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Abstract

It is known that a bent function corresponds to a perfect nonlinear function, which makes it difficult
to do the differential cryptanalysis in DES and in many other block ciphers. In this paper, for an odd
prime p, quadratic p-ary bent functions defined on finite fields are given from the families of p-ary
sequences with optimal correlation property. And quadratic p-ary bent functions, that is, perfect
nonlinear functions from the finite field F},» to its prime field F}, are constructed by using the trace

functions.

1. Introduction

Rothaus introduced bent functions defined on the
m-tuple binary vector space into {0, 1} [14]. A Boolean
function defined on the m-tuple binary vector space
becomes a bent function if its Fourier coefficients only
take the values +1 or —1, which corresponds to the
maximum Hamming distance from the linear Boolean
functions. From the good Fourier transform properties,
they have been used in the many areas such as cryptol-
ogy, constructions of families of binary sequences with
optimal correlation property [13], and error correcting
codes.

A function from Fym to Fy is called a perfect non-
linear function if the number of solutions = € Fym
of f(x+a)— f(x) = b for a € Fyn,b € I, is ex-
actly ¢™~!'. Dembowski and Ostrom introduced a
Dembowski-Ostrom polynomial [2][3], which sometimes
gives rise to a planar polynomial. Nyberg [11] intro-
duced a mapping with differential k-uniformity, which
is the important property for the differential crypt-
analysis in DES and in many other block ciphers.
He also proved that the perfect nonlinear function is
bent[11]. Helleseth introduced the some power map-
pings with low differential uniformity[5][6] and many
other highly nonlinear mappings are introduced by
Carlet and Ding[1].

In this paper, for an odd prime p, quadratic p-ary
bent functions defined on finite fields are given from
the families of p-ary sequences with optimal correlation
property. And quadratic p-ary bent functions, that is,
perfect nonlinear functions from the finite field Fj,m to
its prime field F}, are constructed by using the trace
functions.

2. Preliminaries

1This work was supported in part by BK21 and ITRC pro-
gram of the Korean Ministry of Information and Communica-
tions and the Norwegian Research Council.
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Let z be an integer and V)" be an m-dimensional
vector space over the set of integers modulo z, J,. Let
w=el%, j=/—1. Let f(z) be a function from V™
to J,. The Fourier transform of f(z) and its inverse
transform are defined as
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F(\) = Z wl @2z , all e vm
\/Z7m Ee‘/zm
1 m
wf(g) _ Z F(A) . wtrl (A-QT)7 all z € Vzm

vz Acvm

where 27 denotes transpose of z. Then a generalized
bent function is defined as:

Definition 1 [Kumar, Scholtz, and Welch [8]] : A
function f(z) from V™ to J, is said to be a gener-
alized bent function if the Fourier coefficients F(A) of
f(x) only take the values of unit magnitude for any
Ae V. o

In this paper, it is only considered that the integer
z is an odd prime p. Thus, V™ is the n-dimensional
vector space over the finite field F}, with p elements and
f(z) is a function from V™ to Fy,. A bent function from
V' to F, is called a p-ary bent function instead of a
generalized bent function in this paper.

Let F,m be the finite field with p™ elements. Let
m = ek > 1 for some positive integers e and k. Then
a trace function try’ () is the mapping from Fjm to its
subfield F,x defined by [10] trj"(z) = 20— «#"", where
x is an element in Fpm.

Olsen, Scholtz, and Welch [13] introduced a trace
transform for a function from Fym to F. Then the
trace transform for a function from the finite field F,m
to F}, can be generalized as follows:

Definition 2 [Olsen, Scholtz, and Welch [13]] : Let
f(x) be a function from F,m to F,. Then the trace
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transform of f(x) and its inverse transform are defined
by

1 g
F(N) = — Y /@O a ) e By
p JIGFprn
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fl@) — = Z FO\) -T2 allz e F
w — w , all z € Fym.
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o

It was defined by Nyberg[12] that a function is said
to be differentially k-uniform if the maximum num-
ber of solutions z € Fy, of f(x + a) — f(x) = b, for
a € F;,b € F;is k. Nyberg generalized the perfect
nonlinear functions introduced by Meier and Staffel-
bach as follows.

Definition 3 [Nyberg [11]] : A function f(z) from
V" to J, is perfect nonlinear if for all w € V", w # 0
and k € J,

fz) = flz+w)+k

is satisfied for exactly z™~! values of z € V™. o

Thus the perfect nonlinear function is differentially
g™ '-uniform. Nyberg also proved the relationship be-
tween perfect nonlinear functions and bent functions as

follows.

Theorem 1 [Nyberg [11]] : A perfect nonlinear func-
tion from V™ to J, is bent. The converse is true if z
is a prime. o

In the following section, we introduce p-ary bent
functions from F,m to F}, which correspond to func-
tions with differential p™~!-uniformity, that is, perfect
nonlinear functions. The perfect nonlinearity is the
important property for the differential cryptanalysis
in DES and in many other block ciphers.

3. Construction of p-ary Bent Functions Defined
on Finite Fields

Let o be a primitive element of the finite field Fpm.
By replacing z in F,m by o', a function f(a') from
Fjm to I, can be considered as a p-ary sequence of
period p™ — 1.

From the Welch’s lower bound on the crosscorrela-
tion values[16], the maximum magnitude of the cross-
correlation values of two p-ary sequences of period
p™ — 1 are lower bounded by p% + 1 and they are
said to have optimal correlation property.

From the p-ary sequences proposed by Sidelnikov,
we have the p-ary bent functions defined on Fpm as

fo(x) = tr(b- x?), for any b e Fom.

Kumar and Moreno introduced p-ary sequences with
optimal correlation, which give us the p-ary bent func-
tions defined on Fj,m as

fo(x) =t (b- acph“), for any b € Fm

where e is an odd integer, m = ek, and r is an integer
such that 1 < r < e — 1,gcd(r,e) = 1. The p-ary
Kasami sequences also give us the p-ary bent functions
defined on Fj,~ given by

folz) =tr¥(b-2T), be Fom

where m = 2k and T = p* + 1.
Further, it is possible to construct a p-ary bent func-
tion defined on Fpm as in the following theorem.

Theorem 2 : Let m = 2k or 2k+1. Let a; € F},. The
quadratic p-ary function f(z) from F,m to F, given by

k .
F@) = a3 a; - ') (1)
1=0

is bent, that is, perfect nonlinear if

k
Zai (€4 #£0, forall ,0<I<m—1 (2)
i=0

where € = ¢/ is an m-th root of unity.

Proof : We have to prove that the trace transform

1 BT (a2 TP ) AT (Aem)
F)) = — wzzzo 1A% 1
W= e;n

has the unit magnitude for all A € Fjm. Let y; = '
Then we have
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Ztr’{”(a 2P = Z agtr (x TP
=0 i=0
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where G(y1,y2, - - -
In a similar

{H17H27 e 7ﬂm} and {71772a e
basis of Fjm over F),, that is,

,Ym) 18 a quadratic function on V7.
way to the proof in [7], let
,¥Ym } be a pair of dual

gy = { L=
UM =3 0, otherwise.

Using the basis {p1, pio, -+ -, fim }, we have

m

z = (21,29, -, Tm)?, whenever z = Zmiui € Fym
i=1

and from the dual basis,

x; = tri(zy:), 1 <i<m.

Then we have the relations
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By replacing x in (1) by >/ | @, the quadratic func-
tion defined on V" is given as

H(z) = f(z Tifli)-
i=1

Then we have

G(y) = G(Bz) = H(z).
If there exist common nonzero solutions to the set of
equations %M =0 for all [, H(z1,za2, ,Tm)
is said to be singular.
From the Deligne’s theorem [4], if H(x) is nonsin-
gular, then

| Z Wl @+L@) < %
QGVI:"

where L(z) is any linear function on V™. From the
Parseval theorem, we have

‘ Z wH(§)+L(£)| :p%
ge‘/pm,

which means that F'(A) has the unit magnitude for all
A€ Fpm.
Now we have to check the nonsingularity of H(x).
Since we have
r OH A
Oz
oH
OH o = BT%
Oz Oy’

OH
L 3z, A

it is sufficient to prove the nonsingularity of G(y).
Differentiating G(-), we obtain

8G(y17aym) b
-5 = i i T Yi—i)-
o E ai (Yi+i + Yi—i)

i=0
If there exists no common nonzero solution to

the set of equations %‘m”) = 0 for all I,

that is, Zf:o a; (Yi+i +yi—i) # 0 for all [, then
G(y1,Y2,-**,Ym) is nonsingular.

Thus, in order for G(y1,y2, ", Ym) to be nonsingu-
lar, the circulant matrix over F), for m = 2k + 1 given
by

209 a1 --- ay ap Qp—1 -+ a1
a1 2ap -+ Qp_1 ag ap - Q3
a2 ay -+ OGg—2 Qk—1 ag - as
a2 ag -+ QGg—1 Qg-2 Qag-3 -°° ai
ay  ag - ar ag—1 ag—2 '+ 2ag

or the circulant matrix over F}, for m = 2k given by

200 a1 -+ 24 Qg—1 Q-2 - a1
ar 2a9 -+ Qp_1 2ar Qp_1 -+ a9
az air -+ Qg—2 Gp—1 20 -+ a3
az az -+ Qg2 Q-3 G4 - a1
ay az ' Qg_1 GAg—2 G_3 - 2ap

should have full rank.
It is known [9] that the determinant of the circulant
matrix C = [cg,c1,-+*, Cm—1] 18 given as

m—1

D=]] n

=

where h(z) = ZZBI ¢; - o' and € is an m-th root of

unity.
Thus, the full rank of the matrices in the theorem
is guaranteed if

k
Zai . (6“ —|—e_“) #0, forall,0<I<m-—1.
i=0
o
Using Theorem 2, we can have quadratic p-ary bent
functions as follows.

Corollary 1 : Let I be an index set such that
ged(p, |I]) = 1. Let m be an positive integer such that
ged(m, |I]) = 1. Then the quadratic p-ary function
f(z) from Fpm to F, given by

fla) ="t (@)

i€l
is bent.

Proof : Let x be an element of the set £ = {ej% |0 <
I < m —1}. Then the condition in (2) is written as

> (6" +67) #0, forallseE. (3)

i€l

From gcd(p, |I]) = 1 and ged(m, |I]) = 1, it is easy to
check that (3) is satisfied.
o
Using the result of Theorem 2, we can find the p-ary
bent functions similar to the bent functions by Kumar
and Moreno as follows.



Corollary 2 : Let e be an odd integer and k be an
even integer. Let m = ek. Let r be an integer such
that 1 <r <e—1,ged(r,e) = 1. Then the function on
Fym given by

m_

flx) = e (@
is bent. S

For k = 0, f(xz) becomes the bent function from
p-ary Kasami sequences.

Let g = p™. Dembowski and Ostrom introduced the
Dembowski-Ostrom polynomials[2][3] on F, defined by

m—1m—1 .
ai,lxp‘-s-p (4)
=0 [=0

where a;; € Fy. It is easy to check that for a € F, we
have

3

m—1
flx+a) - a”xpap —|—a:pap)
=0 [

+ a; 0P i ).

I
=

It is known[10] that a p-polynomial is a permutation
polynomial if and only if the p-polynomial only has the
solution “0”. Clearly,

3
3

ai’l(acpia”l + xplapi)

I
<

l

I
=)

i

is a p-polynomial and thus f(z) is a planar polynomial
if for any a € F,

m—1m—1

Z Z ai,l(ibpiapl + a:plapi) #0, forall x € . (5)
i=0 =0

Using the Dembowski-Ostrom polynomials, we can
construct p-ary bent functions defined on Fpm as fol-
lows.

Theorem 3 : Let f(x) be the Dembowski-Ostrom
polynomial defined in (4) satisfying (5). Then the func-
tion tr7*(f(z)) from Fpm to F, is bent. o

From the simulation result, the converse of Theorem
3 is not true.
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