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Abstract

It is known that a bent function corresponds to a perfect nonlinear function, which makes it difficult
to do the differential cryptanalysis in DES and in many other block ciphers. In this paper, for an odd
prime p, quadratic p-ary bent functions defined on finite fields are given from the families of p-ary
sequences with optimal correlation property. And quadratic p-ary bent functions, that is, perfect
nonlinear functions from the finite field Fpm to its prime field Fp are constructed by using the trace
functions.

1. Introduction

Rothaus introduced bent functions defined on the
m-tuple binary vector space into {0, 1} [14]. A Boolean
function defined on the m-tuple binary vector space
becomes a bent function if its Fourier coefficients only
take the values +1 or −1, which corresponds to the
maximum Hamming distance from the linear Boolean
functions. From the good Fourier transform properties,
they have been used in the many areas such as cryptol-
ogy, constructions of families of binary sequences with
optimal correlation property [13], and error correcting
codes.

A function from Fqm to Fq is called a perfect non-
linear function if the number of solutions x ∈ Fqm

of f(x + a) − f(x) = b for a ∈ F ∗qm , b ∈ Fq is ex-
actly qm−1. Dembowski and Ostrom introduced a
Dembowski-Ostrom polynomial [2][3], which sometimes
gives rise to a planar polynomial. Nyberg [11] intro-
duced a mapping with differential k-uniformity, which
is the important property for the differential crypt-
analysis in DES and in many other block ciphers.
He also proved that the perfect nonlinear function is
bent[11]. Helleseth introduced the some power map-
pings with low differential uniformity[5][6] and many
other highly nonlinear mappings are introduced by
Carlet and Ding[1].

In this paper, for an odd prime p, quadratic p-ary
bent functions defined on finite fields are given from
the families of p-ary sequences with optimal correlation
property. And quadratic p-ary bent functions, that is,
perfect nonlinear functions from the finite field Fpm to
its prime field Fp are constructed by using the trace
functions.

2. Preliminaries

1This work was supported in part by BK21 and ITRC pro-
gram of the Korean Ministry of Information and Communica-
tions and the Norwegian Research Council.

Let z be an integer and V m
z be an m-dimensional

vector space over the set of integers modulo z, Jz. Let
ω = ej 2π

z , j =
√−1. Let f(x) be a function from V m

z

to Jz. The Fourier transform of f(x) and its inverse
transform are defined as

F (λ) =
1√
zm

∑

x∈V m
z

ωf(x)−λ·xT

, all λ ∈ V m
z

ωf(x) =
1√
zm

∑

λ∈V m
z

F (λ) · ωtrm
1 (λ·xT ), all x ∈ V m

z

where xT denotes transpose of x. Then a generalized
bent function is defined as:

Definition 1 [Kumar, Scholtz, and Welch [8]] : A
function f(x) from V m

z to Jz is said to be a gener-
alized bent function if the Fourier coefficients F (λ) of
f(x) only take the values of unit magnitude for any
λ ∈ V m

z . ¦

In this paper, it is only considered that the integer
z is an odd prime p. Thus, V m

p is the n-dimensional
vector space over the finite field Fp with p elements and
f(x) is a function from V m

p to Fp. A bent function from
V m

p to Fp is called a p-ary bent function instead of a
generalized bent function in this paper.

Let Fpm be the finite field with pm elements. Let
m = ek > 1 for some positive integers e and k. Then
a trace function trm

k (·) is the mapping from Fpm to its
subfield Fpk defined by [10] trm

k (x) =
∑e−1

i=0 xpki

, where
x is an element in Fpm .

Olsen, Scholtz, and Welch [13] introduced a trace
transform for a function from F2m to F2. Then the
trace transform for a function from the finite field Fpm

to Fp can be generalized as follows:

Definition 2 [Olsen, Scholtz, and Welch [13]] : Let
f(x) be a function from Fpm to Fp. Then the trace

mys
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transform of f(x) and its inverse transform are defined
by

F (λ) =
1√
pm

∑

x∈Fpm

ωf(x)−trm
1 (λ·x), all λ ∈ Fpm

ωf(x) =
1√
pm

∑

λ∈Fpm

F (λ) · ωtrm
1 (λ·x), all x ∈ Fpm .

¦
It was defined by Nyberg[12] that a function is said

to be differentially k-uniform if the maximum num-
ber of solutions x ∈ Fq of f(x + a) − f(x) = b, for
a ∈ F ∗q , b ∈ Fq is k. Nyberg generalized the perfect
nonlinear functions introduced by Meier and Staffel-
bach as follows.

Definition 3 [Nyberg [11]] : A function f(x) from
V m

z to Jz is perfect nonlinear if for all w ∈ V m
z , w 6= 0

and k ∈ Jz

f(x) = f(x + w) + k

is satisfied for exactly zm−1 values of x ∈ V m
z . ¦

Thus the perfect nonlinear function is differentially
qm−1-uniform. Nyberg also proved the relationship be-
tween perfect nonlinear functions and bent functions as
follows.

Theorem 1 [Nyberg [11]] : A perfect nonlinear func-
tion from V m

z to Jz is bent. The converse is true if z
is a prime. ¦

In the following section, we introduce p-ary bent
functions from Fpm to Fp, which correspond to func-
tions with differential pm−1-uniformity, that is, perfect
nonlinear functions. The perfect nonlinearity is the
important property for the differential cryptanalysis
in DES and in many other block ciphers.

3. Construction of p-ary Bent Functions Defined
on Finite Fields

Let α be a primitive element of the finite field Fpm .
By replacing x in Fpm by αt, a function f(αt) from
F ∗pm to Fp can be considered as a p-ary sequence of
period pm − 1.

From the Welch’s lower bound on the crosscorrela-
tion values[16], the maximum magnitude of the cross-
correlation values of two p-ary sequences of period
pm − 1 are lower bounded by p

m
2 + 1 and they are

said to have optimal correlation property.
From the p-ary sequences proposed by Sidelnikov,

we have the p-ary bent functions defined on Fpm as

fb(x) = trm
1 (b · x2), for any b ∈ F ∗pm .

Kumar and Moreno introduced p-ary sequences with
optimal correlation, which give us the p-ary bent func-
tions defined on Fpm as

fb(x) = trm
1 (b · xpkr+1), for any b ∈ F ∗pm

where e is an odd integer, m = ek, and r is an integer
such that 1 ≤ r ≤ e − 1, gcd(r, e) = 1. The p-ary
Kasami sequences also give us the p-ary bent functions
defined on Fpm given by

fb(x) = trk
1(b · xT ), b ∈ F ∗pm

where m = 2k and T = pk + 1.
Further, it is possible to construct a p-ary bent func-

tion defined on Fpm as in the following theorem.

Theorem 2 : Let m = 2k or 2k+1. Let ai ∈ Fp. The
quadratic p-ary function f(x) from Fpm to Fp given by

f(x) = trm
1 (

k∑

i=0

ai · x1+pi

) (1)

is bent, that is, perfect nonlinear if

k∑

i=0

ai · (εil + ε−il) 6= 0, for all l, 0 ≤ l ≤ m− 1 (2)

where ε = ej 2π
m is an m-th root of unity.

Proof : We have to prove that the trace transform

F (λ) =
1√
pm

∑

x∈Fpm

ω
∑k

i=0
trm

1 (ai·x1+pi
)−trm

1 (λ·x)

has the unit magnitude for all λ ∈ Fpm . Let yl = xpl−1
.

Then we have

k∑

i=0

trm
1 (ai · x1+pi

) =
k∑

i=0

aitrm
1 (x1+pi

)

=
k∑

i=0

ai

m∑

l=1

(x1+pi

)pl−1
=

k∑

i=0

ai

m∑

l=1

xpl−1+pl+i−1

=
k∑

i=0

ai

m∑

l=1

ylyl+i = G(y1, y2, · · · , ym)

where G(y1, y2, · · · , ym) is a quadratic function on V m
pm .

In a similar way to the proof in [7], let
{µ1, µ2, · · · , µm} and {γ1, γ2, · · · , γm} be a pair of dual
basis of Fpm over Fp, that is,

trm
1 (γi · µl) =

{
1, if i = l,
0, otherwise.

Using the basis {µ1, µ2, · · · , µm}, we have

x = (x1, x2, · · · , xm)T , whenever x =
m∑

i=1

xiµi ∈ Fpm

and from the dual basis,

xi = trm
1 (xγi), 1 ≤ i ≤ m.

Then we have the relations

x = Ay, y = Bx



where

A =




γ1 γp
1 γp2

1 · · · γpm−1

1

γ2 γp
2 γp2

2 · · · γpm−1

2

· · ·
γm γp

m γp2

m · · · γpm−1

m




B =




µ1 µ2 µ3 · · · µm

µp
1 µp

2 µp
3 · · · µp

m

µp2

1 µp2

2 µp2

3 · · · µp2

m

· · ·
µpm−1

1 µpm−1

2 µpm−1

3 · · · µpm−1

m




.

By replacing x in (1) by
∑m

i=1 xiµi, the quadratic func-
tion defined on V m

p is given as

H(x) = f(
m∑

i=1

xiµi).

Then we have

G(y) = G(Bx) = H(x).

If there exist common nonzero solutions to the set of
equations ∂H(x1,···,xm)

∂xl
= 0 for all l, H(x1, x2, · · · , xm)

is said to be singular.
From the Deligne’s theorem [4], if H(x) is nonsin-

gular, then

|
∑

x∈V m
p

ωH(x)+L(x)| ≤ p
m
2

where L(x) is any linear function on V m
p . From the

Parseval theorem, we have

|
∑

x∈V m
p

ωH(x)+L(x)| = p
m
2

which means that F (λ) has the unit magnitude for all
λ ∈ Fpm .

Now we have to check the nonsingularity of H(x).
Since we have

∂H

∂x
=




∂H
∂x1

∂H
∂x2

· · ·
∂H
∂xm




= BT ∂G

∂y
,

it is sufficient to prove the nonsingularity of G(y).
Differentiating G(·), we obtain

∂G(y1, · · · , ym)
∂yl

=
k∑

i=0

ai (yl+i + yl−i) .

If there exists no common nonzero solution to
the set of equations ∂G(y1,···,ym)

∂yl
= 0 for all l,

that is,
∑k

i=0 ai (yl+i + yl−i) 6= 0 for all l, then
G(y1, y2, · · · , ym) is nonsingular.

Thus, in order for G(y1, y2, · · · , ym) to be nonsingu-
lar, the circulant matrix over Fp for m = 2k + 1 given
by




2a0 a1 · · · ak ak ak−1 · · · a1

a1 2a0 · · · ak−1 ak ak · · · a2

a2 a1 · · · ak−2 ak−1 ak · · · a3

· · · · · · · · ·
a2 a3 · · · ak−1 ak−2 ak−3 · · · a1

a1 a2 · · · ak ak−1 ak−2 · · · 2a0




or the circulant matrix over Fp for m = 2k given by



2a0 a1 · · · 2ak ak−1 ak−2 · · · a1

a1 2a0 · · · ak−1 2ak ak−1 · · · a2

a2 a1 · · · ak−2 ak−1 2ak · · · a3

· · · · · · · · ·
a2 a3 · · · ak−2 ak−3 ak−4 · · · a1

a1 a2 · · · ak−1 ak−2 ak−3 · · · 2a0




should have full rank.
It is known [9] that the determinant of the circulant

matrix C = [c0, c1, · · · , cm−1] is given as

D =
m−1∏

l=0

h(εl)

where h(x) =
∑m−1

i=0 ci · xi and ε is an m-th root of
unity.

Thus, the full rank of the matrices in the theorem
is guaranteed if

k∑

i=0

ai · (εil + ε−il) 6= 0, for all l, 0 ≤ l ≤ m− 1.

¦
Using Theorem 2, we can have quadratic p-ary bent

functions as follows.

Corollary 1 : Let I be an index set such that
gcd(p, |I|) = 1. Let m be an positive integer such that
gcd(m, |I|) = 1. Then the quadratic p-ary function
f(x) from Fpm to Fp given by

f(x) =
∑

i∈I

trm
1 (xpi+1)

is bent.

Proof : Let x be an element of the set E = {ej 2πl
m |0 ≤

l ≤ m− 1}. Then the condition in (2) is written as
∑

i∈I

(δi + δ−i) 6= 0, for all δ ∈ E. (3)

From gcd(p, |I|) = 1 and gcd(m, |I|) = 1, it is easy to
check that (3) is satisfied.

¦
Using the result of Theorem 2, we can find the p-ary

bent functions similar to the bent functions by Kumar
and Moreno as follows.



Corollary 2 : Let e be an odd integer and k be an
even integer. Let m = ek. Let r be an integer such
that 1 ≤ r ≤ e− 1, gcd(r, e) = 1. Then the function on
Fpm given by

f(x) = trm
1 (xp

m
2 −kr+1)

is bent. ¦

For k = 0, f(x) becomes the bent function from
p-ary Kasami sequences.

Let q = pm. Dembowski and Ostrom introduced the
Dembowski-Ostrom polynomials[2][3] on Fq defined by

f(x) =
m−1∑

i=0

m−1∑

l=0

ai,lx
pi+pl

(4)

where ai,l ∈ Fq. It is easy to check that for a ∈ F ∗q , we
have

f(x + a)− f(x) =
m−1∑

i=0

m−1∑

l=0

(ai,l(xpi

apl

+ xpl

api

)

+ ai,la
pi+pl

).

It is known[10] that a p-polynomial is a permutation
polynomial if and only if the p-polynomial only has the
solution “0”. Clearly,

m−1∑

i=0

m−1∑

l=0

ai,l(xpi

apl

+ xpl

api

)

is a p-polynomial and thus f(x) is a planar polynomial
if for any a ∈ F ∗q ,

m−1∑

i=0

m−1∑

l=0

ai,l(xpi

apl

+ xpl

api

) 6= 0, for all x ∈ F ∗q . (5)

Using the Dembowski-Ostrom polynomials, we can
construct p-ary bent functions defined on Fpm as fol-
lows.

Theorem 3 : Let f(x) be the Dembowski-Ostrom
polynomial defined in (4) satisfying (5). Then the func-
tion trm

1 (f(x)) from Fpm to Fp is bent. ¦
From the simulation result, the converse of Theorem

3 is not true.
¦
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