
On P Systems with Bounded Parallelism
Francesco Bernardini∗, Francisco J. Romero-Campero†, Marian Gheorghe∗,

Mario J. Pérez-Jiménez†, Maurice Margenstern‡, Sergey Verlan‡,
Natalio Krasnogor§

∗Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

Email: {F.Bernardini, M.Gheorghe}@dcs.shef.ac.uk
†Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Seville, Avda. Reina Mercedes, 41012 Sevilla, Spain

Email: {fran, marper}@cs.us.es
‡ LITA, Université de Metz

Ille du Saulcy, 57045 Metz Cedex, France
E-mail: {margens, verlan}@sciences.univ-metz.fr

§ Automated Scheduling, Optimisation and Planning Research Group
University of Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK

E-mail: Natalio.Krasnogor@nottingham.ac.uk

Abstract— A framework that describes the evolution of P
systems with bounded parallelism is defined by introducing basic
formal features that can be then integrated into a structural
operational semantics. This approach investigates a generic
strategy of selecting membranes and rules and applying the rules.
P systems with boundary rules are used to illustrate the case and
an example dealing with an evolution strategy involving bounded
parallelism is discussed.

I. INTRODUCTION

Membrane computing has been introduced with the aim of
defining a computing device, called P system, which abstracts
from the structure and the functioning of living cells [21].
The main results in this area show that P systems are a very
powerful computational model mostly equivalent to Turing
machines. Recent researches have been instead dedicated to
the study of P systems as a modelling tool for biological
systems [7], [8], [24], [5], [9]. In this case P systems are not
used as a computing paradigm, but rather as a formalism for
describing the behaviour of the system to be modelled. There-
fore, there is a growing interest in developing implementations
for the membrane computing paradigm in order to be able to
execute a P system model and run simulations of biological
phenomena. In this respect, a number of tools have already
been produced (some of them are available from [29]) but
yet correct implementation techniques need to be identified,
especially when the quantitative aspects featuring the “reality”
of a biological phenomenon are considered by the model.

Apart from the main stream of the research involving the
study of the computational capabilities of different variants
of P systems and applications in biology, there were investi-
gations into formally defining the semantics of the behaviour
and evolution of such systems. In [2] an operational semantics
for a class of P systems is defined and its implementation in

Maude is described. A step further has been taken by providing
a structural operational semantics for that class of P systems
with correctness proofs for each set of inference rules [3]. Both
approches refer to P systems evolving in a maximally parallel
manner, which is the cornerstone of most of the variants of
the model.

In this paper, we present a variant of P systems with
boundary rules where the rules have associated conditions and
attributes. Then, for this variant, we provide some operational
semantics definitions that characterise different strategies for
the application of the rules based on the notion of parallelism
of type (k, q) (in each step, at most k membranes can evolve
and, inside each one of them, at most q rules can be used).
The selection of membranes and rules relies on the structure
of the systems and conditions and attributes associated to
rules. This evolution strategy will cover some more recent
approaches dropping the maximal parallelism and considering
asynchronous sequential behaviour [13], bounded parallelism
[12], probabilistic approaches [25], biologically oriented meth-
ods [8], [10], [5], [24].

II. THE MODEL

A cell-like P system is usually defined as a hierarchical
arrangement of a number of membranes identifying a corre-
sponding number of regions inside the system, and with these
regions having associated a finite multiset of objects and a
finite set of rules. Moreover, in such a membrane structure,
all the membranes but one must be included in a unique main
membrane, which defines the “boundary” of the system with
respect to the external environment. This particular membrane
is called skin membrane. Rules of many different forms have
been considered for cell-like P systems in order to encode
the operation of modifying the objects inside the membrane,

moving objects from one place to the other, dissolving, creat-
ing, dividing membranes etc. The former operation is usually
encoded by using multiset rewriting rules whereas, for the
movement of objects across the membranes, one can either
choose to use the targets here, in, out, which represent a sim-
ple model for the biological process of diffusion of molecules
across the membranes, or to use symport/antiport rules, which
provide an abstraction for the biological mechanisms of active
transport of small molecules across the membranes [22].

Here, in order to capture the features of most of these rules,
we consider rules of the form:

u [l v] → u′ [l v
′] (1)

with u, v, u′, v′ some finite multisets of objects and l the label
of a membrane. These rules are multiset rewriting rules that
operate on both sides of the membranes, that is, a multiset
u placed outside a membrane labelled by l and a multiset
v placed inside the same membrane can be simultaneously
replaced by a multiset u′ and a multiset v′ respectively. In
this way, we are able to capture in a concise way the features
of both the communication rules and the transformation rules
considered in [6]. Moreover, as shown in [24], rules like (1)
allow us to express any sort of interactions occurring at the
membrane level, and, in particular, they are useful to model
the binding of a signal molecule to its corresponding receptor
that occurs at the cell-surface level.

Another important concept commonly used in membrane
computing is that of promoters/inhibitors as multisets of
objects that affect the applicability of the rules associated to
membranes. Promoters are multisets of objects which, when
present inside a membrane, make certain rules to be applicable
inside that membrane and which prevent those rules from
being applied when they are not present inside that membrane.
Inhibitors are instead multisets that operate in the opposite
sense: when they are present inside a membrane they block
the application of certain rules inside that membrane [22]. We
generalise this concept of promoters/inhibitors by associating
to each rule a boolean predicate π expressing a generic
property over the objects contained inside a membrane and
the objects contained in the surrounding region or in one of
the regions that exists inside the current one. Such a predicate
π is meant to specify a condition that need to be satisfied to
make the rule to be applicable inside a given membrane.

Finally, we associate to each rule a finite set of attributes
which are meant to capture the quantitative aspects that are of-
ten necessary to characterise the “reality” of the phenomenon
to be modelled. The necessity of taking into account these
quantitative aspects has been made clear in a few recent
application of P systems to the modelling of biological systems
[7], [8], [24], [5], [9].

Therefore, we introduce the following notion of program as
the basic feature describing a generic process occurring inside
a membrane.

Definition 2.1 (program): Let O be an alphabet for the
objects and let Lab be an alphabet of labels. A program is
a construct

〈π >> u [l v] → u′ [l v
′], A〉

with u, v, u′, v′ ∈ O∗ some finite multisets of objects, π a
generic boolean predicate, l is a label from Lab and A a finite
set of attributes associated with the rule.

As we have already said, the predicate π is used to express
a condition that needs to be satisfied in order to make the rule
applicable inside a membrane. A rule contained in a program is
said to be active inside a membrane if the predicate π evaluates
to true, otherwise it is said to be inactive. The set of attributes
in A can instead be used to associate to each rule a kinetic
constant [8], [24], [5] a probability [7], [4], or a more general
function returning the number of occurrences of the multisets
u, v to be consumed and the number of occurrences of the
multisets u′, v′ to be produced. As well as this, the attributes
might be used to associate to a rule some “side-effect” in
order to alter other properties of the membrane where the rule
is applied.

Our notion of program bears some similarities with, and is
somehow inspired by, the notion of attribute grammars used
for syntax-directed language translation and automatic code
generation [1], as well as the notion of parametric L systems
augmented with C code used for modelling plant growth and
development [17]. In a sense, our programs also resemble the
concept of guarded commands for non-deterministic program-
ming introduced by Dijkstra in 1975 which has then led to
CCS, CSP and the modern theory of concurrent systems based
on π-calculus [20].

Now, we can define a P system by simply associating a finite
multiset of objects to each membrane in a given membrane
structure and by considering a finite set of programs to make
these objects evolve from one configuration to the other.

Definition 2.2 (P system): A P system is a construct Π =
(O,Lab, µ,M1,M2, . . . ,Mn, R1, . . . , Rn) where:

• O is a finite alphabet of symbols representing objects;
• Lab is a finite alphabet of symbols representing labels

for the compartments;
• µ is a membrane structure containing n ≥ 1 membranes

labelled with elements from Lab;
• Mi = (wi, Li), for each 1 ≤ i ≤ n, is the initial

configuration of membrane i with Li ∈ Lab and wi ∈ O∗

a finite multiset of objects;
• Ri, for each 1 ≤ i ≤ n, is a finite set of programs in

membrane i of the form specified in Definition 2.1 with
objects in O and labels in Lab.

Thus, the initial configuration of each membrane i, with
1 ≤ i ≤ n, is given by a finite multiset of objects from O and
by a label from Lab. A program consists of a rule of the form
u [Li

v] → u′ [Li
v′], with Li the label of membrane i, may be

either in Li or in the membrane surrounding it. Moreover, we
can now precisely say that the evaluation of the predicate π in
such a program must be done by considering both the content
of membrane i and the content of the membrane upper(µ, i)
(i.e., the membrane that directly contains membrane i). The
evaluation of the predicate π, which has to be done before the
application of the rule inside membrane i, is then denoted by
π(i, upper(µ, i)).

P systems are usually considered as being distributed max-
imal parallel multiset rewriting systems [22]. This means, in
each step, in each membrane, all the objects that can evolve by

means of some rules must evolve in parallel at the same time
by means of these rules, with the sole restriction that the same
occurrence of the same object cannot be used by more than
one rule at a time. That is, in each step, for each membrane,
a maximal set of rules to be applied is non-deterministically
selected by making sure that no further rules can be applied
to the objects left inside the membranes. On the other hand, a
few recent works [18], [7], [8], [25], [24], [5] have addressed
the issue of introducing new strategies for the application of
the rules where the set of rules to be applied in any step is
not maximal, but it is somehow bounded. The reasons for
the introduction of new derivation/evolution strategies may be
different, but, in the context of modelling biological systems,
one can say that restrictions to maximal parallelism are often
required in order to close the gap between the abstractness of
the model and the “reality” of the phenomenon to be modelled
[18], [7], [8], [25], [24], [5]. In this respect, the key issues
that need to be addressed in order to define a strategy for the
application of the rules in a P system are: a) how to select
the next rule to be applied inside a given membrane, b) how
many different rules can be applied in parallel at the same time
inside the membrane, and c) how many different membranes
can evolve in parallel at the same time.

A function f will compute the number of membranes that
will be selected to evolve in each step of the computation (k)
and the number of rules applied in each membrane (q). For this
reason this concept of parallelism will be called of type (k, q).
This function may return a bounded number of rules that are
applied a certain number of times or an arbitrary number of
times or in a maximal parallel manner. The rules may be
chosen non-deterministically or according to some restrictions
imposed (partial order or priority relationships) or some other
criteria that might rely on attribute values leading to different
selection mechanisms.

The function f is given in every case by a precise algorithm.
An illustration will be further given in the paper.

These strategies are presented in the framework of an
operational semantics very similar to the one proposed in [2].
The approach will provide a basis to inference rules defined
in [3].

III. OPERATIONAL SEMANTICS

We will introduce some concepts that define the framework
of an operational semantics for P systems evolving in a
(k, q)−parallel manner.

Let Π = (O,Lab, µ,M1,M2, . . . ,Mn, R1, . . . , Rn) be a P
system as specified in Definition 2.2, where Mi = (wi, Li)
with 1 ≤ i ≤ n and the programs in Ri are denoted

j : 〈π >> u [Li
v] → u′ [Li

v′], A〉.

Similar to [3] we will denote by O∗

c
the set of finite multisets

over O. If a membrane Mi contains the multiset wuw′ and
the membrane Ml, included in Mi, has the multiset yvy′ and
Ri contains j : 〈π >> u [Ll

v] → u′ [Ll
v′], A〉 and the

predicate π is true then the result of applying j to objects
contained in Mi and Ml simultaneously will lead to the
multisets w(u′, here)w′ and y(v′, here)y′ in Mi and Ml,

respectively. I.e. we will attach to any multiset obtained by
applying a given program the target here. This will allow
when the structural operational semantics is defined according
to [3] to simulate the execution of a parallel rewriting rule in
two steps: rewriting and communication. After the first step
the multisets obtained will have associated the target here and
in the second step these will be reverted to usual multisets over
O [3].

It will be also defined, similar to [3], the concept of
committed configuaration and the process of passing from one
configuration C1 to another one C2, C1 =⇒ C2, if the next
two steps are executed

• (k, q)−parallel rewriting step, C1
pr

=⇒(k,q) C ′

1, consists
of selecting k membranes and in each membrane q rules
are applied according to the function f ;

• parallel communication of objects, C ′

1
tar
=⇒ C2, consists

of reverting the objects marked as here to objects of O.
The concepts of irreducibility and (L,w)−consistency

will be introduced similar to [3], where L is the label of a
membrane and w its current multiset of objects. The concept of
mpr-irreducibility will be replaced by (k, q)−irreducibility.
In this case a multiset consisting only of objects is called
L−irreducible iff q rules have been applied or less than q

when there are no more rules available. For a membrane M

labelled L and containing the multiset w, a non-empty multiset
of n boundary rules is (L,w)−consistent iff the left hand side
of these rules have the multisets ui, their predicates are true
and:

• w = u1 . . . unz, so each rule is applicable to w,
• either n = q or n < q and no other rules are available to

be applied.
For example the P systems Π =

(O,Lab, µ,M1,M2, . . . ,Mn, R1, . . . , Rn) where
• O = {a, b, c, d, e, g, x, y};
• Lab = {1, 2, 3};
• µ = [1[2][3]];
• w1 = a5b5, w2 = c4d,w3 = eg;
• R1 = {a[2c] → x[2y]}, R2 = {b[2c] → y[2x]}, R3 = ∅.

We will obtain for (2, 2)−parallel rewriting:

(1|a5b5; (2|c4d); (3|eg))
pr

=⇒(2,2)

(1|aaa(xx, here)bbb(yy, here)(2|(xxyy, here)d); (3|eg)).

Where the two membranes selected were 1 and 2 and in each
of these membranes two rules are applied in parallel.

Having these concepts we may rewrite the inference rules
[3] by replacing maximal parallelism with (k, q)−parallelism.
It may be also proved that (k, q)−irreducibility induces correct
operations. In the same way parallel communication may be
approached (in this case only here targets being considered)
and correctness results for target irreducibility may be obtained
similar to [3].

Remark 3.1: The approach on semantics proposed here
for parallelism of type (k, q) includes the usual notion of
maximal parallelism [22] as a particular case of it. In fact,
it is easy to see that, when k is equal to the number of
membranes in the systems and f returns the number of objects

in each membrane, our semantics is equivalent to the usual
notion of maximal parallelism. In general, for such a type
of parallelism, a rule contained in a program labelled by j

is non-deterministically applied a number of times. It can be
also considered a restriction on the application of a rule to a
limited number of times.

Remark 3.2: The semantics approach proposed here, with
respect to [2], defines a more general framework which
abstracts from the language chosen for implementing the P
system model; as well as this, the rules considered are of a
more general form, which allow the simultaneous rewriting of
objects on both sides of the membranes.

Remark 3.3: Our notion of parallelism of type (k, q) is
somehow related to the notion of asynchronous P systems from
[22] (see also [13] for some further discussions and results).
The difference is that, for parallelism of type (k, q), the
maximal number of membranes that can evolve in parallel and
the maximal number of rules that can be applied inside these
membranes are provided through the function f , whereas,
for asynchronous P systems, the values of these constants
are totally arbitrary; in fact, in each step, the number of
membranes, as well as the number of rules to be applied
inside these membranes are arbitrary. More recently, a notion
of minimal parallelism has been proposed in [11] that restricts
this latter type of non-determinism to the number of rules to be
applied inside the membranes: in each step, all the membranes
that can evolve by means of some rules must evolve but,
inside each membrane, the number of rules to be applied is
non-deterministically chosen. Finally, it is easy to see that the
notion of P systems working in the sequential mode from [22],
[13], [12] corresponds to the semantics proposed here for P
systems operating with parallelism of type (1, 1). Moreover, it
is easy to see that our notion of parallelism of type (k, q)
coincides with the notion of q-Max-Parallelism from [16]
when k is equal to the number of membranes in the system.

Remark 3.4: An application of the semantics of P systems
defined in this paper is considered in [24] where a model for
the EGFR signalling cascade is proposed. In that case, rules
are supposed to model chemical reactions with an associated
kinetic constant and, for each rule, the function f returns
all the membrane components and computes the so called
“mass action law”: the value is given by the product of
the concentration of the reactants, expressed in molar units,
multiplied by the corresponding kinetic constant. A slightly
different approach is considered in [8] (see also [10], [9]) that
is based on the notion of metabolic algorithm. In this case, all
the rules are supposed to be applied in parallel at the same time
with a multiplicity again given according to the mass action
law. The variation on the concentration of each reactant is then
obtained by summing up the contribution of each rule. In this
way, it is avoided the introduction of the non-determinism, but
it is necessary to introduce some further constraints in order to
avoid consuming more reactants than those currently available
inside the membranes.

IV. P SYSTEMS WITH PARALLELISM OF TYPE (k, 1)

In this section we will focus on a specific behaviour of
P systems when in a number of membranes, most frequently

only one, a program will be chosen to be executed. This exam-
ple will illustrate a particular way to compute the function f

that selects membranes and programs and it is fully chemically
motivated.

A. An algorithm to select membranes and programs
Gillespie’s algorithm [15] (see also [14] for some recent

improvements) provides an exact method for the stochastic
simulation of systems of bio-chemical reactions; the validity
of the method is rigorously proved and it has been already
successfully used to simulate various biochemical processes
[19]. As well as this, Gillespie’s algorithm is used in the
implementation of stochastic π-calculus [26], [30] and in
its application to the modelling of biological systems [27].
Our method based on Gillespie’s algorithm represents a
first attempt to simulate the behaviour of P systems with
a stochastic semantics. This is done by taking into account
the fact that, with respect to the original algorithm, in P
systems we have different regions, each one with its own
set of rules, and the application of a rule inside a region
can affect the content of another region too. Specifically,
let Π = (O,Lab, µ,M1,M2, . . . ,Mn, R1, . . . , Rn) be a P
system as specified in Definition 2.2 with the membranes
Mi = (wi, Li) and the programs Ri, 1 ≤ i ≤ n. The set Ri of
programs that are active inside membrane contains elements
of the form (j, πj , rj , pj , kj) where:

• j is the index of a program from Ri;
• πj is the predicate; in this section this will be always true

and will be omitted;
• rj is the boundary rule rule contained in the program j;
• pj is the probability of the rule contained in the program j

to be applied in the next step of evolution; this probability
is computed by multiplying a stochastic constant kj ,
specifically associated with program j, by the number
of possible combinations of the objects present on the
left-side of the rules with respect to the multiset wi (or
the multiset wi′ , with i′ = upper(µ, i)) - the current
content of membrane i (i′); for example, if we have a rule
[ab]Li

→ [v]Li
, with a, b ∈ O, v ∈ O∗, the probability

pj is given by kj ∗|wi|a∗|wi|b (i.e., there are |wi|a∗|wi|b
different possible ways of assigning objects to the rule
[ab]Li

→ [v]Li
).

Then an algorithm to select membranes and programs for
(k, 1)−parallel behaviour of a P system is introduced.

First, for each membrane i, we compute the index of the
next program to be used inside membrane i and its waiting
time by using the classical Gillespie’s algorithm:

1) calculate a0 =
∑

pj , for all (j, rj , pj , kj) ∈ Ri;
2) generate two random numbers r1 and r2 uniformly

distributed over the unit interval (0, 1);
3) calculate the waiting time for the next reaction as τi =

1

a0
ln(

1

r1
)

4) take the index j, of the program such that
j−1
∑

k=1

pk <

r2a0 ≤

j
∑

k=1

pk;

5) return the triple (τi, j, i).
Notice that the larger the stochastic constant of a rule and the
number of occurrences of the objects placed on the left-side
of the rule inside a membrane are, the greater the chance that
a given rule will be applied in the next step of the simulation.
There is no constant time-step in the simulation. The time-step
is determined in every iteration and it takes different values
depending on the configuration of the system.

Next, a step of application of the rules is simulated by using
the following procedure:
• Initialisation

◦ set time of the simulation t = 0;
◦ for each membrane i in µ compute a triple (τi, j, i)

by using the procedure described above; construct a
list containing all such triples;

◦ sort the list of triple (τi, j, i) according to τi;
• Iteration

◦ extract the first triple, (τm, j,m) from the list;
◦ set time of the simulation t = t + τm;
◦ update the waiting time for the rest of the triples in

the list by subtracting τm;
◦ apply the rule contained in the program j only once

changing the number of objects in the membranes
affected by the application of the rule;

◦ for each membrane m′ affected by the application of
the rule remove the corresponding triple (τ ′

m′ , j′,m′)
from the list;

◦ for each membrane m′ affected by the application
of the rule j re-run the Gillespie algorithm for the
new context in m′ to obtain (τ ′′

m′ , j′′,m′), the next
program j′′, to be used inside membrane m′ and its
waiting time τ ′′

m′ ;
◦ add the new triples (τ ′′

m′ , r′′,m′) in the list and sort
this list according to each waiting time and iterate
the process.

• Termination
◦ Terminate simulation when time of the simulation

t reaches or exceeds a preset maximal time of
simulation.

Therefore, in this approach, it is the waiting time computed by
the Gillespie’s algorithm to be used to select the membranes
which are allowed to evolve in the next step of computation.
These membranes have the same waiting time. Specifically,
in each step, the membranes associated to programs with the
same minimal waiting time are selected to evolve by means
of the corresponding rules. Moreover, since the application
of a rule can affect more than one membrane at the same
time (e.g., some objects may be moved from one place to
another), we need to reconsider a new program for each one
of these membranes by taking into account the new distribution
of objects inside them.

Remark 4.1: The use of a variable time-unit for each step
does not affect the semantics of our model; in each step, a
single rule at a time is applied inside a specific membrane.
This means the behaviour of the systems is still synchronous
although each application of the rule has associated a different
time-unit. In fact, the waiting time is mainly used as a

parameter necessary to determine the rule to be applied in
the next step of computation.

Remark 4.2: The current algorithms brings some improve-
ments with respect to the general strategy of selecting mem-
branes and programs. In the iteration phase, we need not to
recompute all the probabilities associated with each program
applicable inside each membrane, but we can do that only
for those membranes which are actually affected by the last
application of a program. That is because the value of the
probabilities associated with the other rules remain unchanged.

Remark 4.3: The use of the waiting time parameters leads
to selecting membranes using the minimum waiting time
principle in order to chose those with the same value of that
parameter. Getting rid of this parameter will lead to a variant of
this algorithm that is associated to a (n, 1)−parallel behaviour
of the system, where n is the total number of membranes.
Indeed, in this case there is no way to distinguish between
membranes and all them will be selected.

B. Example

A simulator for P systems that is based on the semantics
illustrated has been implemented in Scilab [28]. The current
simulator has been implemented only for P systems with
programs where all the rules have one of the following forms:

[v]l → [v′]l, u []l → [v′]l, [v]l → u′ [v′]l

that is, rules that do not allow the simultaneous rewriting of
objects both inside and outside a membrane. As well as this,
all the programs are supposed to be without conditions. We
aim at producing a full implementation of programs specified
as in Definition 2.1 in a later version of the simulator, which
is now under development.

A colony of vibrio fischeri bacteria is modelled in [5]
by considering a number of elementary membranes, each
one of them representing a bacterium, included in an unique
main membrane, which represents the environment. Each
elementary membrane contains a model of the gene regulatory
network which controls the quorum sensing process in such a
bacterium. Here we do not illustrates the details of this model
from [5] but we just report the results of the simulations.

0.00 4.29 8.57 12.86 17.14 21.43 25.71 30.00
0.0

42.9

85.7

128.6

171.4

214.3

257.1

300.0

QUORATED BACTERIA

time

Quorated Bacteria

0 4 8 12 16 20 24 28
0

200

400

600

800

1000

1200

1400

1600

1800

ENVIRONMENT

time

OHHL

Fig. 1. Gillespie-like: The increase on the number of quorated bacteria
in correspondence of the increase on the number of signal molecules in the
environment.

Figure 1 reports the simulation results for a colony of 300
bacteria obtained by using Gillespie’s algorithm implementa-
tion. This shows how the implementation is able to reproduce
the expected behaviour: the quorum sensing process takes
place through a progressive increase on the number of signal

molecules in the environment that leads to an increase on the
number of quorated bacteria.

V. CONCLUSIONS

We have introduced a class of P systems with bounded
parallelism ans a framework for an operational semantics
which captures different strategies of applying the rules based
on the notion of parallelism of type (k, q). This is particularly
important in the context of P system developments as it
shows another way of evolving such systems opposed to
the maximal parallelism defined formally in a number of
approaches dealing with semantics [2], [3]. It also unifies
a number of attempts to define variants of P systems with
bounded parallelism, or relying on probabilistic behaviour.
On the other hand refers to a specific class of functions
selecting membranes and programs to be executed, that are
fully chemically and biologically motivated.

In terms of applications, our approach points out some key-
issues which need to be addressed every time a new model
for a biological system is developed:

• How do we represent the “reality” of the phenomenon in
a P system model? Which variant of P systems must we
consider?

• What strategy for the application of the rules do we intend
to adopt? What are the alternatives? How do we imple-
ment them? How do we evaluate their performances?

• If a particular simulation does not reproduce the “ex-
pected” behaviour, what do we need to change? Do we
need to change the model or do we need to try a different
strategy for the application of the rules? How do the
choice of parameters affect the result of a simulation?

These questions can be answered only through empirical
research which attempts to match the results of a P system
simulation with the results of biological experiments and/or the
evidences resulting from other well-consolidated mathematical
models. On the other hand, more ambitious researches should
be directed to the development of appropriate “formal” valida-
tion/verification techniques, which possibly would allow us to
formulate reasonable hypotheses with respect to the behaviour
of biological systems. Attempts to use model checking in this
context have been initiated by [2].

Acknowledgement. The authors wish to thank the anony-
mous referees for their valuable comments.

REFERENCES

[1] Aho, A.V., Sethi, R., Ulmann, J.D. (1986). Compilers: Principles,
Techniques, and Tools. Addison-Wesley.

[2] Andrei, O., Ciobanu, G., Lucanu, D. (2004). Executable Specifications
of P Systems. In [18], 126–145.

[3] Andrei, O., Ciobanu, G., Lucanu, D. (2005). Structural Operational
Semantics of P Systems. In: Pre-Proceedings of WMC6 - Vienna 2005,
1–23 .

[4] Ardelean, I., Cavaliere, M. (2003). Playing with a Probabilistic P
Simulator: Mathematical and Biological Problems. In: Brainstorming
Week on Membrane Computing, Tarragona, Feb 5-11 2003 (Cavaliere,
M., Martin-Vide, C., Păun, Gh., eds.). Tech. Rep. 26/03, Universitat
Rovira i Virgili, Tarragona, Spain, 37–45.

[5] Bernardini, F., Gheorghe, M., Muniyandi, R.C., Krasnogor, N., Pérez-
Jiménez, M.J., Romero-Campero, F.J. (2005). On P Systems as a
Modelling Tool for Biological Systems. In: Pre-Proceedings of WMC6
- Vienna 2005, 193–213.

[6] Bernardini, F., Manca, V. (2003). P Systems with Boundary Rules. In:
[23], 107–118.

[7] Besozzi, D. (2004). Computational and Modelling Power of P systems,
Ph.D. Thesis, Università degli Studi di Milano, Milan, Italy.

[8] Bianco, L., Fontana, F., Franco, G., Manca, V. (2005). P Systems
for Biological Dynamics. In: Applications of Membrane Computing
(Ciobanu, G., Păun, Gh., Pérez-Jiménez, M.J., eds.), Springer-Verlag,
Berlin, Heidelberg, New York, 81–126.

[9] Bianco, L., Fontana, F., Manca, V. (2005). P Systems and the Modelling
of Biochemical Oscillation. In: Pre-Proceedings of WMC6 - Vienna
2005, 214–225.

[10] Bianco, L., Fontana, F., Manca, V. (2005). Metabolic Algorithm with
Time-varying Maps. In: Proceedings of the Third Brainstorming Week
on Membrane Computing. Sevilla (Spain), January 31 - February 4,
2005. (Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero,
F.J., Sburlan, D.,eds.), University of Seville, Seville, Spain, 43–62.

[11] Ciobanu, G., Păun, Gh. (2005). The Minimal Parallelism is Still Uni-
versal. Submitted.

[12] Dang, Z., Ibarra, O. (2005). On P Systems Operating in Sequential-
Mode. International Journal of Foundations of Computer Science, to
appear.

[13] Freund, R. (2005). Asynchronous P Systems and P Systems Working in
the Sequential Mode. In: [18], 36–62.

[14] Gibson, M.A., Bruck, J., (2000). Efficient Exact Stochastic Simulation
of Chemical Systems with Many Species and Many Channels. Journal
of Physical Chemistry, 104, 25, 1876–1889.

[15] Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical
Reactions. The Journal of Physical Chemistry, 81, 25, 2340–2361.

[16] Ibarra, O.H., Yen H.C., Dang, Z. (2005). On Various Notions of Paral-
lelism in P Systems. International Journal of Foundations of Computer
Science, 16, 4, 693–705.

[17] Karwowski, R., Prusinkiewicz, P. (2003). Design and Implementation
of the L+C Modelling Language. Electronics Notes in Theoretical
Computer Science, 82, 2, 1–19.

[18] Mauri, G., Păun, Gh., Pérez-Jiménez, M., J., Rozenberg, G., Salomaa,
A., eds. (2005). Membrane Computing. International Workshop, WMC
2004, Milan, Italy, June 2004. Revised and Invited Papers. Lecture Notes
in Computer Science, 3365, Springer-Verlag, Berlin, Heidelberg, New
York.

[19] Meng, T.C., Somani S., Dhar, P. (2004). Modelling and Simulation of
Biological Systems with Stochasticity. In Silico Biology, 4, 0024.

[20] Milner, R. (1999). Communicating and Mobile System: The π-Calculus.
Cambridge University Press.

[21] Păun, Gh. (2000). Computing with Membranes. Journal of Computer
and System Sciences, 61, 1, 108–143.

[22] Păun, Gh. (2002). Membrane Computing. An Introduction. Springer-
Verlag, Berlin, Heidelberg, New York.

[23] Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C., eds. (2003).
Membrane Computing. International Workshop, WMC-CdeA 02, Curtea
de Arges, Romania, August 19-23, 2002. Revised Papers. Lecture Notes
in Computer Science, 2597, Springer-Verlag, Berlin, Heidelberg, New
York.

[24] Pérez-Jiménez, M.J., Romero-Campero, F.J. (2005). Modelling EGFR
Signalling Cascade Using Continuous Membrane Systems. In: Proceed-
ings of the Third International Workshop on Computational Methods
in Systems Biology 2005 (CMSB 2005) (Plotkin, G., ed.), University of
Edinburgh, Edinburgh, United Kingdom.

[25] Pescini, D., Besozzi, D., Zandron, C., Mauri, G. (2005). Dynamical
Probabilistic P Systems: Definitions and Application. In: Proceedings
of the Third Brainstorming Week on Membrane Computing. Sevilla
(Spain), January 31 - February 4, 2005. (Gutiérrez-Naranjo, M.A.,
Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D.,eds.), University
of Seville, Seville, Spain, 275–287.

[26] Philips, A., Cardelli. L. (2004). A Correct Abstract Machine for the
Stochastic Pi-calculus. Electronical Notes in Theoretical Computer Sci-
ence, to appear.

[27] Priami, C., Regev, A., Shapiro, E., Silverman, W. (2001). Application of
a Stochastic Name-Passing Calculus to Representation and Simulation
of Molecular Processes. Information Processing Letters, 80, 25–31.

[28] Scilab Web Pages: http://scilabsoft.inria.fr.
[29] The P Systems Web Page: http://psystems.disco.unimib.it.
[30] The Stochastic Pi-Machine:

http://www.doc.ic.ac.uk/˜anp/spim/.

