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SUMMARY

The problem of testing smooth components of an extended generalized additive model for
equality to zero is considered. Confidence intervals for such components exhibit good across
the function coverage probabilities if based on the approximate result f̂(i)∼N{f(i), Vf (i, i)},
where f is the vector of evaluated values for the smooth component of interest, and Vf is the
covariance matrix for f according to the Bayesian view of the smoothing process. It is there-
fore proposed to test the null hypothesis f = 0, using Wald type tests based on the statistic
Tr = f̂TV r−

f f̂ , where V r−
f is the rank r Moore–Penrose pseudoinverse of Vf , generalized to

non-integer r. Consideration of the structure of Tr suggests setting r to the effective degrees of
freedom of f̂ . Efficient computation of the p-values is considered. The method complements pre-
vious work by applying beyond the Gaussian case, while considering tests of zero effect, rather
than testing the parametric hypothesis given by the null space of the component’s smoothing
penalty. The proposed p-values are routine and efficient to compute from a fitted model, with-
out requiring extra model fits or simulation of the null distribution. Simulation results suggest
improvement on possible alternative methods.

Keywords: hypothesis test, model selection, p-spline, semi-parametric regression, spline.

1. INTRODUCTION

Consider the extended generalized additive model (Hastie & Tibshirani, 1990)

g(µi) =
∑
j

A(i, j)θj +
∑
j

LijFj , (1)

where yi is a univariate response from some exponential family distribution with scale parameter
φ and mean, µi, dependent on predictor variables via a parametric model matrix, A, with un-
known coefficients, θ, and some unknown smooth functions, Fj , of one or more variables. The
Lij are bounded linear functionals, in the simplest case LijFj = Fj(xi), for example. Each Fj

can be expanded in terms of known basis functions, bjk(x), usually from a reduced rank spline
basis, which may differ between Fj . So Fj(x) =

∑
k bjk(x)βjk, where the βjk are unknown

parameters. A smoothing penalty, βT
j S̃jβj , is associated with each Fj . Then (1) can be written

as g(µ) = Xβ, where X contains A and the evaluated Lijbjk, while β contains θ and the βjk, in
corresponding order. Defining Sj to be a matrix whose only non-zero block is given by S̃j , such
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2

that βT
j S̃jβj ≡ βTSjβ, and letting l denote the log likelihood, then β can be estimated as

β̂ = argmax
β

l(β)− 1

2

∑
j

ρjβ
TSjβ

 ,

where the ρj are smoothing parameters controlling the fit-smoothness and variance-bias trade-
offs, and are often estimated by generalized cross validation or marginal likelihood maximiza-
tion. Under a Bayesian view of the smoothing process, in which the smoothing penalty is in-
duced by an improper Gaussian prior on β, then β̂ is also the mode of the posterior density of
β, and in the large sample limit, or exactly in the case of Gaussian y, β|y ∼ N(β̂, Vβ) where
Vβ = (XTWX +

∑
j ρjSj)

−1φ, W is diagonal with W (i, i)−1 = v(µi)g
′(µi)

2 and v(µ) is the
variance function of the exponential family distribution. The influence matrix for such a model
is H = XVβX

TW/φ. Generally dim(β) ≤ n, the number of yi. For details see, for example,
Wood (2006) and Wood (2011).

This paper is concerned with testing the null hypotheses Fj = 0, for any j, within this frame-
work. The key idea is to base the test statistic on the same distributional result that yields well cal-
ibrated confidence intervals for the Fj , namely that f̂j(i) ∼ N{fj(i), Vfj (i, i)}, approximately,
where Vfj is the Bayesian covariance matrix for fj , the vector of Fj evaluated at the observed
covariate values. If Xj is the matrix such that f̂j = Xj β̂, then Vfj = XjVβX

T
j . The proposal is

to use a statistic similar to the obvious choice, Tr = f̂T
j V

r−
fj

f̂j , where V r−
fj

is a rank r pseudoin-
verse of Vfj . The main problem is then to choose r appropriately. Naive choices lead to failures
to produce good power or even the correct null distribution for p-values, as shown in figure 1,
but investigation of the structure of Tr suggests a usable choice for r.

Existing work on the testing problem includes Cox et al. (1988), Liu & Wang (2004), Zhang
& Lin (2003), Crainiceanu et al. (2005), Scheipl et al. (2008) and Nummi et al. (2011), but
has usually focused on the hypothesis that Fj is a simple polynomial in the null space of the
smoothing penalty associated with Fj . Practitioners are as often interested in tests of whether a
term should be included in the model at all, and here existing work has limitations. The exact test
of Crainiceanu et al. (2005) applies to a Gaussian model with a single smooth term and so fails
to cover most of the cases of interest here. Cantoni & Hastie (2002) provide an alternative for
the Gaussian additive model case, but at O(n3) computational cost, and under the assumption
that interest is in comparing two pre-specified degrees of freedom for a term. It would be useful
to have a zero effect test applicable in the multi term generalized additive case when smoothing
parameters have been estimated, and for this to have substantially less than O(n3) cost.

2. TESTS FROM WELL CALIBRATED INTERVALS

2·1. A Wald statistic
Consider a single smooth component, F̂j(x), with a non-zero dimensional penalty null-space,

evaluated at a value xi chosen randomly from the observed values of x. Nychka (1988), with
component-wise extension by Marra & Wood (2012), shows that the approximation,

F̂j(xi) ∼ N{Fj(xi), Vfj (i, i)}, (2)

is well founded and leads to confidence intervals for Fj with close to nominal across the function
coverage probabilities, including in the case when the smoothing parameter for Fj has been esti-
mated as part of model fitting. The Nychka derivation shows that the Bayesian covariance matrix,
Vfj , can be viewed as including a squared bias component, treated as random across the function.
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3

By including both bias and variance components, the intervals have coverage probabilities that
are relatively insensitive to the values of the bias-variance controlling smoothing parameters.

The success of the Wahba (1983) intervals based on (2) suggests basing Wald tests on the same
result. This requires the joint distribution of a vector, f̂j , of F̂j(xi) values, while (2) only provides
the corresponding marginal distributions. Ruppert et al. (2003, §6.4) show that (2) corresponds
to f̂j ∼ N(fj , Vfj ) when the Fj are random functions, re-sampled from their prior distribution
with each replication of the data, but further work is required for the usual case of Fj assumed
fixed under such replication.

Let Xj denote a rank p matrix such that f̂j = Xj β̂. p is the rank of the basis expansion used
for fj . Assume that Xj has p(p+ 1)/2 or more rows. We know that the covariance matrix of f̂j
must have the form XjV

′
βX

T
j , where V ′

β is the covariance matrix of β̂, and from (2)

Xj(i, ·)VβXj(i, ·)T = Xj(i, ·)V ′
βXj(i, ·)T (3)

for all i, so that the variances implied by V ′
β match those from (2). Using standard results on

Kronecker products (e.g. Harville, 1997, Chapter 16), (3) becomes

Xj ⊗r Xjvec(Vβ) = Xj ⊗r Xjvec(V ′
β), (4)

where ⊗r denotes the row-wise Kronecker product, so that the ith row of Xj ⊗r Xj is Xj(i, ·)⊗
Xj(i, ·). Since Xj ⊗r Xj has rank ≥ p(p+ 1)/2, by construction, and Vβ is symmetric, (4) can
only hold if V ′

β = Vβ . So the covariance matrix of f̂j , corresponding to (2), is Vfj = XT
j VβXj ,

although the distribution of f̂j has not been shown to be multivariate Gaussian.
Hence the Wald statistic corresponding to (2) is

Tr = f̂T
j V

r−
fj

f̂j (5)

where V r−
fj

is a rank r pseudoinverse of Vfj or the generalization thereof discussed below. The
rank, r, must be chosen, but naive choices lead to the poor test performance shown in figure 1.

2·2. A well behaved Wald statistic
To understand the failures of figure 1 requires investigation of the structure of Tr. For clarity,

consider the simplified model yi = F(xi) + εi, where F is represented by a rank p penalized
spline type smoother and the εi are independent N(0, σ2). Let fT = {F(x1), . . . ,F(xn)} and
H be the smoother matrix, such that f̂ = Hy. Without loss of generality assuming σ2 = 1, we
have that the covariance matrix of f̂ corresponding to (2) is Vf = H . Now let the zero truncated
eigen decomposition of this matrix be Vf = UΛUT = H , where Λ is the p× p diagonal matrix
of non-zero eigenvalues, λi, and U the p column matrix of corresponding eigenvectors, the ith

of which is ui. We have f̂ = UΛUTy. The ui form a basis for f , so that f̂ =
∑p

i=1 γ̂iui, where
γ̂i = λiu

T
i y. The non-zero eigenvalues, λi, are all ≤ 1, and when the smoothing parameter is

zero are all exactly 1. So uTi y is the ith basis coefficient in the absence of penalization, and λi is
the shrinkage factor for that coefficient applied by the smoother.

Now consider Tr with r = p. We can write

Tp = f̂TV p−
f f̂ = dTd =

p∑
i=1

d2i

where

d = Λ−1/2UTf̂ = Λ−1/2UTUΛUTy = Λ−1/2ΛUTy.
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Fig. 1. Some poor p-value examples each based on model (6) from §3 with centred rank 10 cubic splines used to
represent the smooth curves. a) Low power when the rank, r, of Tr is set to the numerical rank of Vf , thereby including
many highly weighted, heavily penalized terms as discussed in §2·2. The dashed curve shows the ordered p-values
for non-null term f0, from §3, using this Tr , against uniform quantiles. The other two almost indistinguishable curves
are for Tr of §2·2, and §3 alternative b. High power gives curves to the lower right of this plot. b) A case where simple
rounding of the effective degrees of freedom gives low power. The panel shows the smooth estimate of the quadratic
truth, f0, from §3. Tr with r set to the rounded effective degrees of freedom of the term, rounds down and gives a
p-value of 0.89, compared to 0.045 using §2. c) Poor distribution under the null hypothesis when r is the rounded
up effective degrees of freedom. The dash-dot curve shows the ordered p-values from rounding up, against uniform
quantiles. The dashed line is the ideal line, while the solid and dotted lines are from the Tr variants as in panel a. The
poor null distribution results from rounding effective degrees of freedom very close to 1 up to 2, so that the statistic

is dominated by a term penalized almost to zero.

So di = γ̂iλ
−1/2
i for i = 1, . . . , p, and the test statistic is a weighted sum of squares of the ba-

sis coefficients, γ̂i, where the weights are highest for the most heavily penalized coefficients.
In consequence, tests based on Tp suffer a serious loss of power under all but light penaliza-
tion, since Tp is then dominated by the components most heavily penalized towards zero, at the
expense of the unequivocally non-zero components. Those components of f for which there is
least evidence in the data, are those most heavily weighted in the statistic. Figure 1a provides
one illustration of such a loss of power, while figure 1c shows a more dramatic example, where
even the null distribution is spoiled.

This problem is avoided if the most heavily penalized components are dropped from Tp. To this
end, consider the number of components that should be retained in order to obtain an optimal un-
penalized approximation to the penalized estimate of f . If ‖ · ‖ is the Euclidean norm, then from
standard results, the rank k < p approximation to f̂ minimizing maxy 6=0 ‖fk − f̂‖/‖y‖, and
linear in y, is f̂k = Hky, where Hk = UkΛkU

T
k , Uk is the first k columns of U and Λk is the di-

agonal matrix of the k largest eigenvalues of H . Uk does not depend on the smoothing parameter
for f , so it also provides the minimax optimal unpenalized rank k basis for f . Let f̃k = UkU

T
k y,

the un-penalized version of f̂k, and since f̃k is not subject to smoothing bias, also consider the
smoothing bias corrected penalized estimate, f̃ = f̂ + (f̂ −Hf̂) = (2H −HH)y. Seeking to
minimize the mean square error in approximating f̃ by f̃k, suggests choosing k to minimize ∆ =
tr{cov(f̃k − f̃)}. Defining Λ′ = 2Λ− Λ2, we have that ∆ = k − 2

∑k
i=1 Λ

′(i, i) + tr(Λ′2),
which is minimized by k such that Λ′(k, k) ≥ 0.5 and Λ′(k + 1, k + 1) < 0.5. Given that the
Λ′(i, i) form a sigmoidal decreasing sequence between 1 and 0, then k ≈ τ = tr(Λ′). τ is one
version of the effective degrees of freedom of f̂ .

Simply using Tk as the test statistic can lead to the loss of power illustrated in figure 1b, when
term estimates are close to functions in the null space of the smoothing penalty, as di carrying
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important information can then be dropped. One way to avoid both this dropping of important
terms, and the overweighting of highly penalized terms, is to relax the requirement for integer
degrees of freedom in the test statistic. Instead use r = τ in a generalized Tr, which is well
defined for non-integer r, varies smoothly with r, but recovers a conventional Wald statistic
when r = τ is integer.

In particular a generalized Tr is sought which, given (2), has null distribution χ2
r when r is

integer, but for non-integer r still has E(Tr) = r and var(Tr) = 2r, under the null hypothesis.
One way to achieve this is by a slight generalization of V r−

f to

V r−
f = U


λ−1
1

·
λ−1
k−2

B
0

UT, B = Λ̃B̃Λ̃T, Λ̃ =

[
λ
−1/2
k−1 0

0 λ
−1/2
k

]
, B̃ =

[
1 ρ
ρ ν

]
,

k = brc+ 1, ν = r − k + 1 and ρ = {ν(1− ν)/2}1/2. Hence, if δ1 = (d1, . . . , dk−2)
T and

δ2 = (dk−1, dk)
T, then Tr = δT1 δ1 + δT2 B̃δ2, and, given (2), routine manipulation confirms that

this Tr has the desired properties under the null hypothesis.

2·3. The distribution of Tr

If (2) and the null hypothesis hold exactly then E(d) = 0, while cov(d) = I . The statistic Tr

is based on d1 to dk, which then tend to independent N(0, 1) by the multivariate central limit
theorem of Lindeberg (1922), or by Ruppert et al. (2003, §6.4) if F is a frequentist random effect,
and are in any-case marginally N(0, 1) with zero covariance. It follows that in the large sample
limit under (2) and the null hypothesis, Tr ∼ χ2

r , if r is integer, while for non-integer r,

Tr ∼ χ2
k−2 + ν1χ

2
1 + ν2χ

2
1,

where ν1 = {ν + 1 + (1− ν2)1/2}/2 and ν2 = ν + 1− ν1 are the eigenvalues of B̃. The cu-
mulative distribution function of such a weighted sum of χ2 random variables can reliably be
evaluated by the method of characteristic function inversion of Davies (1980). The possibility
of ν2 � 1 can make the series of Ruben (1962), or the integral of Imhof (1961) too slow here.
Alternatively a gamma(r/2, 2) approximation can be used, which can be made less crude by
employing Liu et al. (2009) for the upper tail. The viable alternatives produce similar simulation
results and are compared in the right panel of figure 3.

When the scale parameter has been estimated, the p-value must be computed as pr(χ2
k−2 +

ν1χ
2
1 + ν2χ

2
1 > trχ

2
κ/κ) where κ is the residual degrees of freedom used to compute the scale

estimate, and tr is the observed Tr. This probability can readily be computed by quadrature,
given access to the cumulative distribution function of a weighted sum of χ2 random variables.
The results here hold equally well for components Fj as for a single F .

2·4. Efficient computation of Tr

Direct naive formation of V r−
fj

has O(n3) computational cost, but this can be reduced to at

most O(np2). For computational purposes we are interested in f̂j = Xj β̂ = X̄j β̂j and Vfj =

XjVβX
T
j = X̄jVβj

X̄T
j , where Vβj

is the Bayesian covariance matrix of βj , the coefficient vector
of fj , and X̄j contains the non zero columns of Xj . Forming the QR decomposition

X̄j = Q

[
R
0

]
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Fig. 2. Quantile-quantile plots for the p-values computed in §3 when the null hypothesis is correct. Only sample
sizes 100 and 400 for correlated covariates are shown as these gave the worst results for the method proposed in
this paper. Method e can only be computed for the normal data case. For all panels at sample size 400 a,b and c are

indistinguishable from uniform in a Kolmogorov-Smirnov test at the 5% level, unlike d and e.

we obtain

(XjVβX
T
j )

r− = Q

[
(RV βj

RT)r− 0
0 0

]
QT = Q1(RV βj

RT)r−QT
1

where Q1 is the first p columns of Q, so that X̄j = Q1R. Hence,

Tr = f̂T
j V

r−
fj

f̂j = β̂T
j R

TQT
1 Q1(RV βj

RT)r−QT
1 Q1Rβ̂j = β̂T

j R
T(RV βj

RT)r−Rβ̂j ,

which is computationally efficient.
For large datasets, little is usually gained by using the whole of X̄j to compute Tr, and we

might as well use a random sample of ns of its rows, reducing computational cost to O(nsp
2).

Note that if F = VβX
TWX/φ then τj , the required effective degrees of freedom for f̂j , can be

obtained by summing the diagonal elements of 2F − FF corresponding to β̂j .
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Fig. 3. Left: quantile-quantile plots illustrating the power of variants a, b and c from §3, with line styles as in figure
2. Higher power is to the lower right of each panel. Variant c gives low power with correlated covariates. Right:
contour plot of p-values computed with the three methods given in §2·3, over the range of τ and Tτ where important
differences are expected. Continuous contours are for the exact method, dotted is the gamma approximation, and

dashed is the gamma approximation with upper tail correction.

3. SIMULATION RESULTS

This section uses simulated data to illustrate the performance of the p-values computed using
a) Tτ from §2·2 and four possible alternatives: b) Tr based on r = bτc, if τ − bτc < 0.05, and
r = dτe otherwise, c) an adaptation of Cox et al. (1988) to the zero effect additive component
setting, using the statistic T ′

p =
∑p

i=1 λid
2
i , d) the ad hoc approach of Wood (2006, §4.8.5) and e)

the method of Cantoni & Hastie (2002), but using estimated, rather than fixed, smoothing param-
eters in the alternative models. Option e only applies in the Gaussian case and is not practical at
the largest sample size used. No previously published methods directly cover zero effect p-values
for generalized additive model components with multiple estimated smoothing parameters, but
the Cox et al. and Cantoni and Hastie approaches are readily adapted to this setting.

Data were simulated from a linear predictor with the structure

η = f0(x0) + f1(x1) + f2(x2) (6)

where f0(x) = 8x(1− x), f1(x) = exp(2x) and f2(x) = 2× 105x11(1− x)6 + 104x3(1−
x)10, which is multi-peaked. For each replicate, n values of each of covariates x0 to x4 were
simulated, where n was 100, 400 or 4000. Marginally the observations of each xj were in-
dependent U(0, 1). Two alternative correlation settings were used: either all xj were mutu-
ally independent, or the r2 between x0 and x1 was set to 95%, and also between x2 and x3.
Gaussian and Bernoulli response distributions were used, as contrasting cases. In the Gaus-
sian case the response was given by yi = ηi + εi where the εi were independent N(0, 32). In
the binary case the yi were generated as independent Bernoulli random deviates, with mean
µi = exp(ηi − 5)/{1 + exp(ηi − 5)}.

400 replicate data sets were simulated at each sample size at each correlation setting for
each response distribution. For each replicate the correct distribution and link function were
assumed, but three alternative models for the linear predictor were used. For the first η =
α+ f0(x0) + f1(x1) + f2(x2) + f3(x3) was assumed, where the fj are smooth univariate func-
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tions (represented using penalized thin plate regression splines). For the second and third
η = α+ f0(x0) + f1(x1) + f2(x2) + f3(x3, x4) was used, with f3 a penalized thin plate re-
gression spline for the second alternative, and a two penalty tensor product of cubic regression
splines for the third alternative. So in all cases the true f3 is zero. Smoothing parameter esti-
mation was by maximum likelihood. Restricted maximum likelihood results are similar, while
generalized cross validation gave slightly worse results because of a small proportion of seriously
under-smoothed components. R 2.14.0 (R Development Core Team, 2010) with mgcv 1.7-14 was
used. Each alternative p-value was computed for the spurious term, f3, for each replicate.

As expected the p-value distributions for a-c, Tτ , Tr and T ′
p, improve with increasing n

and also with decreasing covariate correlation, since high covariate correlation results in high
smoothing parameter uncertainty, which is neglected in the methods considered here. The biggest
departures from the ideal uniform distribution are for n = 100 and n = 400 with correlated co-
variates, and these are the cases shown in figure 2. The Tτ , Tr and T ′

p based p-value performance
is starting to deteriorate at n = 100 for binary data and correlated covariates, but by n = 400, the
distributions are indistinguishable from nominal. The Wood (2006) statistic, d, underestimates
p-values even at sample size 4000, while the Cantoni & Hastie (2002) approach, e, also gives in-
correct null distribution, particularly for the uncorrelated covariate cases not shown, presumably
as a result of the necessary adaptation of using estimated smoothing parameters.

Having investigated the distribution of the p-values under the null hypothesis, a further sim-
ulation was conducted to investigate power for the three approaches giving close to the correct
uniform p-value null distribution. This time sample size 400 was used, and Gaussian and bi-
nary data simulated as before, except that the linear predictor for the binary case was multiplied
by 2. With these settings the estimate of f0 is interestingly on the border of significance. 200
replicates were generated for each distribution and each correlation setting, and the p-values as-
sociated with f0 were computed using the §2·2 test, a, as well as alternative b and c above. Figure
3 shows the results. The three alternatives show similar performance for uncorrelated covariates,
but T ′

p suffers serious loss of power, relative to Tr, when the covariates are correlated. Alterna-
tive b performs similarly to a, but has the practical drawback of depending discontinuously on
smoothing parameters. Overall option a, Tτ , appears to give the best performance.

4. DISCUSSION

It has been demonstrated how effective p-values can be computed for testing smooth com-
ponents of (1) for equality to zero, based on the results of Nychka (1988) and Marra & Wood
(2012). The proposal appears to be the first well founded zero effect test for components of a
generalized additive model in which there are several estimated smoothing parameters, albeit
that it is conditional on those estimates. It has the practical advantage of being efficiently and
routinely computable. Finally, although it is not the primary purpose of this paper, in principle
the null hypothesis that a component is in the null space of its penalty can be tested by omitting
di components corresponding to λi = 1 from Tτ , and reducing the degrees of freedom of the
χ2
k−2 component of the null distribution accordingly, however the possibility of estimating the

resulting Tτ to be zero complicates the study of this approach. The p-values discussed here are
implemented in function summary.gam of R package mgcv from version 1.7-14.
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