those in Examples 3 and 4, we have

R(u) = 1 ∧ u−α
∫
S

(
1 − β

2
sup
t∈Q+

(ft (s)
−)α

(1 + ctγ )α

+ 1 + β

2
sup
t∈Q+

(ft (s)
+)α

(1 + ctγ )α

)
w0(s) dλ(s).

We assume that the above integral is nonzero, so that R is not identically zero.

Provided that X satisfies (3.23), Corollary 1 now gives the Piterbarg property
for any γ > H , for the storage process Y , while Corollary 2 gives the strong
Piterbarg property for t (u) = o(u1/γ ). However, by Samorodnitsky (1988) [see
also Samorodnitsky and Taqqu (1994), Theorem 10.5.1], the limit in (3.23) is(∫

S

(
1 + β

2
sup

t∈(0,1)∩Q

(f −
t )α + 1 − β

2
sup

t∈(0,1)∩Q

(f +
t )α

)
w0 dλ

)

×
(∫

S

(
1 − β

2
sup

t∈(0,1)∩Q

(f −
t )α + 1 + β

2
sup

t∈(0,1)∩Q

(f +
t )α

)
w0 dλ

)−1

.

This ratio is finite, by the local boundedness of X and the assumption that R is
nonzero.

Next we consider the Piterbarg properties (1.2), in the case when the process Y

itself is α-stable. Now Y is no longer a storage process, and the example simply is
to illustrate how unusual the Piterbarg property is for “usual processes.”
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EXAMPLE 7. For Y = {Y (s)}s≥0 an α-stable process, α ∈ (0,2], we may write
Y = Y1 − Y2 + µ, where µ : [0,∞) → R is a suitable function, while {Y1(s)}s≥0

and {Y2(s)}s≥0 are independent α-stable processes, such that (for j = 1,2
and s ≥ 0)

E
{
eiθYj (s)

} =




exp
{
−σα

Yj (s)|θ |α
(

1 − i tan
(

πα

2

)
sign(θ)

)}
, if α �= 1,

exp
{
−σYj (s)|θ |

(
1 + i

2

π
sign(θ) ln(|θ |)

)}
, if α = 1,

for θ ∈ R.

Here σYj (s) is the scale parameter of the α-stable random variable Yj (s). In the
Gaussian case α = 2, we may take Y1 = 0. We assume that Y satisfies Condition X,
from which it follows that Y1, Y2 and µ can be taken to satisfy Condition X.

We are going to investigate when the Piterbarg property (1.2a) holds.

CASE 1. If Y1
d�= 0, then (1.2a) holds if and only if the f.d.d.’s of Y1 coincide

with those of a single α-stable random variable [Samorodnitsky and Taqqu (1994),
Theorem 10.5.1].

CASE 2. If Y1
d= 0 and α ≥ 1, then (1.2a) holds if and only if the f.d.d.’s of Y2

coincide with those of a single α-stable random variable, and µ is constant.

To see this, notice that σY2 and µ must be constants on [0, t] [Samorodnitsky
and Taqqu (1994), equation 1.2.11]. Given these properties, we have

P
{

sup
s∈[0,t]

Y (s) > u

}

≥ P
{{Y (r) > u} ∪ {Y (s) > u}}

≥ 2P{Y (r) > u} − P
{1

2

(
Y (r) + Y (s)

)
> u

}
(4.10)

for r, s ∈ [0, t]. If α > 1, then the second probability on the right-hand side is
o(P{Y (r) > u}), unless σY(r)+Y (s) = σY(r) + σY(s). By Minkowski’s inequality,
this happens if and only if Y (r) = Y (s) a.s. If α = 1, then the spectral measure �

of (Y (r), Y (s)) [Samorodnitsky and Taqqu (1994), Section 2.3] is supported on
S−

2 = {(s1, s2) ∈ R2 : s2
1 + s2

2 = 1, s1, s2 ≤ 0}, and [Samorodnitsky and Taqqu
(1994), Example 2.3.4]

Y (r) + Y (s)

2

d= Y (r) − 2

π

(∫
S−

2

s1 + s2

2
ln

∣∣∣s1 + s2

2

∣∣∣d�(s) −
∫
S−

2

s1 ln |s1|d�(s)

)
.
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By a convexity argument, unless Y (r) = Y (s) a.s., the term 2
π
(· · ·) on the right-

hand side is strictly positive, so that the second probability on the right-hand side
in (4.10) is o(P{Y (r) > u}) [Samorodnitsky and Taqqu (1994), equation 1.2.12].

See Talagrand (1988) and Albin (1999) for more information related to Case 2.

CASE 3. If Y1
d= 0 and α < 1, then (1.2a) holds (in the sense of 0/0 = 1) since

Y2 is nonnegative.

SPECIAL CASE. If Y is SαS, then (1.2a) holds if and only if the f.d.d.’s of Y

coincide with those of a single α-stable random variable.

Turning to (1.2b), with t = t (u) → ∞ as u → ∞, the above characterizations
remain valid [with (1.2b) replacing (1.2a)], if appropriate global boundedness
properties are imposed on Y2 and µ in Case 1, and on µ in Case 3.

Acknowledgment. We are grateful to an anonymous referee for very useful
comments.
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