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1 Introduction

The Born-Infeld (BI) theory of non-linear electrodynamics in four dimensions (4D) and a
related non-linear chiral 2-form electrodynamics in six dimensions (6D) arise naturally in
String/M-theory as truncations of the effective low-energy dynamics of the D3-brane and
M5-brane, respectively. They are related by a consistent dimensional-reduction/truncation
inherited from the fact that the D3-brane effective (4D worldvolume) action is a consistent
dimensional reduction of the M5-brane effective (6D worldvolume) action [1, 2], where
‘consistent’ means that any solution of the lower-dimensional equations ‘lifts’ to a solution
of the higher-dimensional equations. For this reason, it is useful to consider the 4D BI
theory and the 6D chiral 2-form electrodynamics on the M5-brane as partners in what we
shall call the “D3/M5 pair”.

In this paper we explore the possibilities for other 4D/6D pairs in the context of various
formulations of both the 4D and 6D partners. In the 4D case we consider the generic
nonlinear electrodynamics theory that is both Lorentz invariant and invariant under an
SO(2) electromagnetic-duality group (as is the BI theory). In the 6D case we consider the
general Lorentz invariant nonlinear chiral 2-form electrodynamics; as for the D3/M5 pair,
6D chirality implies electromagnetic-duality of the 4D nonlinear electrodynamics obtained
by a consistent reduction/truncation.

Our principal new result is a one-parameter generalization of the D3/M5 pair for which
the 4D partner is the “generalized BI electrodynamics” of [3], which has the property that
its weak-field and strong-field limits exhaust the possibilities for conformal duality-invariant
4D electrodynamics. The 6D partner is a new interacting familiy of chiral 2-form electro-
dynamics theories with the same property: its weak-field and strong-field limits exhaust
the possibilities for conformal chiral 2-form electrodynamics. For the 4D case it was shown
in [3] that the strong-field limit is the same as that of the BI theory, i.e. the Sl(2;R)-duality
invariant Bialynicki-Birula (BB) electrodynamics [4], but the weak-field limit is a novel in-
teracting one-parameter “ModMax” generalization of Maxwell electrodynamics. Here we
find that its 6D partner has the same strong-field limit as that of the ‘M5’ chiral 2-form elec-
trodynamics [5, 6] but its weak-field limit is a new conformal chiral 2-form electrodynamics
that contains ModMax electrodynamics as a consistent reduction/truncation.

We also explore the possibility of higher-dimensional analogs of these 4D/6D pairs.
A class of duality invariant BI-inspired (2n − 1)-form electrodynamics theories in a
(Minkowski) spacetime of dimension D = 4n was found in [7]. A natural question is
whether they are obtainable by consistent truncation/reduction of some chiral 2n-form
electrodynamics in D = 4n + 2 for n > 1. For n = 2 (at least) the answer is no, because
the leading (quartic) interaction terms in the weak-field expansion do not match those
found by reduction/truncation of the quartic interaction terms in the weak-field expansion
of any 10D chiral 4-form electrodynamics that has a weak-field expansion [8, 9]. This
result leaves open the possibility that the higher-dimensional generalization of BB electro-
dynamics found in [10] from the strong-field limit of the BI-type theory of Gibbons and
Rasheed [7] is a consistent truncation of some analogous higher-dimensional generalization
of the strong-field ‘M5’ chiral 2-form electrodynamics.
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In fact, there is a natural generalization of the strong-field ‘M5’ electrodynamics to
an interacting conformal chiral 2n-form electrodynamics in D = 4n+ 2 for any n > 1 [11]
and we find here, by reduction/truncation, the corresponding conformal duality-invariant
(2n − 1)-form electrodynamics in D = 4n; for n = 1 this is BB electrodynamics but for
n > 1 it is a new higher-dimensional generalization that differs from that of [10]. This is
possible because for n > 1 the requirements of conformal invariance and Sl(2;R)-duality
invariance do not determine the Hamiltonian density uniquely.

Another purpose of this paper is to explore the relations between the various formula-
tions of the generic p-form electrodynamics theories mentioned above, mostly focusing on
the 4D and 6D cases. In the 4D case, we have the standard Lagrangian and Hamiltonian
formulations of generic nonlinear duality-invariant (1-form) electrodynamics but in neither
formulation are both Lorentz invariance and duality invariance manifest. In the 6D case we
have a Hamiltonian formulation [5, 6, 10, 12, 13], which we develop further here. However,
because of chirality [14], the closest one can get to a standard Lagrangian formulation is
what we call here the Perry-Schwarz formulation in which only a 5D Lorentz invariance
is manifest [15]; this is essentially a variant of the Hamiltonian formulation for which the
manifest Lorentz symmetry subgroup is SO(1, 4) rather than SO(5). For both 4D and 6D
there is a formulation in which all symmetries are manifest; this is the PST formulation,
which involves an additional closed 1-form field [16–18], but an additional non-manifest
gauge invariance is then needed for equivalence with the ‘standard’ formulations.

A consequence of the fact that not all symmetries (and gauge-invariances) can be si-
multaneously manifest is that there is always some symmetry (or gauge invariance) that
must be imposed. This means that the function defining the particular model (e.g. Hamil-
tonian density in the Hamiltonian formulation) must satisfy a condition, and in each case
this can be expressed as a partial differential equation (PDE) in two independent variables
(e.g. two independent rotation scalars for the Hamiltonian density). In the 4D case this
PDE has been found various times using various methods [4, 7, 19, 20], and the same is
true for 6D [15, 21, 22]. For an appropriate choice of the two independent variables in each
case, the PDE is the same in all cases: not only do different formulations of the 4D or 6D
theories lead to the same PDE, but also (as observed in [15]) one finds the same PDE for
both 4D and 6D. Here we explain this result by showing how the 6D PDE is mapped into
the 4D PDE by the process of consistent reduction/truncation. This implies a one-to-one
correspondence between 4D nonlinear theories of duality-invariant electrodynamics and 6D
nonlinear chiral 2-form electrodynamics.

We shall begin with a review of the p = 0, 1, 2 cases of p-form electrodynamics in a
Minkowski spacetime of dimension D = 2p+ 2; these are the dimensions that allow either
electromagnetic duality invariance (for odd p) or chirality (for even p). This review includes
some new material; for example we recover by Hamiltonian methods the result of [9] that
any chiral 0-form electrodynamics is a free-field theory, and we give another derivation of
the condition on the Hamiltonian density for Lorentz invariance of the generic 6D chiral
2-form electrodynamics. We also explain how unusual features of the Legendre transform
for BB-electrodynamics do not prevent an equivalence of the Hamiltonian and Lagrangian
formulations even though the (canonical) Lagrangian density is identically zero. These
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“preliminaries” are followed by an exposition of the PST method in which some details
passed over in earlier works on this topic are explained.

The abstract ‘universal’ PDE that one must solve to find any particular pair of duality
invariant 4D electrodynamics and chiral 2-form 6D electrodynamics has a known general
solution [23] but its application to electrodynamics (see e.g. [7, 15, 24]) requires additional
physical constraints, such as the requirement of an ‘acceptable’ weak-field limit. It has gen-
erally been supposed that the weak-field limit must be a free-field theory, but it was argued
in [3] that the ModMax theory mentioned above is a physically acceptable alternative weak-
field limit for 4D electrodynamics; here we give some details of the derivation of the one-
parameter generalization of BI theory that has ModMax as its weak-field limit. The princi-
pal novelty is its 6D analog (and its weak-field limit) which is the new family of chiral 2-form
electrodynamics advertised in our Abstract; we also provide an alternative proof of confor-
mal invariance of the weak-field and strong-field limits that applies both in 4D and 6D.

We then turn to the higher-dimension p-form theories, using their PST formulation
to obtain the results mentioned above. In addition, we discuss the Legendre transform
for a class of (odd-p) duality-invariant p-form electrodynamics theories that include the
“generalized BI” theory of [3]. There we showed how the weak-field limits are related by a
Legendre transform; here we use a more powerful method that not only avoids the need to
take the weak-field limit but also applies for any odd p ≥ 1.

We conclude with an overview of the paper and some discussion of open problems.

2 p-form electrodynamics: preliminaries

By “p-form electrodynamics” we mean here an abelian gauge-field theory for a p-form
potential A with (p + 1)-form field-strength F = dA, in a Minkowski spacetime of
dimension 2p+ 2. For p odd, F transforms irreducibly with respect to the Lorentz group.
In contrast, F = F+ ⊕ F− for even p, where F± are the (anti)self-dual components of
F , which transform as distinct irreducible representations1 that are exchanged by parity;
in this case we may set F = F+ to get a “chiral” theory. For any p there could be
(p− 1)-brane sources, which may be ‘electric’ or magnetic’ (or ‘dyonic’) for odd p, but we
consider here only source-free theories.

We also assume that the Lagrangian density is an ultralocal Lorentz-scalar function
of F ; i.e. it does not involve any derivatives of F . This means that the dimension of the
space of initial conditions at any space point is unaffected by interactions; in other words,
interactions allowed by this assumption do not change the number of degrees of freedom.
In the context of the Hamiltonian formulation, this implies that the canonical structure is
unaffected by the interactions.

The lowest odd p is p = 1; the free field case is Maxwell electrodynamics and the best-
known interacting example is Born-Infeld electrodynamics. The lowest even p is p = 0;
the free field case is the “chiral boson”. Self-interactions are not possible for p = 0 [9];
here we give another proof of this statement. The next-to-lowest even p is p = 2, and this

1We may also write F = F+ + F− for odd p but then F− = F ∗+ for real F , so we do not have a
decomposition of F into irreducible representations of the Lorenz group.
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includes not only the free chiral 2-form electrodynamics but also the BI-type theory on the
M5-brane.

As mentioned in the introduction, the p = 1 and p = 2 cases are linked by dimensional
reduction, so it is convenient to consider them together. The main aim of this section is to
present the basic properties of these theories from both a Lagrangian and a Hamiltonian
perspective; much of this will be review but some known results are recovered by different
methods. Our aim is to exhibit the unity underlying the different formulations of p-form
electrodynamics subject to a duality-invariance/chirality restriction.

2.1 2D chiral 0-form electrodynamics

In this case F = dϕ for a scalar field ϕ(τ, σ). The chirality condition on F is ϕ̇ = ϕ′ (with
ϕ̇ ≡ ∂τϕ and ϕ′ ≡ ∂σϕ), which is the standard chiral boson equation. However, to address
the issue of possible interactions in a way that is in line with the general definition above of
p-form electrodynamics it is convenient to start from a Hamiltonian formulation in which
the Hamiltonian field equations follow from variation of the phase-space (or canonical)
action

I =
∫
dt

∫
dσ {∓ϕ̇ ψ −H(ψ)} , ψ = ϕ′ , (2.1)

where an overdot indicates a time derivative and a prime indicates a space derivative. We
allow the Hamiltonian density to be an arbitrary function of the ‘magnetic’ field ψ, which is
invariant under the ‘semi-local’ gauge transformation ϕ→ ϕ+α(t), where α is an arbitrary
function of time. The field equation is

ϕ̇′ = ∓1
2(Hψ)′ . (2.2)

The action (2.1) is manifestly invariant under translations in time and space, and the
corresponding Noether charges are

H =
∫
dσH , P = ±

∫
dσ ψ2 . (2.3)

These are time-independent (for suitable boundary conditions) since the field equation
implies that

∂tH = ∓1
4(H2

ψ)′ , ∂t[ψ2] = ∓(H− ψHψ)′ . (2.4)

If the action (2.1) is Lorentz invariant then the Lorentz boost Noether charge is

L = tP −
∫
dσ σH . (2.5)

However, we must check that this is a conserved charge because the action is not manifestly
Lorentz invariant. Using the field equation (2.2), and assuming that boundary terms are
zero, we have

L̇ = P −
∫
dσ σḢ = ±

∫
dσ

(
ψ − 1

2Hψ
)(

ψ + 1
2Hψ

)
, (2.6)
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which is zero iff Hψ = ±2ψ. We may assume without loss of generality that H is non-
negative, and zero for ψ = 0, in which case

H(ψ) = ψ2 . (2.7)

We thus conclude that the most general Lorentz invariant action of the form (2.1) is

I =
∫
dt

∫
dσ (∓ϕ̇− ϕ′)ϕ′ . (2.8)

This is the Floreanini-Jackiw action for a free (anti)chiral boson [25]. In agreement with [9]
we conclude that no Lorentz invariant self-interactions are possible.

2.2 4D nonlinear 1-form electrodynamics

We now review aspects of nonlinear theories of electrodynamics in a 4D Minkowski space-
time. A convenient starting point is the phase-space action

I =
∫
dt

∫
d3σ {E ·D−H(D,B)} , (2.9)

where (t,σ) are the time and cartesian space coordinates. The electric field E and magnetic
induction field B are defined as

E = ∇A0 − Ȧ , B = ∇×A , (2.10)

which means (in this context) that the electric-displacement 3-vector D is canonically
conjugate to minus the vector potential A, while the scalar potential A0 is a Lagrange
multiplier for the constraint ∇ · D = 0. If we choose the Hamiltonian density to be a
function of the three independent rotation scalars

s = 1
2(|D|2 + |B|2) , ξ = 1

2(|D|2 − |B|2) , η = D ·B , (2.11)

then the action is invariant under time and space translations, and rotations. It is also
Lorentz invariant if [4]

H2
s −H2

ξ −H2
η = 1 . (2.12)

The Hamiltonian density is further invariant under an SO(2) ‘duality’ rotation of the
2-vector with 3-vector components (D,B) if it is a function only of s and

p = |D×B| , (2.13)

which is related to (s, ξ, η) by
s2 − p2 = ξ2 + η2 . (2.14)

In terms of these variables the condition for Lorentz invariance (2.12) becomes

H2
s + 2s

p
HsHp +H2

p = 1 . (2.15)
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As p has an Sl(2;R) electromagnetic duality invariance, the same will be true of H iff it is
a function only of p, and then Lorentz invariance requires H = ±p. Choosing the positive
sign, we have the interacting conformal electrodynamics of Bialynicki-Birula [4]

HBB = |D×B| . (2.16)

An alternative basis for SO(2) duality invariant rotation scalars is

u = 1
2

(
s+

√
s2 − p2

)
, v = 1

2

(
s−

√
s2 − p2

)
. (2.17)

These new variables are well defined since it follows from (2.14) that s2− p2 ≥ 0. In terms
of them, the Lorentz-invariance condition (2.15) simplifies to

HuHv = 1 . (2.18)

Remarkably, an equation formally equivalent to (2.18) appears in the manifestly
Lorentz-invariant Lagrangian formulation as the condition for electromagnetic duality in-
variance [7, 19, 24, 26–32]. The Lagrangian density L of a general Lorentz invariant theory
of electrodynamics may be written in terms of the two independent Lorentz scalars

S = −1
4FµνF

µν = 1
2(|E|2 − |B|2) , P = −1

8ε
µνλρFµνFλρ = E ·B . (2.19)

In the Lagrangian formulation, the electric-displacement vector D is defined as ∂L/∂E, and
the condition for electromagnetic-duality invariance of the EL equations of a Lagrangian
density L(S, P ) is

L2
S −

2S
P
LSLP − L2

P = 1 , (2.20)

which is very similar to (2.15). In terms of the new variables

U = 1
2
(
S −

√
S2 + P 2

)
, V = 1

2
(
S +

√
S2 + P 2

)
, (2.21)

this duality-invariance condition simplifies to [7]

LULV = 1 , (2.22)

which is formally identical to (2.18).
To summarise, the Hamiltonian and Lagrangian densities of a generic non-linear

Lorentz and duality invariant electrodynamics theory are both solutions of the same PDE
for particular choices of the two pairs of variables on which they depend. For any H(u, v)
satisfying (2.18) its Legendre transform (with respect to D) will be some L(U, V ) satisfy-
ing (2.22) [20]. For example, one solution to the equation (2.18) is

H(T ) =
√
T 2 + 2T (u + v) + 4uv− T

=
√
T 2 + T (|D|2 + |B|2) + |D×B|2 − T , (2.23)

which is the BI Hamiltonian density. The corresponding solution to (2.22) is

L(T ) = T −
√
T 2 − 2T (U + V ) + 4UV

= T −
√
T 2 − T (|E|2 − |B|2)− (E ·B)2 , (2.24)

which is the BI Lagrangian density.
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2.2.1 BB electrodynamics and the Legendre transform

Starting with the BI Hamiltonian density of (2.23) we may, following Bialynicki-Birula [4],
take the T → 0 limit to arrive at the BB Hamiltonian density of (2.16):

lim
T→0
H(T )(u, v) = 2

√
uv = |D×B| = HBB . (2.25)

As T has dimensions of energy density, this limit should be seen as a strong-field limit in
which the energy density is much greater than T , just as the weak-field limit should be seen
as the limit in which the energy density is much less than T . One might expect these limits
to yield conformal invariant theories, as is evidently true for the weak field limit since the
Hamiltonian equations in this limit are Maxwell’s equations. As shown in [4], it is also true
for the strong-field limit, which has the additional feature that HBB is invariant under an
Sl(2;R) electromagnetic-duality acting on the 3-vector-valued 2-vector (D,B).

Let us find the Lagrangian density of this BB-electrodynamics by taking the Legendre
transform of HBB; the first step is to define

E := ∂HBB
∂D = −n×B , n = D×B

|D×B| . (2.26)

The ‘canonical’ BB Lagrangian density is then defined as

LBB(E,B) := sup
D

[D ·E−HBB] . (2.27)

In principle, this requires us to find the D that maximises the expression in brackets.
However, in this case

D ·E−HBB = n · (D×B)− |D×B| ≡ 0 , (2.28)

so we conclude, following [4], that

LBB(E,B) ≡ 0 . (2.29)

Despite this conclusion it remains true that the Legendre transform of LBB isHBB. We
shall provide an explicit proof below, but we first wish to point out that it is a consequence
of the convexity of HBB as a function of D since a general theorem (see e.g. [33]) guarantees
that the Legendre transform defined as in (2.27) (but now with LBB and HBB exchanged)
is an involution when acting on convex functions. So all we really need to prove is convexity
of HBB and we can do this by investigating its Hessian matrix:

∂2HBB
∂Di∂Dj

= |B|2

HBB
ninj . (2.30)

As all eigenvalues of this matrix are non-negative for all D, given any B, the function
HBB is convex. This is sufficient for the theorem, but the case under consideration is
special because HBB is not strictly convex (some eigenvalues of its Hessian are zero) and a
consequence of this is that we cannot solve unambiguously for D the equation defining E,

– 8 –
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i.e. (2.26). A corollary is that the equation defining E imposes constraints on E; from (2.26)
we see that these constraints are2

S = P = 0 , (2.31)
where (S, P ) are the Lorentz scalars of (2.19). In other words, although LBB is identically
zero the domain of the E field-space in which it is defined is restricted by S = P = 0. This
means that the Legendre transform of LBB is

H(D,B) = sup
{E|S=P=0}

[D ·E− 0] . (2.32)

Now we have a constrained variational problem: we must find the E, within its allowed
domain, that maximises the expression in brackets.

We can solve this constrained variational problem by the Lagrange multiplier method;
i.e. we first look for the stationary points of

H(D,B; E, λ, µ) := D ·E− λS − µP , (2.33)

where we must vary E (now without constraints) and the Lagrange multiplier fields (λ, µ).
We must then examine the results of this calculation to find the maximum of D ·E, rather
than a minimum or some other stationary value.

Varying the function defined in (2.33) with respect to E we have E = λ−1(D − µB),
and back-substitution yields

H(D,B;λ, µ) = 1
2λ |D− µB|2 + λ

2 |B|
2 . (2.34)

Varying this with respect to µ we have µ|B|2 = D ·B and back-substitution yields

H(D,B; e) = 1
2
[
e−1|D×B|2 + e

]
, e = λ|B|2 . (2.35)

Finally, elimination of e yields e = ±|D×B| and hence

H(D,B) = ±|D×B| , (2.36)

for unrestricted D. The maximum is achieved by choosing the top sign, so the Legendre
transform of LBB is HBB, as claimed.

The unusual aspect of this particular pairing of convex functions by the Legendre
transform is that the information in LBB that is needed for the reconstruction of HBB
resides entirely in the restriction on its domain, not on its values within this domain!

Finally, we should point out that the effect of using the Lagrange multiplier method
to solve the constrained variation problem, implicit in the definition (2.32) of HBB as the
Legendre transform of LBB, is to replace the identically zero canonical Lagrangian density
by its “weak” equivalent3

LBB ≈ λS + µP . (2.37)
This is precisely the Lagrangian density proposed in [35], where it was verified that the
field equations are equivalent to the Hamiltonian field equations found from HBB. Now
we can see more precisely why this is true.

2The T → 0 limit of the BI Lagrangian density may be taken if P = 0 is imposed, with the result that
LBB = 0, but this attempt to take the strong-field limit misses the S = 0 constraint.

3In the terminology of constrained Hamiltonian systems [34].
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2.2.2 Off-shell duality invariance

For the phase-space action (2.9), any invariance of the Hamiltonian density will be an
invariance of the Hamiltonian field equations but not necessarily of the action itself; if the
action is not invariant we have an “on-shell” symmetry. Electromagnetic duality invariance,
acting as a SO(2) transformation on (D,B), is an example; it is an “on-shell” symmetry
when H is duality invariant but it cannot be an “off-shell” symmetry of the action (2.9)
because B = ∇×A is identically divergence-free but its duality partner D is divergence-
free only as the result of a constraint imposed by a Lagrange multiplier. However, this
“off-shell” difference between D and B may be eliminated, in the absence of sources, by
solving the constraint on D in terms of a new ‘dual’ vector potential Ã:

D = ∇× Ã . (2.38)

This replacement converts the action (2.9) into one that is a functional of the pair of vector
potentials (A, Ã):

I[A, Ã] =
∫
dt

∫
d3σ

{
−Ȧ ·∇× Ã−H(D,B)

}
. (2.39)

We now have both ∇ ·D = 0 and ∇ ·B = 0 as identities, while variation with respect to
A and Ã yields the remainder of the “macroscopic Maxwell equations”:

Ḃ = −∇×E , Ḋ = ∇×H , (2.40)

where (E,H) are again given by the constitutive relations:

E = ∂H
∂D , H = ∂H

∂B . (2.41)

Lorentz invariance is not guaranteed; the condition for it is [4]

E×H = D×B . (2.42)

Electromagnetic duality invariance is not guaranteed either but it now acts as an SO(2)
rotation of the vector-potential doublet (A, Ã), and is a symmetry of the action (2.39) if
H is an SO(2) invariant; equivalently, if [4]

E ·B = H ·D . (2.43)

The relations (2.42) and (2.43) are jointly equivalent to the PDE (2.15) to be satisfied by H
and, as expected, (2.43) is an identity when H = H(s, p). An advantage of this formulation
is that duality is now an off-shell symmetry. Noether’s theorem therefore applies and there
is a corresponding conserved Noether charge [4, 36]. This method was used in [37] to
construct an Sl(2;R)-invariant action for Bialynicki-Birula electrodynamics and thereby
find expressions for its Sl(2;R) triplet of conserved Noether charges.

If we further change notation by setting (Ã,A) = (A1,A2), then

(D,B) = (B1,B2) , (−H,E) = (E1,E2) , (2.44)
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where, for a = 1, 2,
Ea = ∇Aa

0 − Ȧa , Ba = ∇×Aa . (2.45)

Notice that these fields are invariant under the following gauge transformations with an
SO(2)-doublet of scalar parameters αa:

Aa
0 → Aa

0 + α̇a , Aa → Aa + ∇αa . (2.46)

Notice too that the definitions (2.45) imply the identities

Ḃa ≡ −∇×Ea , ∇ ·Ba ≡ 0 , (2.47)

which are the macroscopic Maxwell equations. We must look to the action to find the
constitutive relations.

Ignoring surface terms, we may rewrite the action (2.39) as [20, 38]

I[A1,A2] =
∫
dt

∫
d3σ

{
−1

2εab Ea ·Bb −H(B1,B2)
}
. (2.48)

In addition to being invariant under the gauge transformations (2.46), this action is also
invariant under the following gauge transformation with another SO(2)-doublet of scalar
parameters φa:

Aa
0 → Aa

0 + φa . (2.49)

This is because the scalar potentials contribute only to a surface term in the action, which
means that the field equations are found from variation of the vector potentials. Because
of the identities (2.47), these field equations are equivalent to

∇×
(

Ea + εab ∂H
∂Bb

)
= 0 . (2.50)

The gauge invariance (2.49) means that the electric fields Ea are, in this context, only
defined up to the addition of the gradients ∇φa, so the general solution of the field equa-
tions (2.50) is gauge-equivalent to

Ea = −εab ∂H
∂Bb

. (2.51)

These are the constitutive relations.
Finally, we observe that in this new notation, the conditions (2.42) and (2.43) for

Lorentz and duality invariance, respectively, are now

εab

(
Ba ×Bb − ∂H

∂Ba ×
∂H
∂Bb

)
= 0 , εab

(
Ba × ∂H

∂Bb

)
= 0 . (2.52)

2.3 6D chiral 2-form: Hamiltonian formulation

We now replace the 3-vector potential A by an antisymmetric tensor potential A, with com-
ponents {Aij ; i, j,= 1, . . . , 5}. The analogs of the electric field E and magnetic-induction
field B are antisymmetric tensors E, B, with components

Eij = 2∂[iAj]0 + Ȧij , Bij = 1
2ε

ijklm∂kAlm := (∇× A)ij . (2.53)
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For a chiral theory, B is also the variable canonically conjugate to A, and the constraint
imposed by Aj0 is an identity, so the action analogous to (2.9) is

I =
∫
dt

∫
d5σ

{1
4ȦijB

ij −H(B)
}
. (2.54)

The normalization of the first term differs from that used in [6] but is more convenient for
current purposes. It implies the Poisson-bracket relation{

Bij(σ), Bkl(σ̃)
}
PB

= εijklp∂p δ(σ − σ̃) . (2.55)

The field equation obtained by variation of A is

Ḃ = ∇×H , H ≡ ∂H
∂B

. (2.56)

The antisymmetric-tensor field H is the 6D analog of the magnetic field H of non-linear
4D electrodynamics.

The field equation (2.56) implies that

∂tH = ∇ · (H×H) ,
∂t(B× B)i = ∂k

[
2HijB

jk − δki (tr(BH) + 2H)
]
, (2.57)

where4

(B× B)i = 1
8εijklmB

jkBlm . (2.58)

These equations imply that the following integrals are constants of the motion (if surface
terms are assumed to vanish):

H =
∫
d5σH , P = −

∫
d5σ (B× B) . (2.59)

These are the Noether charges associated, respectively, to the time translation and space
translation invariances of the action. As a check on this interpretation, and the normaliza-
tions, one may verify that for any smooth function f of B satisfying the field equation (2.56),
and constants (α0, αi),{

f,

∫
d5σ

[
α0H+ αi(B× B)i

]}
PB

=
[
α0∂t + αi∂i

]
f . (2.60)

This shows that the integrals of H and B × B are the components of a 6-covector. If
we normalize this co-vector such that the dual 6-vector has the Noether charge H as its
time component then its 5-space component is the Noether charge P , irrespective of the
signature convention chosen for the Minkowski metric relating 6-vectors to 6-covectors. It
then follows that the Noether charge associated to rotational invariance is

J ij = −2
∫
d5σ σ[i(B× B)j] , (2.61)

4The different normalization from [6] compensates for the different normalization of the symplectic form
defined by the phase-space action.
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which is time-independent, for appropriate boundary conditions, as a consequence of the
second of equations (2.57).

For the subset of the chiral 2-form theories defined by H(s, p), those that are Lorentz
invariant will have, as an additional Noether charge, the Lorentz boost generator

L = tP −
∫
d5σσH . (2.62)

A calculation, using the first of eqs. (2.57), yields

L̇ = P +
∫
d5σ (H×H) . (2.63)

From the expression for P in (2.59) we see that L̇ = 0 requires

H×H = B× B . (2.64)

As a check on the interpretation of the 5-vector Noether charge L, we may compute the
Poisson brackets of its components. Using (2.60), and ignoring surface terms, we find that{

Li, Lj
}
PB

=
∫∫

d5σd5σ̃ σiσ̃j {H(σ),H(σ̃)}PB

=
∫∫

d5σd5σ̃ σiσ̃j
[
Mk(σ) +Mk(σ̃)

]
∂k δ

5(σ − σ̃)

=
∫
d5σ (σiM j − σjM i) , (2.65)

where M = (H×H). Since H×H = B× B whenever L is a conserved charge, we have{
Li, Lj

}
PB

= −J ij , (2.66)

as expected for a Lorentz boost.
We now aim to determine the implications of the Lorentz invariance condition (2.64) for

the Hamiltonian density. To this end it is convenient to use the SO(5) rotational invariance
to bring B to a skew-diagonal form (at any chosen spacetime point); we then have

B12 = −B21 = b1 , B34 = −B43 = b2 . (2.67)

This tells us that there are only two independent rotational scalars that we can construct
from B, and we may take them to be

s = 1
2 |B|

2 ≡ 1
4B

ijBklδikδjl ,

p = |B× B| ≡
√

(B× B) · (B× B) . (2.68)

In terms of the skew-eigenvalues of B, we have

s = 1
2(b2

1 + b2
2) , p = |b1b2| . (2.69)

If we choose H to be a function of these two rotation scalars then H has components

Hij = (Hs + 2sp−1Hp)Bij + p−1Hp(B3)ij . (2.70)
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As expected, we have H = B for the free-field Hamiltonian density H = s. We also have

H×H =
[
H2
s + 2sp−1HsHp +H2

p

]
(B× B) . (2.71)

The condition (2.64) for Lorentz invariance is therefore equivalent to

H2
s + 2s

p
HsHp +H2

p = 1 . (2.72)

This is formally identical to the equation (2.15) required for Lorentz invariance of the
generic 4D electrodynamics, and this is why we have used the same notation.

We have already observed in the 4D context that the condition (2.72) takes the simpler
form

HuHv = 1 (2.73)

in terms of the new variables

u = 1
2

(
s+

√
s2 − p2

)
, v = 1

2

(
s−

√
s2 − p2

)
, (2.74)

but these variables are now SO(5)-invariant rotation scalars; they remain well defined in
this context because it follows from (2.69) that

s2 − p2 = 1
4(b2

1 − b2
2)2 ≥ 0 . (2.75)

The solution of (2.73) that previously led to the BI Hamiltonian density of (2.23) now
yields the following Hamiltonian density for a chiral 2-form electrodynamics:

H =
√
T 2 + T |B|2 + |B× B|2 − T . (2.76)

This is the Hamiltonian density for the chiral 2-form on the 6D Minkowski worldvolume
of a static planar M5-brane in an 11D Minkowski vacuum [6, 13]. Its T → ∞ limit is the
free theory of Henneaux-Teitelboim [12] but the T → 0 limit yields

HT=0 = |B× B| . (2.77)

This defines the interacting conformal 6D chiral 2-form theory of [5, 6] which is a 6D analog
of the 4D BB electrodynamics.

2.3.1 Reduction/truncation to 4D

The correspondence just established between 6D chiral 2-form electrodynamics and 4D
duality invariant electrodynamics can be understood very directly from the existence of a
dimensional-reduction/truncation that takes any given 6D example into its corresponding
4D example. The dimensional reduction step proceeds by writing the 5-space coordinates
as {σα, σ4, σ5;α = 1, 2, 3} and taking all fields to depend only on the σα. In this case, one
finds that

Bαβ = εαβγ∂γA45 , B45 = 1
2ε

αβγ∂αAβγ ,

Bα4 = εαβγ∂βÃγ := Dα , Bα5 = εαβγ∂βAγ := Bα , (2.78)
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where
Aα = −Aα4 , Ãα = Aα5 . (2.79)

The 6D rotation scalars s and p2 may now be written as

s ≡ 1
2 |B|

2 = 1
2(|D|2 + |B|2) + 1

2

[
(B45)2 + 1

2BαβB
αβ
]

p2 ≡ |B× B|2 = |D×B|2 + 1
8(B45)2BαβBαβ . (2.80)

As these expressions are at least quadratic in the variables (A45, Aαβ), the truncation

A45 = 0 , Aαβ = 0 , (2.81)

is a consistent one in the sense that the full field equations with A45, Aαβ set to zero are
equivalent to the equations obtained from the truncated action.

After this truncation we have

s→ 1
2(|D|2 + |B|2) , p→ |D×B| , (2.82)

which are the expressions for the 4D rotation scalars (s, p). The 6D Hamiltonian density
therefore becomes the 4D Hamiltonian density of a duality-invariant 1-form electrodynam-
ics. In addition,

1
4ȦijB

ij → −Ȧ ·∇× Ã + total derivative , (2.83)

which means that the 4D action is (2.39), which we showed to be equivalent to the mani-
festly duality-invariant action (2.48). The off-shell duality invariance of the action obtained
from the 6D Hamiltonian formulation is guaranteed by the fact that the electromagnetic
duality group is the SO(2) factor of the SO(3) × SO(2) subgroup of the SO(5) rotation
group preserved by the reduction/truncation.

2.4 6D chiral 2-form: Perry-Schwarz formulation

Although there is no standard Lagrangian formulation of chiral 2-form electrodynamics,
there is an alternative canonical-type formulation in which the manifest symmetry is 5D
Lorentz invariance. Let us take the 6D Minkowski metric to be

ds2
6 = η(5)

mndx
mdxn − (dy)2 (m = 0, 1, 2, 3, 4), (2.84)

where η(5) = diag(1,−1,−1,−1,−1). Let Amn be the 5D components of the 6D 2-form
potential, and define

Bmn = 1
2ε

mnpqr∂pAqr . (2.85)

All fields still depend on y in addition to the 5D Minkowski coordinates, and the generic
Perry-Schwarz action for them takes the form [15]

IPS =
∫
dy

∫
d5x

{1
4(∂yAmn)Bmn − V

}
, (2.86)

– 15 –



J
H
E
P
0
3
(
2
0
2
1
)
0
2
2

where V is a 5D Lorentz-scalar function of B. This is a kind of phase-space action in which
the role of time is played by the space coordinate y, with field equations that are first-order
in ∂y rather that ∂t.

One possible basis for 5D Lorentz scalars is

Q = 1
4B

mnBmn , R =
√
Q2 − wmwm , (2.87)

where
wm = 1

8εmnpqrB
npBqr , (2.88)

and the 5D Lorentz indices are raised or lowered with the 5D Minkowski metric; a useful
identity (which is a consequence of the obvious identity B[mnBpqBrs] ≡ 0) is

wmB
mn ≡ 0 (n = 0, 1, 2, 3, 4). (2.89)

The variable R is manifestly real when the one-form w is spacelike. To see that this is still
true when w is timelike we observe that in this case we may choose coordinates such that
only w0 is non-zero; the identity (2.89) then implies that B0i = 0 (i = 1, 2, 3, 4) from which
it follows that

Q = −1
4trB2 , w2

0 = 1
4

[
trB4 − 1

2(trB2)2
]
, (2.90)

where (as in the previous subsection) B is the 4× 4 matrix with entries Bij . We then have

Q2 − wmwm = 1
16(trB2)2 − w2

0 = 1
4tr

[
B2 − 1

4(trB2)I4

]2
≥ 0 . (2.91)

The condition on V for 6D Lorentz invariance was found in [15] using a different basis
of 5D Lorentz scalars; the equivalent equation for V(Q,R) is

V2
Q − V2

R = 1 . (2.92)

In terms of the new variables

U = 1
2(Q−R) , V = 1

2(Q+R) , (2.93)

the equation for 6D Lorentz invariance is [15]

VUVV = 1 . (2.94)

This equation is formally equivalent to the equation (2.22) for the Lorentz invariant La-
grangian of a generic non-linear 4D electrodynamics to have EL equations that are invariant
under an SO(2) electromagnetic duality. As we now explain, this is not a coincidence.

2.4.1 4D reduction redux

If we dimensionally reduce the generic Perry-Schwarz action of (2.86) from 6D to 5D by
setting

∂yAmn = 0 , (2.95)
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then we have a manifestly Lorentz invariant 5D theory with Lagrangian density

L5D = −V . (2.96)

Let {xµ, x4;µ = 0, 1, 2, 3} be the 5D Minkowski coordinates, and let us dimensionally
reduce/truncate to 4D by setting

∂4Aµ4 = 0 , Aµν = 0 . (2.97)

Then the only non-zero components of B are

Bµν = εµνρσ∂ρAσ4 = 1
2ε

µνρσFρσ , (2.98)

where F = dA for A = dxµAµ4, and the only non-zero component of w is

w4 = 1
8εµνρσB

µνBρσ = −1
8ε

µνρσFµνFρσ . (2.99)

We now find that
Q = S , R =

√
S2 + P 2 , (2.100)

where (S, P ) are the standard 4D Lorentz scalars. It follows that (U, V ) of (2.93) are
now the 4D variables introduced in (2.21), so the Perry-Schwarz equation (2.94) for 6D
Lorentz invariance of the generic 6D chiral 2-form electrodynamics (with 5D Lorentz invari-
ance manifest) reduces to the Gibbons-Rasheed equation (2.22) for electromagnetic duality
invariance of the generic 4D 1-form electrodynamics, with Lagrangian density

L4D = −V(S, P ). (2.101)

3 PST formulation

There exist several approaches to the construction of manifestly Lorentz-invariant duality-
symmetric or chiral p-form actions; they all use additional fields of some kind (e.g. [11, 16,
17, 39–52]). The PST formulation [16, 17] is particularly economical, since it uses a single
auxiliary scalar field or, more precisely, a nowhere-null closed one-form. The covariant
PST construction allows for a straightforward coupling of chiral p-forms to gravity. In
addition, it connects different non-manifestly Lorentz-invariant formulations [18, 53, 54]
(such as [55] to [36] and [12] to [15]) and has led to some novel results; an example is an
M5-brane action [56, 57] of a type relevant to a more general construction that we discuss
in this section and in sections 5 and 6.

The PST formulation of chiral 2n-form electrodynamics in D = 4n + 2 dimensions
starts from a potential 2n-form A on spacetime with H = dA its (2n + 1)-form field-
strength, and a closed spacetime one form v, which may be timelike or spacelike. For
the Minkowski spacetime background that we assume here, we have v = da for scalar
field a, and a PST gauge invariance that allows us to identify a with the Minkowski time
coordinate (if v is timelike) or with a Minkowski space coordinate (if v is spacelike). These
two versions of the PST actions are off-shell inequivalent (i.e. not related by local field
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redefinitions or gauge transformations) but they are expected to be on-shell equivalent (i.e.
have equivalent field equations) for the following reason:5 the PST field equation reduces
to a manifestly Lorentz invariant non-linear self-duality condition that involves v, but one
expects to be able to rewrite this in a form that is both manifestly Lorentz invariant and
v-independent because there is no obstacle to manifest Lorentz covariance at the level of
field equations. This is known to be true for the linear chiral p-form theories and has
been proved for the M5-brane equations, with the help of their interpretation as Lorentz
covariant superembeddings [60–63].

We focus in this section on the 6D chiral 2-form theories. We choose standard
Minkowski coordinates {xM ;M = 0, 1, . . . , 5} for the 6D Minkowski background, with
a metric of ‘mostly minus’ signature. From the components HMNP of H, and vM of v, we
construct the gauge-invariant anti-symmetric tensor density

BMN = −1
6ε

MNPQRSHPQR vS , (vS = ∂Sa) . (3.1)

The general 6D chiral 2-form PST action has the following form:

S =
∫
d6x

( 1
4v2B

MNHMNP v
P − V

)
, (v2 = vSvS), (3.2)

where V is a function of the two Lorentz scalars

Q1 = − 1
4v2B

MNBMN , Q2 = Q2
1 + 1

v2w
MwM , (3.3)

with
wM = − 1

8v2 εMNPQRSB
NPBQRvS . (3.4)

Notice that vMwM ≡ 0, so w is non-timelike if v is timelike, but is unrestricted if v is
spacelike. The variable Q2 is manifestly non-negative unless either (i) v is timelike and w
spacelike, or (ii) v is spacelike and w timelike. However, in these cases we may construct
the 6× 6 projector matrix

PMN = δMN −
vMvN
v2 − wMwN

w2 . (3.5)

A calculation similar to the one leading to (2.91) now yields

Q2
1 + 1

v2w
MwM = 1

4(v2)2

[
trB4 − 1

4(trB2)2
]

= 1
4(v2)2 tr

[
B2 − 1

4(trB2)P
]2
≥ 0 , (3.6)

where the second equality relies on the following properties of P:

tr P = 4 , (PB)MN = BM
N . (3.7)

5This may not apply in non-Minkowski backgrounds because of topological issues in the spacelike-v PST
formulation [54, 58, 59], and in some cases that will be discussed later.
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The second of these properties is a consequence of the identity vMBMN ≡ 0, because (i)
this implies that detB = 0, and (ii)

wMB
MN ∝ vN

√
detB , (3.8)

which is a consequence of the Schouten identity6

v[TBPQBRSBM ]N ≡ 6 vNB[PQBRSBMT ] . (3.9)

This concludes the proof that Q2 ≥ 0 in all cases.
Because the PST Lagrangian density (3.2) depends on the scalar field a in addition

to the chiral 2-form fields, equivalence to the Hamiltonian or Perry-Schwarz formulations
depends upon the possibility of a PST gauge invariance that will allow a to be set to some
fixed function on spacetime. The infinitesimal form of the PST gauge transformations that
allows this is

δϕa = ϕ(x), δϕA = ϕ(x)
v2 (ivH3 − VB) , (3.10)

where VB is the two form with components ∂V/∂BMN . However, this is a gauge invariance
of the PST action with Lagrangian density (3.2) only if V satisfies [9]

(
∂V
∂Q1

)2
− 4Q2

(
∂V
∂Q2

)2
= 1 . (3.11)

We shall give more details about properties of the PST formulation (in particular the
form of the PST field equations) in sections 5 and 6. Here we explain how the Hamiltonian
and Perry-Schwarz formulations are recovered from the PST action by gauge fixing.

3.1 Timelike v

If v is timelike then the PST gauge invariance allows us to choose a = t ≡ x0. The only
non-zero components of B and w are now B and B×B, respectively, where B is the 5-space
antisymmetric tensor density of subsection 2.3, and the PST action becomes that of (2.54)
with V = H. After making this PST gauge choice we also find that

Q1 = −s , Q2 = s2 − p2 , (3.12)

where (s, p) are the 6D rotation scalars defined in (2.68). When written in terms of (s, p)
the condition (3.11) on V is identical to (2.72), which is the condition for the Hamiltonian
density H(s, p) to define a (6D) Lorentz invariant theory.

To summarize, the PST action (3.2) for timelike v is a ‘covariant’ version of the
Hamiltonian phase-space action; by using (3.12) to rewrite (3.11) as a PDE for H(s, p) =
V(Q1, Q2) one recovers the PDE (2.72).

6That is, an identity equivalent to the obvious over-antisymmetrization identity on seven indices.
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3.1.1 4D reduction/truncation prior to gauge-fixing of v

We have already seen that the phase-space action for the generic 4D Lorentz and du-
ality invariant 1-form electrodynamics may be found by a reduction/truncation of the
phase-space action for the generic 6D chiral 2-form electrodynamics. An analogous trun-
cation/reduction may be carried out directly on the 6D PST action with timelike v, prior
to gauge fixing. This yields the 4D PST action of [64], which reduces to the phase-space
action (2.48) upon PST gauge fixing. Prior to this gauge fixing, both Lorentz and duality in-
variance are manifest. We present a brief summary of this formulation of 4D nonlinear elec-
trodynamics theories, as we shall be using its higher-dimensional extension [8] in section 5.

The duality doublets of 3-vector ‘electric’ and ‘magnetic’ fields of (2.48) are replaced
by duality doublets of the 4-vector ‘electric’ and ‘magnetic’ fields

Ea
µ = F a

µν v̂
ν , Ba

µ = F̃ a
µν v̂

ν , (3.13)

where F a = dAa and F̃ a its Hodge dual, and

v̂ = v/
√
v2 , v = da . (3.14)

The action for these fields is7

I[A1, A2] =
∫
d4x

{1
2εabE

a ·Bb −H(B1, B2)
}
, (3.15)

where

Ea ·Bb = Ea
µB

bµ = Ea
0B

b
0 −

3∑
i=1

Ea
i B

b
i . (3.16)

This action is invariant under the gauge transformation [16]

δAa = vφa , (3.17)

where φa is a duality doublet of scalar parameters. It is also invariant under the (PST)
gauge transformation

δa = ϕ(x), δAa = −ϕ(x)√
v2

(
Ea − εab ∂H

∂Bb

)
, (3.18)

for an arbitrary function ϕ. This allows the gauge choice a = t, which reduces the ac-
tion to (2.48), as claimed.8 It also reduces the gauge transformation (3.17) to the gauge
transformation (2.49) that leaves invariant the action (2.48).

If H is SO(2)-duality invariant then it must be some function of the duality-invariant
Lorentz scalars

s = −1
2B

a ·Ba , p = √q , (3.19)

7An example is the BI theory on the D3-brane considered in [1, 2].
8In verifying this, and statements below, it should be remembered that we use a Lorentz metric with

‘mostly-minus’ signature, as in (3.16).
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where q is the Sl(2;R)-duality invariant

q = 1
2εacεbd(Ba ·Bb)(Bc ·Bd) . (3.20)

The notation is motivated by the fact that in the PST gauge v = dt we find, using the
definitions of Ba in (2.44), that

s→ 1
2(|D|2 + |B|2) , p→ |D×B| , (3.21)

which are the independent rotation scalars introduced in subsection 2.2. As we saw for
the 6D case, the PDE (2.15) that is required for Lorentz invariance of the 4D phase-space
action with Hamiltonian density H(s, p) becomes the condition for PST gauge-invariance
of the PST action (3.15) when (s, p) are re-interpreted as the duality-invariant Lorentz
scalars (3.19). When rewritten as a PDE for H(s, q), this condition is

H2
s + 4sHsHq + 4qH2

q = 1 . (3.22)

3.2 Spacelike v

When v is spacelike the PST gauge invariance allows us to set a = y ≡ x5. For this PST
gauge choice the only non-zero components of B and w are

Bmn = 1
2ε

mnpqr∂pAqr , wm = −1
8εmnpqrB

npBqr , (3.23)

and the Lagrangian density (3.2) becomes that of the Perry-Schwarz action (2.86). Also,
the variables (Q1, Q2) on which V depends are now

Q1 = 1
4B

mnBmn = Q , Q2 = Q2 − wmwm = R2 , (3.24)

where (Q,R) are the variables introduced in (2.87). Using this result to rewrite (3.11) as
an equation for V(Q,R) we recover (2.92).

To summarize, the PST action for spacelike v is a ‘covariant’ version of the Perry-
Schwarz action. Hence, its 4D dimensional reduction/truncation with v = dx5 yields the
4D Lagrangian (2.101).

3.3 Variant PST formulations

In addition to the formulation which uses the one form v = da considered above, there
are other variants of the PST action. For instance, in D = 6 one can dualize the (time-
like) one-form v = da to a 5-form field-strength whose Hodge dual is a nowhere-zero
spacelike one-form u; this yields a ‘dual’ PST formulation [53, 54]. Technically, this pro-
cedure amounts to performing the following replacements in the PST Lagrangian (3.2):
BMN → HMNLu

L and HMNLv
L → −BMN with the timelike v replaced by the spacelike

u. In this case the reduction/truncation to 4D yields, on setting u = dx5, the Lagrangian
density of (2.101). In contrast, for the gauge choice u = dx for a non-compact coordi-
nate x, reduction/truncation yields a non-linear generalization of the duality-symmetric
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electrodynamics of Zwanziger [55]. An example is the dual manifestly duality-symmetric
Born-Infeld-like action on the D3-brane [65, 66] which can be found by dimensional reduc-
tion/truncation of a corresponding variant of the M5-brane action [54, 67]. Yet another
form of the M5-brane action, with a triplet of auxiliary closed one-forms, was constructed
in [68]. It is related to an effective gauge field theory for multiple M2-branes with volume
preserving diffeomorphisms of an ‘internal’ 3-manifold as its gauge group [69–73].

4 New examples in 4D and 6D

So far, we have exhibited a correspondence between any given Lorentz-invariant 6D theory
of chiral 2-form electrodynamics and an associated Lorentz and duality invariant 4D theory
of 1-form electrodynamics. Within either the Hamiltonian or Lagrangian formulation, the
correspondence comes about because the Hamiltonian/Lagrangian density is a function
of two variables subject to a non-linear first-order PDE, which is formally the same in
both cases for a particular choice of bases for the two sets of two independent variables.
Moreover, the basis of independent variables can be chosen such that the PDE is also
formally the same for both the Hamiltonian and Lagrangian formulations (if, for 6D, we
view as “Lagrangian” the formulation of [15] with manifest 5D Lorentz invariance). Thus,
remarkably, the task of constructing these 4D/6D theories reduces to the solution of a single
PDE for a function of two variables, where only the interpretation of variables distinguishes
between 4D/6D and Hamiltonian/Lagrangian.

One form of this ‘universal’ PDE is (2.73) where the dependent variable is the Hamilto-
nian density and the independent variables (u, v) are (4D or 6D) rotation scalars. We have
already discussed the solution that yields Born-Infeld electrodynamics in the 4D context;
as it applies equally in 6D, and as both have brane interpretations within String/M-theory,
we shall call it the ‘D3/M5’ solution.

Here we focus on the one-parameter extension of the D3/M5 solution that we found
recently in the context of 4D electrodynamics [3] by considering a Hamiltonian density of
the form

H(u, v) =
√
K(u, v) + constant . (4.1)

The ‘universal’ PDE (2.73) satisfied by H becomes the following PDE for K:

KuKv = 4K . (4.2)

An obvious ansatz for K is the generic quadratic function

K = c+ b1u + b2v + a11u2 + 2a12uv + a22v2 . (4.3)

This is a solution of (4.2) provided that

a11(a12 − 1) = 0 , a22(a12 − 1) = 0 , a11a22 + a2
12 = 2a12 , (4.4)

and
(a12 − 2)b1 + a11b2 = 0 , (a12 − 2)b2 + a22b1 = 0 , b1b2 = 4c . (4.5)
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There are two types of solution of these algebraic relations, according to whether we choose
(i) a12 = 1 or (ii) a12 = 2, in which case a11 = a22 = 0. For case (i), K is a perfect square
and this leads to a Hamiltonian density linear in (u, v) that can be recovered as the weak-
field limit of the Hamiltonian density resulting from case (ii). The algebraic relations for
case (ii) determine K in terms of a constant T with dimensions of energy density, and a
dimensionless parameter γ. Requiring H to be real for all values of (u, v) fixes the sign of
T , and requiring it to be zero in the vacuum fixes the arbitrary additive constant. This
results in the Hamiltonian density

H =
√
T 2 + 2T (e−γu + eγv) + 4uv− T , (4.6)

where γ ∈ R is a numerical parameter.
For γ = 0 we recover the D3/M5 result. The strong-field (T → 0) limit H = 2

√
uv is

the same as that of the D3/M5 solution, see (2.25), but the weak-field (T →∞) limit still
involves the parameter γ:

H|T=∞ = e−γu + eγv

= (cosh γ)s− (sinh γ)
√
s2 − p2 . (4.7)

This Hamiltonian density is manifestly non-negative; it is always real since (as we have
already seen) s2− p2 ≥ 0 for either the 4D or 6D interpretation of the variables (s, p). The
4D interpretation yields an interacting extension of Maxwell’s equations that preserves
both electromagnetic duality and conformal invariance [3]. We briefly review this result
below, and then consider the analogous 6D chiral 2-form electrodynamics.

4.1 ModMax electrodynamics

Using the 4D interpretation for the parameters (u, v), and their relation to the rotation
scalars (s, p), the Hamiltonian density of (4.6) is found to be

H(T ) =
√
T 2 + 2T

[
(cosh γ)s− (sinh γ)

√
s2 − p2

]
+ p2 − T . (4.8)

This is the one-parameter generalization of the BI Hamiltonian density found in [3]. Its
strong-field (T → 0) limit yields the Hamiltonian density (2.25) of Bialynicki-Birula elec-
trodynamics. Its weak-field (T →∞) limit is (4.7) with the 4D interpretation of (s, p); i.e.

H = 1
2(cosh γ)(|D|2 + |B|2)− 1

2(sinh γ)
√

(|D|2 + |B|2)2 − 4|D×B|2 . (4.9)

The Maxwell Hamiltonian density is recovered for γ = 0, while for γ > 0 one gets the one-
parameter modification of Maxwell electrodynamics called “ModMax” electrodynamics
in [3]. The ModMax Hamiltonian field equations are

Ḃ = −∇× [A−D− CB] , Ḋ = ∇× [A+B− CD] . (4.10)

for coefficient functions

A± = cosh γ ± sinh γ cos Θ , C = sinh γ sin Θ , (4.11)
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where the angular variable Θ is most simply defined in terms of the rotation scalars (ξ, η)
of (2.11) by

(ξ, η) =
√
η2 + ξ2 (cos Θ, sin Θ) . (4.12)

The Legendre transform of H(T ) of (4.8) yields the Lagrangian density9

L(T ) = T −
√
T 2 − 2T

[
(cosh γ)S + (sinh γ)

√
S2 + P 2

]
− P 2 . (4.13)

This result is most easily found using methods explained in section 5. It reduces to the
usual BI Lagrangian density for γ = 0, and in the T →∞ limit it reduces to the ModMax
Lagrangian density obtained in [3] by Legendre transform of the ModMax Hamiltonian
density (4.9):

L = −1
2(cosh γ)(|E|2 − |B|2) + 1

2(sinh γ)
√

(|E|2 − |B|2)2 + 4|E ·B|2 . (4.14)

By construction, this Lagrangian defines a duality-invariant 4D electrodynamics, and one
may verify that it satisfies the duality-invariance condition (2.20); see also [74].

We refer the reader to [3] for more details of properties of the ModMax theory, but
we mention here that γ ≥ 0 is necessary to eliminate the possibility of superluminal
propagation of small-amplitude fluctuations about a background solution of constant elec-
tric/magnetic fields, and that there are exact Maxwell-like plane-wave solutions for γ ≥ 0.
See also [75–78] for recent studies of ModMax effects on self-gravitating solutions in General
Relativity.

An alternative to using a Legendre transform to relate 4D Hamiltonian and La-
grangian densities, is to obtain both from an analogous 6D chiral 2-form theory by re-
duction/truncation, so we now turn to this 6D theory.

4.2 New chiral 2-form theories

Using the 6D interpretation for the parameters (u, v), and their relation to the 6D rotation
scalars (s, p), the Hamiltonian density (4.6) is formally the same as it was for 4D, i.e. (4.8).
Using (2.68); i.e. s = 1

2 |B|
2 and p = |B× B|, we arrive at the 6D Hamiltonian density

H =
√
T 2 + T

[
(cosh γ)|B|2 − (sinh γ)

√
|B|4 − 4|B× B|2

]
+ |B× B|2 − T . (4.15)

This reduces to (2.76) for γ = 0, and the strong-field (T → 0) limit is again (2.77) irre-
spective of the value of γ. However, the weak-field (T →∞) limit is

HT=∞ = 1
2(cosh γ)|B|2 − 1

2(sinh γ)
√
|B|4 − 4|B× B|2 . (4.16)

This defines a new interacting chiral 2-form electrodynamics; we shall show later that it is
conformal invariant.

9This does not appear in [24] because only solutions of the PDE (2.20) that yield Maxwell electrody-
namics in the weak-field limit were considered.
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The field equation is (2.56) (i.e. Ḃ = ∇×H) and for the weak-field limit we have

HT=∞ =
[
cosh γ − (sinh γ) s√

s2 − p2

]
B− (sinh γ) p√

s2 − p2 n× B , (4.17)

where n is the unit 5-vector in the direction defined by −B× B, and

[n× B]ij := 1
2ε

ijklmnkBlm . (4.18)

The sign choice made for the unit 5-vector n ensures that it becomes the unit 3-vector
of (2.26) after reduction/truncaton to 4D. As we saw earlier, this procedure replaces the
6D interpretation of the variables (s, p) by their 4D interpretation, which means that the
6D Hamiltonian density (4.16) becomes the 4D ModMax Hamiltonian density of (4.9).

4.2.1 PST formulation

Let us return to the PST Lagrangian (3.2). The solution of (3.11) corresponding to (4.6) is

V(T ) =
√
T 2 − 2T

[
(cosh γ)Q1 + (sinh γ)

√
Q2
]

+Q2
1 −Q2 − T . (4.19)

In the v = dt gauge, for which (Q1, Q2) are given in terms of the SO(5) rotation variables
by (3.12), and V = H, we may use (2.74) to rewrite V(T ) in terms of (u, v); the result is
precisely the Hamiltonian density of (4.6).

Besides the manifest Lorentz invariance, an advantage of the PST formulation is that
we can also choose the v = dx5 gauge to arrive at the Perry-Schwarz formulation of the same
6D field theory. In this case the reduction/truncation to 4D described in section 2.4 yields
the Lagrangian density (4.13) for the generalized BI theory. This illustrates the fact that
switching from timelike v to spacelike v in the PST formulation effects a Legendre transform
of the 4D theory obtained by the reduction/truncation procedure described earlier.

4.2.2 Conformal invariance of the weak/strong-field limits

A feature of both the strong-field and weak-field limits of (4.19) is that there is no depen-
dence on dimensionful parameters. This suggests that these limits yield conformal chiral
2-form electrodynamics theories, and this is already known to be true for the ‘M5’ case [5, 6].
Here we present a general proof of conformal invariance based on the observation of Zu-
mino [79] that a theory defined for an arbitrary background spacetime metric is conformal
invariant for a Minkowski background if its action for a general background depends on
the background metric only through its conformal class; i.e. if it is Weyl invariant.10

A potential difficulty with this idea is that the generalization from Minkowski to generic
spacetime metric could violate essential gauge invariances. This difficulty does not arise
in our case because PST gauge invariance survives the coupling to gravity. In any case,

10This observation is a special case of a more general one [80]: Weyl invariance for a general background
implies invariance under the diffeomorphisms generated by the conformal Killing vectors of any specific
choice of background metric.
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Zumino’s argument does not really depend on the generalization to an arbitrary back-
ground metric: it suffices to consider the metric of the Minkowski background in arbitrary
coordinates. Once we have an action of coordinate independent form, which will be the
case if it is the integral of a scalar density, then Weyl invariance implies that the action
depends only on the conformal class of the background metric, and is therefore invariant
under those diffeomorphisms generated by its conformal Killing vectors, whose algebra is
the algebra of conformal isometries of the background (6D Minkowski in our case).

To apply this method we rewrite the PST Lagrangian density (3.1) in arbitrary coor-
dinates, with g as the Minkowski metric. The definition of B in (3.1) is unchanged if we
interpret ε as the metric-independent alternating tensor density of unit weight defined (in
any coordinate system) by ε012345 = 1. If we also interpret V in (3.2) as a scalar function
of the scalars (Q1, Q2) then the integrand of (3.2) becomes

LPST = 1
4v2 g

PQ(BMNHMNP vQ)−
√
| det g| V , (4.20)

where
v2 = gMNvMvN . (4.21)

Similarly, the scalars (Q1, Q2) in arbitrary Minkowski coordinates are

Q1 = − 1
4v2| det g|gMP gNQB

MNBPQ

Q2 = Q2
1 + 1

v2| det g|g
MNwMwN , (4.22)

where11

wM = − 1
8v2 g

ST (εMNPQRSB
NPBQR vT ) . (4.23)

The factors of 1/| det g| ensure that (Q1, Q2) are scalars rather than scalar densities.
Next, we consider the effect of the Weyl rescaling

g → Ω2g

(
⇒

√
| det g| → Ω6

√
| det g|

)
. (4.24)

This has no effect on the first term of (4.20), but it leads to the following rescaling of Q1
and
√
Q2:

Q1 → Ω−6Q1 ,
√
Q2 → Ω−6√Q2 . (4.25)

Notice that the factors of Ω−6 here are precisely what is needed to cancel the factor of Ω6

coming from the
√
| det g| factor multiplying V, so the second term of (4.20) will also be

unaffected by the Weyl rescaling if and only if V is a homogeneous function of degree one
in the variables Q1 and

√
Q2.

We conclude that the weak-field and strong-field limits yield conformal theories of
chiral 2-form electrodynamics. It is also true that these limits exhaust the possibilities

11Here we use the metric-independent alternating tensor density of weight −1 defined, in any coordinate
system, by ε012345 = 1.
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for conformal chiral 2-form electrodynamics. The reason is that conformal invariance re-
quires V to be a homogeneous function of first degree in both Q1 and

√
Q2, in addition

to satisfying (3.11), but this is equivalent to requiring the Hamiltonian density H(s, p)
to be a homogeneous function of first degree in both arguments, in addition to satisfy-
ing (2.72). As a mathematical problem this is identical to the one already solved in [3] for
4D duality-invariant electrodynamics; the result in that case was that BB-electrodynamics
and ModMax electrodynamics (including Maxwell) are the only possibilities.

A corollary of this result is that the pairing of 4D with 6D theories, of the type under
discussion, is such that if one is conformal invariant then so is the other, and that all
conformal electrodynamics theories (duality invariant in 4D and chiral in 6D) occur in
4D/6D pairs.

5 Higher dimensions: duality in D = 4n

The study of non-linear (2n − 1)-form electrodynamics in a Minkowski spacetime of di-
mension D = 4n for n > 1, in particular the implications of an SO(2) or Sl(2;R) duality
invariance, was initiated by Gibbons and Rasheed [7], who proposed an n > 1 analog of the
Born-Infeld Lagrangian, whose Hamiltonian form and strong-field limit were later found
by Chruscinski [10].

As explained for 4D in section 3, it is possible to make both Lorentz invariance and
duality invariances manifest via a PST-type action that involves an additional non-null
closed 1-form v and a PST gauge invariance. Assuming that v is timelike, as we shall
do now, the Hamiltonian formulation is recovered on imposing the PST gauge v = dt. A
higher-dimensional generalisation of this action was used in [8] to investigate possibilities
for self-interactions for n > 1 within the context of a perturbative expansion about the
linear theory; in particular, new duality-invariant quartic self-interactions were found.

In this framework one starts from an SO(2) doublet of (2n− 1)-form gauge potentials
{Aa; a = 1, 2} with 2n-form field strengths F a = dAa, which are used to define the following
“electric” and “magnetic” (2n− 1)-form fields

Ea = iv̂F
a , Ba = iv̂F̃

a , (5.1)

where v̂ is here the vector-field dual to the normalized 1-form of (3.14); i.e. v̂2 = 1, and F̃ a

is the Hodge dual of F a. The action for these fields, generalising (3.15), is

I[A1, A2] =
∫
d4nx

{1
2εabE

a ·Bb −H(B1, B2)
}
, (5.2)

where
Ea ·Bb = 1

(2n− 1)! (Eµ1···µ2n−1)a(Bµ1···µ2n−1)b , (5.3)

and H is a function of a basis for the independent SO(2)-invariant Lorentz scalars formed
with the (2n− 1)-forms {B1, B2}.

We shall find it convenient to use a notation in which the k Lorentz indices of a k-
form are denoted collectively by [k]. For example, in this notation the scalar product (5.3)
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becomes
Ea ·Bb = 1

(2n− 1)!E
a
[2n−1]B

b [2n−1] . (5.4)

Also, the partial derivatives of H are defined by

dH = ∂H
∂Ba · dB

a = 1
(2n− 1)!

(
∂H

∂Ba
[2n−1]

)
dBa

[2n−1] . (5.5)

Using this notation the variation of the Lagrangian density induced by variation of the
(2n− 1)-form potentials Aa is, omitting a total derivative,

δL = 1
[(2n− 1)!]2 δA

c
[2n−1]′ εca ε

µν[2n−1]′[2n−1]∂µ
[
Ξa

[2n−1]v̂ν
]
, (5.6)

where the repeated indices of [2n− 1] and [2n− 1]′ are summed over, and

Ξa
[2n−1] = Ea

[2n−1] − ε
ab ∂H
∂Bb [2n−1] . (5.7)

The equation of motion is therefore

d[Ξa ∧ v̂] = 0 . (5.8)

We remark that because ivBa
2n−1 = 0 and H is a Lorentz invariant function of Ba

2n−1, we
have

ivΞa = 0 . (5.9)

Recalling that dv = 0, it is evident from (5.6) that the action (5.2) is invariant under the
infinitesimal transformation

δφA
a = v ∧ φa , (5.10)

for (2n − 2)-form parameters φa; this is a generalization of the gauge invariance of (2.48)
with gauge transformation (3.17). It may be used to ‘gauge away’ the exact form arising
in the first-integral of (5.8), which thereby becomes equivalent to the 2n-form equation
Ξa ∧ v̂ = 0. Because of (5.9) there is a further equivalence to Ξa = 0. To summarize, the
field equation for the action (5.2) can be trivially once-integrated, and this first integral is
gauge equivalent to the equation12

Ξa = Ea − εab ∂H
∂Bb = 0 . (5.11)

Generically, this is an equation not only for the field-strength 2n-forms F a but also for
the PST scalar a appearing through its derivative v = da, but there are special cases for
which the action is invariant under the following ‘first’ PST gauge transformation (3.18)
(analogous to (3.10)):

δϕA
a = − ϕ√

(∂a)2 Ξa, δϕa = ϕ . (5.12)

12This non-linear generalization of a self-duality condition on F a is also a generalization to n ≥ 1 of the
n = 1 constitutive relations in the form given in (2.51).
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The action has this PST gauge invariance provided H also satisfies [8, 64]

εabεµν[.][.]′
(
∂H
∂Ba[.]

∂H
∂Bb[.]′ −B

a
[.]B

b
[.]′

)
= 0 . (5.13)

When this condition is satisfied the PST scalar field a is a gauge degree of freedom that
has no effect on the dynamics. In these cases the field equation for a is

εabεµν[2n−1][2n−1]′∂µ

(
∂νa

(∂a)2 Ξa
[2n−1]Ξb

[2n−1]′

)
= 0 , (5.14)

which is identically satisfied when the gauge field equation (5.8) holds; this is the Noether
identity guaranteed by Noether’s second theorem.

5.1 Generalized BI-type electrodynamics

The condition (5.13) simplifies if one restricts H to be a function of the two Lorentz and
SO(2)-duality invariants

s = −1
2 B

a ·Ba, q = 1
2εacεbd(Ba ·Bb)(Bc ·Bd) , (5.15)

which generalize the n = 1 duality invariant scalars of (3.19); in particular q is invariant
under the larger Sl(2;R) duality group. In this case, (5.13) is equivalent to

H2
s + 4sHsHq + 4qH2

q = 1 , (5.16)

which is identical to (3.22); equivalently, to (2.15) with p = √q.
Thus any solution of (5.16) yields a (2n− 1)-form electrodynamics not only for n = 1

in D = 4 but for any n ≥ 1 in D = 4n. In particular, the solution

H =
√
T 2 + 2T

(
(cosh γ)s− (sinh γ)

√
s2 − q

)
+ q − T (5.17)

for real parameter γ yields a D = 4n generalization of the generalized BI theory (4.8),
which reduces for γ = 0 to the Gibbons-Rasheed generalization of the BI theory [7]. The
weak-field (T → ∞) limit, for any γ, is a generalization of the ModMax electrodynamics,
see the Hamiltonian (4.9), which reduces to the free theory with H = s for γ = 0. The
strong-field limit is, independent of the value of γ,

H = √q . (5.18)

In the PST gauge v = dt, this becomes the Sl(2;R)-invariant Hamiltonian density of
Chruscinski’s D = 4n generalization of BB electrodynamics [10].

In a Lagrangian formulation of a duality invariant theory we need only a single (2n−1)-
form potential A which will be identified with A2. Thus F := dA ≡ dA2, and hence

(E,B) = (E2, B2) . (5.19)

Notice that this choice accords, in the gauge v = dt, with the n = 1 choice of (2.44). The
Lagrangian density L must be a Lorentz scalar function of (E,B), which is restricted by
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SO(2)-duality invariance to satisfy a particular nonlinear differential equation [7]. This
equation simplifies significantly if we restrict L to be a function of the Lorentz invariants

α = −1
2 (E · E −B ·B) , β = −

(
E ·B

)2
. (5.20)

For n = 1 (i.e. D = 4) we have
α = S, β = −P 2 , (5.21)

where (S, P ) are the Lorentz scalars of (2.19), which provide a complete basis for any
Lorentz scalar function; for n > 1, functions of (α, β) constitute a special class of Lorentz
scalar functions. Given that L = L(α, β), the condition for SO(2)-duality invariance of the
EL equations is

L2
α + 4αLαLβ + 4βL2

β = 1 , (5.22)

which is formally identical to (5.16). A family of solutions is

L(α, β) = T −
√
T 2 − 2T

[
(cosh γ)α+ (sinh γ)

√
α2 − β

]
+ β . (5.23)

For the case of n = 1 and γ = 0, it is not difficult to show that in the PST gauge v = dt, the
functionH of (5.17) is the BI Hamiltonian density, and the function L of (5.23) is the BI La-
grangian density, which is related to the Hamiltonian density by a Legendre transform with
respect to D; recall that B1 is the 4-vector with components (0,D) for n = 1 when v = dt.

More generally, we can define for all n ≥ 1,

L(E,B) = sup
D

[−E ·D −H(D,B)] , (5.24)

where D = B1. We shall assume that H(D,B) is a strictly convex function of D, so that
D is uniquely defined as a function of E by

E = −∂H(D,B)
∂D

. (5.25)

In this case L will be a strictly convex function of E, which is a sufficient condition for the
Legendre transform to be an involution. This guarantees equivalence of the Hamiltonian
and Lagrangian field equations, and hence that the latter will be duality invariant if the
former are duality invariant. However, it is impractical to find an explicit solution of (5.25)
for D as a function of (E,B) when γ 6= 0.

The Legendre transform was found for the n = 1 case in the weak-field limit (i.e. for
the ModMax theory) by indirect means [3]; as expected, it is the weak-field limit of the
generalized BI Lagrangian density of (4.13). We shall now show how this result can be
extended beyond the weak-field limit to the full generalized BI theory for any n ≥ 1.

5.2 Legendre transform redux

We first consider the general case for which L = L(α, β) and H = H(s, q), assuming strict
convexity; the results obtained will allow us to relate the Lagrangian and Hamiltonian
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densities of the generalized BI-type theories just discussed in the PST formulation. In the
PST gauge v = dt, these functions become the conventional Lagrangian and Hamiltonian
densities, so we are essentially implementing a Legendre transform but in a way that
preserves manifest Lorentz invariance (although not manifest duality invariance).

Our starting point is the conjugate relation to (5.25):

D = − ∂L
∂E

= LαE + 2B(E ·B)Lβ . (5.26)

Inserting this relation in (5.15) and (5.24) leads to [8]

s = −(1 + L2
α − 4βL2

β)κ+ αL2
α + 2βLαLβ (5.27)

q =
(
β − 4ακ+ 4κ2

)
L2
α (5.28)

H = 2(α− κ)Lα + 2βLβ − L (5.29)

where
κ = 1

2(B ·B) . (5.30)

Now we take the differentials of these equations; i.e.

dH = 2(α− κ)dLα + 2βdLβ + Lαdα+ Lβdβ − 2Lαdκ , (5.31)

and analogous expressions for (ds, dq). By substitution for dH and (ds, dq) one may verify
that

dH = (Lα + 4κLβ)−1
[
ds−

(Lβ
Lα

)
dq

]
. (5.32)

The duality invariance condition (5.22) satisfied by L has ensured the absence of a dκ term
on the right hand side. From this result we deduce that

Hs = (Lα + 4κLβ)−1 , Hq = −
(Lβ
Lα

)
(Lα + 4κLβ)−1 . (5.33)

One may also verify that √
α2 − β Lβ =

√
s2 − qHq , (5.34)

and that
H+ L =

√
(s2 − q)H2

s + q + αLα + 2βLβ . (5.35)

The sign of the square roots in these equations may be checked by consideration of the
free-field theory for which H = s and L = α. We note that both (s2 − q) and (α2 − β) are
non-negative.

Equations (5.33) implicitly determine (α, β) as functions of (s, q) and, given these
functions, equations (5.16) and (5.35) uniquely determine H. Although we already know
that the Legendre transform determines H implicitly, we now show how the new presen-
tation of this fact allows us to obtain an explicit expression for the Hamiltonian density
corresponding to the Lagrangian density of (5.23). For this case we find that

αLα + 2βLβ − L = T

[
cosh γ

√
1 + 4(α2 − β)L2

β + 2 sinh γ
√
α2 − βLβ − 1

]
, (5.36)
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where the duality-invariance condition on L, in the form

(Lα + 2αLβ)2 = 1 + 4(α2 − β)L2
β , (5.37)

has been used to obtain the first term in the bracket on the right hand side. Now, using
both (5.34) and (5.35) we deduce that

H+ T =
√

(s2 − q)H2
s + q + T

[
cosh γ

√
1 + 4(s2 − q)H2

q + 2 sinh γ
√
s2 − qHq

]
, (5.38)

which is a partial differential equation for H(s, q); taken together with (5.16), we have a
system of two simultaneous differential equations with the unique solution

H =
√
T 2 + 2T

[
−(sinh γ)

√
s2 − q + (cosh γ)s

]
+ q − T . (5.39)

As expected, this is the Hamiltonian density of (5.17).

6 Higher dimensions: chirality in D = 4n+ 2

A chiral 2n-form electrodynamics is possible for D = 4n + 2, and a manifestly Lorentz
invariant action can be found by a straightforward generalization of the 6D PST action
of (3.2). We introduce a (2n + 1)-form H = dA and normalized PST 1-form v̂, which we
again assume to be timelike, and we again define ‘electric’ and ‘magnetic’ fields as

E = iv̂H , B = iv̂H̃ , (6.1)

where H̃ is the Hodge dual of H. The action is then

S =
∫
d4n+2x

(1
2 E · B − V(B)

)
, (6.2)

where we again use the notation

E · B = 1
(2n)!EM1···M2nBM1···M2n , (6.3)

and similarly for any other pair of (2n)-forms; Lorentz indices have been raised here with
a Minkowski metric of ‘mostly-minus’ signature. The PST gauge invariance of the action
imposes the following condition on the ‘potential’ function V(B) [9]:

εMN [.] [.]′
(
∂V
∂B[.]

∂V
∂B[.]′ − B[.]B[.]′

)
= 0 , (6.4)

where the notation is as in (5.5) and (5.13). In the v = dt gauge V becomes the Hamiltonian
density and this condition on it becomes the condition for Lorentz invariance of the phase-
space action [11].

For n = 1, the action (6.2) reduces to the 6D chiral 2-form action of (3.2) when account
is taken of the fact that the 2-form B in that equation is

√
v2B. We have already discussed

the possible choices for V in this n = 1 case. For any n > 1 there are two known possibilities:
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• Free-field theory [12]:
V = 1

2 B · B . (6.5)

This potential trivially satisfies (6.4).

• Strong-field theory [11]
V =

√
−w2 , (6.6)

where w is the (4n+ 2)-vector

wM = − 1
2[(2n)!]2 εMNM1···M2nN1···N2nBM1···M2nBN1···N2n v̂N . (6.7)

We have verified that this potential is also a solution of (6.4).

For n > 1 no other interacting theories are currently known, but some restrictions on the
possibilities have been found [9].

The formula (6.7) implies that

− w2 = (4n)!
4[(2n)!]4B

P1···P2nBQ1···Q2n

[
B[P1···P2n

BQ1···Q2n]
]
. (6.8)

We give here relatively simple expressions for the n = 1, 2 cases:

(n = 1) :−w2 = 1
2 (B · B)2 − 1

4B
PQBQRBRSBSP , (6.9)

(n = 2) :−w2 = 1
2 (B · B)2 − 1

2(BIBJ)(BIBJ) + 1
16(BIJBKL)(BIJBKL) , (6.10)

where we have used the following notation for Lorentz tensors quadratic in B:

(BIBJ) = 1
3!B

IPQRBJPQR , (BIJBKL) = 1
2B

IJPQBKLPQ . (6.11)

6.1 Reduction to D = 4n

To perform the dimensional reduction/truncation to D = 4n we split the D = 4n + 2
Lorentz indices as follows

M = (µ, a) : µ = 0, 1, · · · , 4n ; a = 1, 2 . (6.12)

We then set to zero all components of H except Hµ1···µ2na, which we re-interpret as the
components of a pair of 2n-forms Fa, which we restrict to depend only on the coordinates
of the D = 4n Minkowski subspace. We also restrict the closed PST 1-form v to this
subspace, so v → dxµvµ. As a result

E → Ea ∧ dxa , B → εabδ
bcBa ∧ dxc , V(B)→ H(B1, B2) . (6.13)

The Euclidean metric on the 2-dimensional compact space appears in the reduc-
tion/truncation of B because this was defined using the Hodge dual. The fields (Ea, Bb) on
the 4n-dimensional Minkowski spacetime are independent of this 2-metric, so εabE

a ·Bb is
an Sl(2;R) invariant. The action (6.2) becomes the action (5.2), and the constraint (6.4)
on V becomes the constraint (5.13) on H. In particular, B · B → −Ba · Ba, which tells us
that the truncation/reduction of the free chiral 2n-for electrodynamics in D = 4n + 2 is
the free duality invariant (2n− 1)-form electrodynamics in D = 4n.
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6.1.1 A new D > 4 generalization of BB electrodynamics

The above reduction/truncation takes dxMwM → dxµwµ, where

wµ = 1
2[(2n− 1)!]2 εab v̂

νεµνρ1···ρ2n−1σ1···σ2n−1(Bρ1···ρ2n−1)a(Bσ1···σ2n−1)b (6.14)

which yields

− w2 = (4n− 2)!
4[(2n− 1)!]4 ε

abεcdB
µ1···µ2n−1
a B

ν1···ν2n−1
b

(
Bc

[µ1···µ2n−1
Bd
ν1···ν2n−1]

)
(6.15)

This Lorentz scalar is also manifestly Sl(2;R) invariant. We give here simplified expressions
for n = 1, 2:

• n = 1.
− w2 = Bµ

[aB
ν
b]

(
Ba
µB

b
ν

)
= B2D2 − (B ·D)2 . (6.16)

In the PST gauge v = dt we have
√
−w2 = |w| = |D×B|, and hence BB electrody-

namics.

• n = 2
− w2 = q + q′ , (6.17)

where q is the Sl(2;R) invariant of (5.15), and

q′ = −1
8ε

abεcd(Bµρσ
a Bc

νρσ)(Bνητ
b Bd

µητ ) , (6.18)

which is another Sl(2;R) invariant.

From the result for n = 2 we see that the reduction/truncation of the ‘strong-field’ chiral
electrodynamics in D = 4n + 2 yields an Sl(2;R)-duality invariant electrodynamics in
D = 8 with

H =
√
q + q′ . (6.19)

This differs from the result (5.18) for the strong-field limit of the BI-type 8D duality-
invariant electrodynamics (and its one-parameter generalization) discussed in subsec-
tion 5.1. Moreover, the expression (6.15) shows that this difference will exist for all n > 1
because the invariant q is then just one term in the expansion of (6.15) in Sl(2;R) invariants.

Ths inequivalence for n > 1 of the strong-field limit [10] of the BI-type theories of [7]
with the ‘strong-field’ theory obtained by reduction/truncation of the chiral ‘strong-field’
D = 4n+2 theory [11] is an indication that the strong-field limit of the BI-type theories can
be ‘lifted’ to D = 4n+ 2 only for n = 1. This would not be surprising because it is already
known that the weak-field expansion of the BI-type theories is not the reduction/truncation
of the weak-field expansion of any chiral D = 4n+ 2 theory [9].
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7 Summary and discussion

We have explored multiple formulations of generic SO(2)-duality invariant non-linear 4D
electrodynamics theories and generic nonlinear 6D chiral 2-form electrodynamics. In each
case, the generic model (whether 4D or 6D) is determined by a function of two variables,
and the condition for both Lorentz invariance and duality (4D) or chirality (6D) requires
this function to satisfy a particular ‘universal’ PDE. Given a solution of this PDE, the
PST method allows the construction of an action for which both Lorentz invariance and
duality-invariance (4D) or chirality (6D) are manifest, but this depends on a new and non-
manifest (PST) gauge invariance; requiring this gauge invariance of the generic PST-type
action again leads to the ‘universal’ PDE.

This 4D/6D universality is partly explained by the fact that any chiral 6D 2-form elec-
trodynamics theory contains, as a consistent reduction/truncation, a duality-invariant 4D
electrodynamics theory. Here we have shown that this process also maps the 6D ‘universal’
PDE into the 4D ‘universal’ PDE. This implies a one-to-one correspondence between the
sets of 4D and 6D theories since both are in one-to-one correspondence with the set of so-
lutions to a single ‘4D/6D universal’ PDE: each solution yields both a duality invariant 4D
electrodynamics and a 6D chiral 2-form electrodynamics related by reduction/truncation.
The general solution of this PDE is known but various physical constraints (e.g. convexity,
analyticity) mean that some solutions will have more physical relevance than others.

One well-studied solution yields both the 4D Born-Infeld theory, which arises in string-
theory as the effective dynamics on the worldvolume of a planar static D3-brane, and the
chiral 2-form electrodynamics on the worldvolume of a planar static M5-brane. We have
called this the “D3/M5 pair”; it is really a family of paired 4D/6D theories parameterized
by a constant with dimensions of energy density. This family includes both a free-field
limit, corresponding to weak fields with low energy density, and an interacting conformal-
invariant strong-field limit. For 4D the strong-field limit is Bialynicki-Birula electrodynam-
ics [4, 35], which is the unique 4D electrodynamics theory that is both Lorentz invariant and
Sl(2;R)-duality invariant. The corresponding 6D conformal chiral 2-form electrodynamics
was found by Gibbons and West [5] as a limit (and truncation) of the M5 Hamiltonian
density [13], and its 6D Lorentz invariance was established in [6].

One issue that we have clarified here is the relation between the Lagrangian and Hamil-
tonian formulations of Bialynicki-Birula electrodynamics. As shown in [4], the Lagrangian
density found by Legendre transform of the Hamiltonian density is identically zero. Nev-
ertheless, restrictions on the domain of this zero function contain the information that is
required for reconstruction of the non-zero Hamiltonian density by a Legendre transform. A
corollary of this result is that an alternative ‘extended’ Lagrangian, without restrictions on
its domain, is a sum of constraints imposed by Lagrange multipliers, as originally proposed
in [35]. Many readers will be familiar with the possibility that a non-trivial dynamical
system may have a zero canonical Hamiltonian; Bialynicki-Birula electrodynamics shows
how a non-trivial dynamical system may have a zero canonical Lagrangian.

Another solution of the ‘universal’ PDE yields, in 4D, the new one-parameter general-
ization of the Born-Infeld theory discussed in [3]; one of its features is that the weak-field
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and strong-field limits exhaust the possibilities for conformal invariant 4D electrodynamics.
The strong field limit is the same as that of the Born-Infeld theory; i.e. Bialynicki-Birula
electrodynamics. Its weak-field limit is a new one-parameter interacting generalization of
Maxwell electrodynamics, which we called “ModMax” electrodynamics. This theory does
not have an analytic Lagrangian density but the Hamiltonian density is analytic within
its ‘convexity domain’ [3]. Here we have exhibited the corresponding family of 6D chiral
2-form electrodynamics; in this case the weak-field limit is a conformal chiral 6D analog of
the 4D ModMax theory, which it contains as a consistent reduction/truncation. Together,
these 4D/6D theories and their conformal limits constitute a ‘generalized’ D3/M5 pair.

There is a natural extension of 4D duality invariant nonlinear electrodynamics to
duality-invariant (2n − 1)-form nonlinear electrodynamics in a Minkowski spacetime of
dimension D = 4n, and a generalization of Born-Infeld theory to these dimensions has been
proposed by Gibbons and Rasheed [7]; its strong-field limit is a generalization of Bialynicki-
Birula electrodynamics that also has an enhanced Sl(2;R)-duality invariance. It would be
natural to suppose that this proposed generalization of Born-Infeld electrodynamics is the
reduction/truncation of a chiral 2n-form electrodynamics in D = 4n + 2 for n > 1. For
n = 2, at least, we know that this supposition is false; this is because there is a unique
quartic interaction in 10D and its reduction/truncation to 8D [9] has a different form to
that appearing in a weak-field expansion of the Gibbons-Rasheed theory [7].

The only currently known 10D interacting chiral 4-form electrodynamics is the n = 2
case of a class of conformal invariant chiral 2n-form electrodynamics in D = 4n+2 [11]. The
n = 1 case is the strong-field limit of the ‘M5’ chiral 2-form electrodynamics, so the n = 2
case is a natural candidate for the strong-field limit of any proposed 10D generalization.
Here we have shown that its truncation/reduction yields, as expected, an 8D conformal
3-form electrodynamics with an enhanced Sl(2;R)-duality invariance, but this is not the
strong-field limit of the Gibbons-Rasheed theory. A corollary of these results is that, for
n > 1, not all (2n − 1)-form duality-invariant electrodynamics theories in D = 4n are
obtainable by reduction/truncation from a chiral 2n-form electrodynamics in D = 4n+ 2.
In other words, chirality inD = 4n+2 implies duality inD = 4n for all n ≥ 1 but the one-to-
one correspondence between duality-invariant electrodynamics and chiral electrodynamics
in space-time with two more spatial dimensions is a special feature of the n = 1 case; in
fact, the only known higher-dimensional (n > 1) analog of the interacting 4D/6D pairs
investigated in detail here is the one ‘strong-field’ case found here by reduction/truncation
of the one known conformal ‘strong-field’ chiral electrodynamics in D = 4n + 2. It is
possible that this really is a strong-field limit of a new non-conformal n > 1 pair but this
remains to be determined.

Note added in proof. After this article was accepted for publication we became aware
of [81, 82] where properties of a generic conformal (but not necessarily duality-invariant)
non-linear 4D electrodynamics are studied. Birefringence properties were found in [81]
with results for conformal theories in accord with those of [3]. The coupling to gravity
was considered in [82], and it was shown that a certain condition on black hole charges
restricts the form of the conformal electrodynamics Lagrangian density to a one-parameter
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extension of the Maxwell case. When expressed in terms of the Lorentz invariants S and
P of our equation (2.20), this restricted Lagrangian density is

L(c) = (1− c2)S + c2
√
S2 + P 2 (c2 ≤ 1) .

For 2c2 ≤ 1 we may write

c2 = 1
2(1− e−2γ) (γ ≥ 0) ,

in which case
L(c) = e−γLModMax(γ) .

The constant factor of e−γ can be removed by a rescaling of the fields, so the restricted
conformal electrodynamics Lagrangian density of [82] is, for 2c2 ≤ 1 and prior to coupling
to gravity, equivalent to the duality-invariant ModMax electrodynamics of [3], despite the
fact that duality invariance was not assumed in [82].

Acknowledgments

IB and DS have been partially supported by the Spanish MICINN/FEDER (ERDF EU)
grant PGC2018-095205-B-I00. The work of IB was also partially supported by the Basque
Government Grant IT-979-16 and by the Basque Country University program UFI 11/55.
PKT has been partially supported by STFC consolidated grant ST/L000385/1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Berman, M5 on a torus and the three-brane, Nucl. Phys. B 533 (1998) 317
[hep-th/9804115] [INSPIRE].

[2] A. Nurmagambetov, Duality symmetric three-brane and its coupling to type IIB supergravity,
Phys. Lett. B 436 (1998) 289 [hep-th/9804157] [INSPIRE].

[3] I. Bandos, K. Lechner, D. Sorokin and P.K. Townsend, A non-linear duality-invariant
conformal extension of Maxwell’s equations, Phys. Rev. D 102 (2020) 121703
[arXiv:2007.09092] [INSPIRE].

[4] I. Bialynicki-Birula, Nonlinear electrodynamics: variations on a theme by Born and Infeld, in
Quantum theory of particles and fields: birthday volume dedicated to Jan Lopuszanski,
B. Jancewicz and J. Lukierski eds., World Scientific, Singapore (1984), pg. 31.

[5] G.W. Gibbons and P.C. West, The metric and strong coupling limit of the M5-brane, J.
Math. Phys. 42 (2001) 3188 [hep-th/0011149] [INSPIRE].

[6] P.K. Townsend, An interacting conformal chiral 2-form electrodynamics in six dimensions,
Proc. Roy. Soc. Lond. A 476 (2020) 20190863 [arXiv:1911.01161] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0550-3213(98)80009-6
https://arxiv.org/abs/hep-th/9804115
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804115
https://doi.org/10.1016/S0370-2693(98)00848-X
https://arxiv.org/abs/hep-th/9804157
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804157
https://doi.org/10.1103/PhysRevD.102.121703
https://arxiv.org/abs/2007.09092
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.09092
https://doi.org/10.1063/1.1376158
https://doi.org/10.1063/1.1376158
https://arxiv.org/abs/hep-th/0011149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0011149
https://doi.org/10.1098/rspa.2019.0863
https://arxiv.org/abs/1911.01161
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.01161


J
H
E
P
0
3
(
2
0
2
1
)
0
2
2

[7] G.W. Gibbons and D.A. Rasheed, Electric-magnetic duality rotations in nonlinear
electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].

[8] G. Buratti, K. Lechner and L. Melotti, Duality invariant self-interactions of Abelian p-forms
in arbitrary dimensions, JHEP 09 (2019) 022 [arXiv:1906.07094] [INSPIRE].

[9] G. Buratti, K. Lechner and L. Melotti, Self-interacting chiral p-forms in higher dimensions,
Phys. Lett. B 798 (2019) 135018 [arXiv:1909.10404] [INSPIRE].

[10] D. Chruscinski, Strong field limit of the Born-Infeld p-form electrodynamics, Phys. Rev. D 62
(2000) 105007 [hep-th/0005215] [INSPIRE].

[11] P.K. Townsend, Manifestly Lorentz invariant chiral boson action, Phys. Rev. Lett. 124
(2020) 101604 [arXiv:1912.04773] [INSPIRE].

[12] M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) p-forms, Phys. Lett. B 206
(1988) 650 [INSPIRE].

[13] E. Bergshoeff, D.P. Sorokin and P.K. Townsend, The M5-brane Hamiltonian, Nucl. Phys. B
533 (1998) 303 [hep-th/9805065] [INSPIRE].

[14] N. Marcus and J.H. Schwarz, Field theories that have no manifestly Lorentz invariant
formulation, Phys. Lett. B 115 (1982) 111 [INSPIRE].

[15] M. Perry and J.H. Schwarz, Interacting chiral gauge fields in six-dimensions and Born-Infeld
theory, Nucl. Phys. B 489 (1997) 47 [hep-th/9611065] [INSPIRE].

[16] P. Pasti, D.P. Sorokin and M. Tonin, Duality symmetric actions with manifest space-time
symmetries, Phys. Rev. D 52 (1995) 4277 [hep-th/9506109] [INSPIRE].

[17] P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p-forms, Phys.
Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].

[18] A. Maznytsia, C.R. Preitschopf and D.P. Sorokin, Duality of selfdual actions, Nucl. Phys. B
539 (1999) 438 [hep-th/9805110] [INSPIRE].

[19] M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193
(1981) 221 [INSPIRE].

[20] S. Deser and O. Sarioglu, Hamiltonian electric/magnetic duality and Lorentz invariance,
Phys. Lett. B 423 (1998) 369 [hep-th/9712067] [INSPIRE].

[21] X. Bekaert and M. Henneaux, Comments on chiral p-forms, Int. J. Theor. Phys. 38 (1999)
1161 [hep-th/9806062] [INSPIRE].

[22] X. Bekaert, Interactions of chiral two forms, PoS(tmr99)007 (1999) [hep-th/9911109]
[INSPIRE].

[23] R. Courant and D. Hilbert, Methods of mathematical physics: partial differential equations,
volume 2, Interscience, (1962), pg. 91.

[24] M. Hatsuda, K. Kamimura and S. Sekiya, Electric magnetic duality invariant Lagrangians,
Nucl. Phys. B 561 (1999) 341 [hep-th/9906103] [INSPIRE].

[25] R. Floreanini and R. Jackiw, Selfdual fields as charge density solitons, Phys. Rev. Lett. 59
(1987) 1873 [INSPIRE].

[26] M.K. Gaillard and B. Zumino, Selfduality in nonlinear electromagnetism, Lect. Notes Phys.
509 (1998) 121 [hep-th/9705226] [INSPIRE].

– 38 –

https://doi.org/10.1016/0550-3213(95)00409-L
https://arxiv.org/abs/hep-th/9506035
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506035
https://doi.org/10.1007/JHEP09(2019)022
https://arxiv.org/abs/1906.07094
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.07094
https://doi.org/10.1016/j.physletb.2019.135018
https://arxiv.org/abs/1909.10404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10404
https://doi.org/10.1103/PhysRevD.62.105007
https://doi.org/10.1103/PhysRevD.62.105007
https://arxiv.org/abs/hep-th/0005215
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0005215
https://doi.org/10.1103/PhysRevLett.124.101604
https://doi.org/10.1103/PhysRevLett.124.101604
https://arxiv.org/abs/1912.04773
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.04773
https://doi.org/10.1016/0370-2693(88)90712-5
https://doi.org/10.1016/0370-2693(88)90712-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB206%2C650%22
https://doi.org/10.1016/S0550-3213(98)00504-5
https://doi.org/10.1016/S0550-3213(98)00504-5
https://arxiv.org/abs/hep-th/9805065
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805065
https://doi.org/10.1016/0370-2693(82)90807-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB115%2C111%22
https://doi.org/10.1016/S0550-3213(97)00040-0
https://arxiv.org/abs/hep-th/9611065
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9611065
https://doi.org/10.1103/PhysRevD.52.R4277
https://arxiv.org/abs/hep-th/9506109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9506109
https://doi.org/10.1103/PhysRevD.55.6292
https://doi.org/10.1103/PhysRevD.55.6292
https://arxiv.org/abs/hep-th/9611100
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9611100
https://doi.org/10.1016/S0550-3213(98)00741-X
https://doi.org/10.1016/S0550-3213(98)00741-X
https://arxiv.org/abs/hep-th/9805110
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9805110
https://doi.org/10.1016/0550-3213(81)90527-7
https://doi.org/10.1016/0550-3213(81)90527-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB193%2C221%22
https://doi.org/10.1016/S0370-2693(98)00163-4
https://arxiv.org/abs/hep-th/9712067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9712067
https://doi.org/10.1023/A:1026610530708
https://doi.org/10.1023/A:1026610530708
https://arxiv.org/abs/hep-th/9806062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9806062
https://doi.org/10.22323/1.004.0007
https://arxiv.org/abs/hep-th/9911109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9911109
https://doi.org/10.1016/S0550-3213(99)00509-X
https://arxiv.org/abs/hep-th/9906103
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906103
https://doi.org/10.1103/PhysRevLett.59.1873
https://doi.org/10.1103/PhysRevLett.59.1873
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C59%2C1873%22
https://doi.org/10.1007/BFb0105236
https://doi.org/10.1007/BFb0105236
https://arxiv.org/abs/hep-th/9705226
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9705226


J
H
E
P
0
3
(
2
0
2
1
)
0
2
2

[27] M.K. Gaillard and B. Zumino, Nonlinear electromagnetic selfduality and Legendre
transformations, in A Newton institute euroconference on duality and supersymmetric
theories, (1997), pg. 33 [hep-th/9712103] [INSPIRE].

[28] S.M. Kuzenko and S. Theisen, Supersymmetric duality rotations, JHEP 03 (2000) 034
[hep-th/0001068] [INSPIRE].

[29] X. Bekaert and S. Cucu, Deformations of duality symmetric theories, Nucl. Phys. B 610
(2001) 433 [hep-th/0104048] [INSPIRE].

[30] E.A. Ivanov and B.M. Zupnik, New representation for Lagrangians of selfdual nonlinear
electrodynamics, in 4th international workshop on supersymmetry and quantum symmetries:
16th Max Born symposium, (2002), pg. 235 [hep-th/0202203] [INSPIRE].

[31] E.A. Ivanov and B.M. Zupnik, New approach to nonlinear electrodynamics: dualities as
symmetries of interaction, Phys. Atom. Nucl. 67 (2004) 2188 [Yad. Fiz. 67 (2004) 2212]
[hep-th/0303192] [INSPIRE].

[32] S.M. Kuzenko, Manifestly duality-invariant interactions in diverse dimensions, Phys. Lett. B
798 (2019) 134995 [arXiv:1908.04120] [INSPIRE].

[33] V. Arnold, Mathematical methods of classical mechanics, 2nd edition, Springer, (1989).

[34] P.A.M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950) 129 [INSPIRE].

[35] I. Bialynicki-Birula, Field theory of photon dust, Acta Phys. Polon. B 23 (1992) 553
[INSPIRE].

[36] S. Deser and C. Teitelboim, Duality transformations of Abelian and non-Abelian gauge fields,
Phys. Rev. D 13 (1976) 1592 [INSPIRE].

[37] L. Mezincescu and P.K. Townsend, DBI in the IR, J. Phys. A 53 (2020) 044002
[arXiv:1907.06036] [INSPIRE].

[38] J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35
[hep-th/9304154] [INSPIRE].

[39] W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity, Nucl. Phys. B 238
(1984) 307 [INSPIRE].

[40] A.R. Kavalov and R.L. Mkrtchian, Lagrangian of the selfduality equation and d = 10, N = 2b
supergravity, Sov. J. Nucl. Phys. 46 (1987) 728 [Yad. Fiz. 46 (1987) 1246] [INSPIRE].

[41] B. McClain, F. Yu and Y.S. Wu, Covariant quantization of chiral bosons and OSp(1, 1|2)
symmetry, Nucl. Phys. B 343 (1990) 689 [INSPIRE].

[42] C. Wotzasek, The Wess-Zumino term for chiral bosons, Phys. Rev. Lett. 66 (1991) 129
[INSPIRE].

[43] I. Bengtsson and A. Kleppe, On chiral p-forms, Int. J. Mod. Phys. A 12 (1997) 3397
[hep-th/9609102] [INSPIRE].

[44] N. Berkovits, Manifest electromagnetic duality in closed superstring field theory, Phys. Lett.
B 388 (1996) 743 [hep-th/9607070] [INSPIRE].

[45] N. Berkovits, Local actions with electric and magnetic sources, Phys. Lett. B 395 (1997) 28
[hep-th/9610134] [INSPIRE].

[46] D. Belov and G.W. Moore, Holographic action for the self-dual field, hep-th/0605038
[INSPIRE].

– 39 –

https://arxiv.org/abs/hep-th/9712103
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9712103
https://doi.org/10.1088/1126-6708/2000/03/034
https://arxiv.org/abs/hep-th/0001068
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0001068
https://doi.org/10.1016/S0550-3213(01)00260-7
https://doi.org/10.1016/S0550-3213(01)00260-7
https://arxiv.org/abs/hep-th/0104048
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0104048
https://arxiv.org/abs/hep-th/0202203
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0202203
https://doi.org/10.1134/1.1842299
https://arxiv.org/abs/hep-th/0303192
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0303192
https://doi.org/10.1016/j.physletb.2019.134995
https://doi.org/10.1016/j.physletb.2019.134995
https://arxiv.org/abs/1908.04120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04120
https://doi.org/10.4153/CJM-1950-012-1
https://inspirehep.net/search?p=find+J%20%22Can.J.Math.%2C2%2C129%22
https://inspirehep.net/search?p=find+J%20%22Acta%20Phys.Polon.%2CB23%2C553%22
https://doi.org/10.1103/PhysRevD.13.1592
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD13%2C1592%22
https://doi.org/10.1088/1751-8121/ab5eab
https://arxiv.org/abs/1907.06036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.06036
https://doi.org/10.1016/0550-3213(94)90053-1
https://arxiv.org/abs/hep-th/9304154
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9304154
https://doi.org/10.1016/0550-3213(84)90453-X
https://doi.org/10.1016/0550-3213(84)90453-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB238%2C307%22
https://inspirehep.net/search?p=find+J%20%22Sov.J.Nucl.Phys.%2C46%2C728%22
https://doi.org/10.1016/0550-3213(90)90585-2
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB343%2C689%22
https://doi.org/10.1103/PhysRevLett.66.129
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C66%2C129%22
https://doi.org/10.1142/S0217751X9700178X
https://arxiv.org/abs/hep-th/9609102
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9609102
https://doi.org/10.1016/S0370-2693(96)01217-8
https://doi.org/10.1016/S0370-2693(96)01217-8
https://arxiv.org/abs/hep-th/9607070
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9607070
https://doi.org/10.1016/S0370-2693(97)00036-1
https://arxiv.org/abs/hep-th/9610134
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610134
https://arxiv.org/abs/hep-th/0605038
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605038


J
H
E
P
0
3
(
2
0
2
1
)
0
2
2

[47] D.M. Belov and G.W. Moore, Type II actions from 11-dimensional Chern-Simons theories,
hep-th/0611020 [INSPIRE].

[48] A. Sen, Covariant action for type IIB supergravity, JHEP 07 (2016) 017 [arXiv:1511.08220]
[INSPIRE].

[49] A. Sen, Self-dual forms: action, Hamiltonian and compactification, J. Phys. A 53 (2020)
084002 [arXiv:1903.12196] [INSPIRE].

[50] K. Mkrtchyan, On covariant actions for chiral p-forms, JHEP 12 (2019) 076
[arXiv:1908.01789] [INSPIRE].

[51] E. Andriolo, N. Lambert and C. Papageorgakis, Geometrical aspects of an Abelian (2, 0)
action, JHEP 04 (2020) 200 [arXiv:2003.10567] [INSPIRE].

[52] P. Vanichchapongjaroen, Covariant M5-brane action with self-dual 3-form,
arXiv:2011.14384 [INSPIRE].

[53] A. Maznytsia, C.R. Preitschopf and D.P. Sorokin, Dual actions for chiral bosons, in 10th

summer school/seminar (Volga-10) on recent problems in theoretical and mathematical
physics, (1998) [hep-th/9808049] [INSPIRE].

[54] S.-L. Ko and P. Vanichchapongjaroen, A covariantisation of M5-brane action in dual
formulation, JHEP 01 (2018) 072 [arXiv:1712.06408] [INSPIRE].

[55] D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys.
Rev. D 3 (1971) 880 [INSPIRE].

[56] I.A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D.P. Sorokin and M. Tonin,
Covariant action for the superfive-brane of M-theory, Phys. Rev. Lett. 78 (1997) 4332
[hep-th/9701149] [INSPIRE].

[57] M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World volume action of the M-theory
five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [INSPIRE].

[58] I. Bandos, On Lagrangian approach to self-dual gauge fields in spacetime of nontrivial
topology, JHEP 08 (2014) 048 [arXiv:1406.5185] [INSPIRE].

[59] H. Isono, Note on the self-duality of gauge fields in topologically nontrivial spacetime, PTEP
2014 (2014) 093B05 [arXiv:1406.6023] [INSPIRE].

[60] P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008]
[INSPIRE].

[61] P.S. Howe, E. Sezgin and P.C. West, Covariant field equations of the M-theory five-brane,
Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [INSPIRE].

[62] P.S. Howe, E. Sezgin and P.C. West, The six-dimensional selfdual tensor, Phys. Lett. B 400
(1997) 255 [hep-th/9702111] [INSPIRE].

[63] I.A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D.P. Sorokin and M. Tonin, On the
equivalence of different formulations of the M-theory five-brane, Phys. Lett. B 408 (1997) 135
[hep-th/9703127] [INSPIRE].

[64] P. Pasti, D. Sorokin and M. Tonin, Covariant actions for models with non-linear twisted
self-duality, Phys. Rev. D 86 (2012) 045013 [arXiv:1205.4243] [INSPIRE].

[65] C. Lee and H. Min, SL(2, R) duality-symmetric action for electromagnetic theory with
electric and magnetic sources, Annals Phys. 339 (2013) 328 [arXiv:1306.5520] [INSPIRE].

– 40 –

https://arxiv.org/abs/hep-th/0611020
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0611020
https://doi.org/10.1007/JHEP07(2016)017
https://arxiv.org/abs/1511.08220
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.08220
https://doi.org/10.1088/1751-8121/ab5423
https://doi.org/10.1088/1751-8121/ab5423
https://arxiv.org/abs/1903.12196
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.12196
https://doi.org/10.1007/JHEP12(2019)076
https://arxiv.org/abs/1908.01789
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01789
https://doi.org/10.1007/JHEP04(2020)200
https://arxiv.org/abs/2003.10567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.10567
https://arxiv.org/abs/2011.14384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.14384
https://arxiv.org/abs/hep-th/9808049
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9808049
https://doi.org/10.1007/JHEP01(2018)072
https://arxiv.org/abs/1712.06408
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06408
https://doi.org/10.1103/PhysRevD.3.880
https://doi.org/10.1103/PhysRevD.3.880
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD3%2C880%22
https://doi.org/10.1103/PhysRevLett.78.4332
https://arxiv.org/abs/hep-th/9701149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9701149
https://doi.org/10.1016/S0550-3213(97)00227-7
https://arxiv.org/abs/hep-th/9701166
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9701166
https://doi.org/10.1007/JHEP08(2014)048
https://arxiv.org/abs/1406.5185
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.5185
https://doi.org/10.1093/ptep/ptu120
https://doi.org/10.1093/ptep/ptu120
https://arxiv.org/abs/1406.6023
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.6023
https://doi.org/10.1016/S0370-2693(96)01672-3
https://arxiv.org/abs/hep-th/9611008
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9611008
https://doi.org/10.1016/S0370-2693(97)00257-8
https://arxiv.org/abs/hep-th/9702008
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702008
https://doi.org/10.1016/S0370-2693(97)00365-1
https://doi.org/10.1016/S0370-2693(97)00365-1
https://arxiv.org/abs/hep-th/9702111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702111
https://doi.org/10.1016/S0370-2693(97)00784-3
https://arxiv.org/abs/hep-th/9703127
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9703127
https://doi.org/10.1103/PhysRevD.86.045013
https://arxiv.org/abs/1205.4243
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.4243
https://doi.org/10.1016/j.aop.2013.09.015
https://arxiv.org/abs/1306.5520
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.5520


J
H
E
P
0
3
(
2
0
2
1
)
0
2
2

[66] P. Vanichchapongjaroen, Dual formulation of covariant nonlinear duality-symmetric action
of kappa-symmetric D3-brane, JHEP 02 (2018) 116 [arXiv:1712.06425] [INSPIRE].

[67] S.-L. Ko and P. Vanichchapongjaroen, The dual formulation of M5-brane action, JHEP 06
(2016) 022 [arXiv:1605.04705] [INSPIRE].

[68] S.-L. Ko, D. Sorokin and P. Vanichchapongjaroen, The M5-brane action revisited, JHEP 11
(2013) 072 [arXiv:1308.2231] [INSPIRE].

[69] P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629] [INSPIRE].

[70] P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple
M2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898] [INSPIRE].

[71] I.A. Bandos and P.K. Townsend, Light-cone M5 and multiple M2-branes, Class. Quant.
Grav. 25 (2008) 245003 [arXiv:0806.4777] [INSPIRE].

[72] I.A. Bandos and P.K. Townsend, SDiff gauge theory and the M2 condensate, JHEP 02
(2009) 013 [arXiv:0808.1583] [INSPIRE].

[73] P. Pasti, I. Samsonov, D. Sorokin and M. Tonin, BLG-motivated Lagrangian formulation for
the chiral two-form gauge field in D = 6 and M5-branes, Phys. Rev. D 80 (2009) 086008
[arXiv:0907.4596] [INSPIRE].

[74] B.P. Kosyakov, Nonlinear electrodynamics with the maximum allowable symmetries, Phys.
Lett. B 810 (2020) 135840 [arXiv:2007.13878] [INSPIRE].

[75] D. Flores-Alfonso, B.A. González-Morales, R. Linares and M. Maceda, Black holes and
gravitational waves sourced by non-linear duality rotation-invariant conformal
electromagnetic matter, Phys. Lett. B 812 (2021) 136011 [arXiv:2011.10836] [INSPIRE].

[76] A.B. Bordo, D. Kubiznak and T.R. Perche, Taub-NUT solutions in conformal
electrodynamics, arXiv:2011.13398 [INSPIRE].

[77] D. Flores-Alfonso, R. Linares and M. Maceda, Nonlinear extensions of gravitating dyons:
from NUT wormholes to Taub-Bolt instantons, arXiv:2012.03416 [INSPIRE].

[78] Z. Amirabi and S.H. Mazharimousavi, Black-hole solution in nonlinear electrodynamics with
the maximum allowable symmetries, arXiv:2012.07443 [INSPIRE].

[79] B. Zumino, Effective Lagrangians and broken symmetries, in Lectures on elementary particles
and quantum field theory, volume 2, Brandeis Univ., Cambridge, MA, U.S.A. (1970), pg. 437.

[80] S. Faci, Conformal invariance: from Weyl to SO(2, d), EPL 101 (2013) 31002
[arXiv:1206.4362] [INSPIRE].

[81] V.I. Denisov, E.E. Dolgaya, V.A. Sokolov and I.P. Denisova, Conformal invariant vacuum
nonlinear electrodynamics, Phys. Rev. D 96 (2017) 036008 [INSPIRE].

[82] I.P. Denisova, B.D. Garmaev and V.A. Sokolov, Compact objects in conformal nonlinear
electrodynamics, Eur. Phys. J. C 79 (2019) 531 [arXiv:1901.05318] [INSPIRE].

– 41 –

https://doi.org/10.1007/JHEP02(2018)116
https://arxiv.org/abs/1712.06425
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06425
https://doi.org/10.1007/JHEP06(2016)022
https://doi.org/10.1007/JHEP06(2016)022
https://arxiv.org/abs/1605.04705
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.04705
https://doi.org/10.1007/JHEP11(2013)072
https://doi.org/10.1007/JHEP11(2013)072
https://arxiv.org/abs/1308.2231
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.2231
https://doi.org/10.1088/1126-6708/2008/06/105
https://arxiv.org/abs/0804.3629
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.3629
https://doi.org/10.1088/1126-6708/2008/08/014
https://arxiv.org/abs/0805.2898
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.2898
https://doi.org/10.1088/0264-9381/25/24/245003
https://doi.org/10.1088/0264-9381/25/24/245003
https://arxiv.org/abs/0806.4777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.4777
https://doi.org/10.1088/1126-6708/2009/02/013
https://doi.org/10.1088/1126-6708/2009/02/013
https://arxiv.org/abs/0808.1583
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.1583
https://doi.org/10.1103/PhysRevD.80.086008
https://arxiv.org/abs/0907.4596
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.4596
https://doi.org/10.1016/j.physletb.2020.135840
https://doi.org/10.1016/j.physletb.2020.135840
https://arxiv.org/abs/2007.13878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.13878
https://doi.org/10.1016/j.physletb.2020.136011
https://arxiv.org/abs/2011.10836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.10836
https://arxiv.org/abs/2011.13398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.13398
https://arxiv.org/abs/2012.03416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.03416
https://arxiv.org/abs/2012.07443
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.07443
https://doi.org/10.1209/0295-5075/101/31002
https://arxiv.org/abs/1206.4362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.4362
https://doi.org/10.1103/PhysRevD.96.036008
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD96%2C036008%22
https://doi.org/10.1140/epjc/s10052-019-7044-5
https://arxiv.org/abs/1901.05318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.05318

	Introduction
	p-form electrodynamics: preliminaries
	2D chiral 0-form electrodynamics
	4D nonlinear 1-form electrodynamics
	BB electrodynamics and the Legendre transform
	Off-shell duality invariance

	6D chiral 2-form: Hamiltonian formulation
	Reduction/truncation to 4D

	6D chiral 2-form: Perry-Schwarz formulation
	4D reduction redux


	PST formulation
	Timelike v
	4D reduction/truncation prior to gauge-fixing of v

	Spacelike v
	Variant PST formulations

	New examples in 4D and 6D
	ModMax electrodynamics
	New chiral 2-form theories
	PST formulation
	Conformal invariance of the weak/strong-field limits


	Higher dimensions: duality in D=4n
	Generalized BI-type electrodynamics
	Legendre transform redux

	Higher dimensions: chirality in D=4n+2
	Reduction to D=4n
	A new D>4 generalization of BB electrodynamics


	Summary and discussion

