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Abstract

This article gives an overview of the geometric complexity theory (GCT)
approach towards the P vs. NP and related problems focussing on its main
complexity theoretic results. These are: (1) two concrete lower bounds,
which are currently the best known lower bounds in the context of the P vs.
NC and permanent vs. determinant problems, (2) the Flip Theorem, which
formalizes the self referential paradox in the P vs. NP problem, and (3) the
Decomposition Theorem, which decomposes the arithmetic P vs. NP and
permanent vs. determinant problems into subproblems without self referen-
tial difficulty, consisting of positivity hypotheses in algebraic geometry and
representation theory and easier hardness hypotheses.

1 Introduction

Geometric complexity theory (GCT) is an approach towards the P vs.
NP and related problems [C, Kp, Le, V] initiated in [GCTpram] with a
proof of a special case of the P 6= NC conjecture and developed in a se-
ries of articles [GCT1]-[GCT8] and [GCTflip], with further developments in
[Bu, BLMW, Ku, LMR]. Intuitively, the P vs. NP problem is formidable,
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because being a universal statement about mathematics which says that dis-
covery is hard, it can potentially preclude its own proof and be independent
of the axioms of set theory. Resolution of this self referential paradox is the
root difficulty underneath this problem as per the Flip Theorem in [GCTflip]
which formalizes this paradox. As such, the main conceptual difficulty in
any approach towards this problem is to break the circle of self reference
by decomposing the problem and its variants into subproblems without self
reference. The Decomposition Theorem in [GCT6] provides such decompo-
sitions for the arithmetic P vs. NP [GCT1] and permanent vs. determinant
[V] problems based on positivity hypotheses in algebraic geometry and rep-
resentation theory. This article gives an overview of these main complexity
theoretic results in GCT.

In more detail, [GCT1] and [GCT2] define geometric obstructions (proof
certificates of hardness) in these problems based on geometric invariant the-
ory [MFK]. It is conjectured that showing existence of such geometric ob-
structions is equivalent to slightly stronger forms of the original hardness
conjectures. Thus [GCT1] and [GCT2] provide conjecturally equivalent re-
formulations of the original arithmetic hardness conjectures in the setting
of geometric invariant theory. The main advantage of this reformulation
is that geometric obstructions have natural compact specifications (based
on the classical results of Weyl) and this plays a crucial role in the subse-
quent story. But such an equivalent reformulation of the original hardness
conjectures does not address the self referential paradox. To resolve it, an
approach has to break the circle of equivalences.

Accordingly, the defining flip strategy of GCT to resolve the self refer-
ential paradox was subsequently formulated in [GCTflip]. The strategy is
to go for an explicit proof of hardness. By this we essentially mean a proof
that provides proof certificates of hardness, called obstructions, that are
easy to verify and construct (in polynomial time). The strategy is called a
flip because it reduces the lower bound problems to upper bound problems:
showing that verification and construction of proof certificates belong to P .
Section 2 explains in what sense the flip amounts to explicit resolution of
the self referential paradox.

The articles [GCT3, GCT4, GCT5] investigate basic problems in repre-
sentation theory suggested by this flip strategy. The article [GCT6] extends
the investigation in [GCT1]-[GCT5] to provide an approach to implement
the flip in characteristic zero, and thereby resolve the self referential para-
dox, assuming certain positivity hypotheses in algebraic geometry and repre-
sentation theory. Specifically, the Decomposition Theorem (Theorem 4.15)
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in [GCT6] shows how the original hardness conjectures can be decomposed
into these positivity hypotheses (which are not self referential) plus easier
hardness hypotheses which do not have the self referential difficulty once
the positivity hypotheses are proved. All these hypotheses are supported by
the strong Flip Theorem in [GCTflip] (cf. Theorem 4.6). This result shows
that certain stronger versions of the arithmetic hardness and derandomiza-
tion conjectures in complexity theory imply solutions to formidable explicit
construction problems in algebraic geometry akin to (but even more explicit
than) the explicit construction problems in these positivity hypotheses. This
suggests that the positivity hypotheses here may be in essence implications
of these stronger hardness and derandomization conjectures.

But the positivity hypotheses turn out to be formidable. They encom-
pass and go far beyond nontrivial special cases of the classical plethysm
problem [Fu] in algebraic geometry and representation theory. In view of
the Strong Flip Theorem 4.6, problems comparable in difficulty to the ex-
plicit construction problems that arise in this theorem or in these positivity
hypotheses may be expected in any approach towards the P vs. NP and
related problems. This law of conservation of difficulty may explain why
the fundamental hardness conjectures in complexity theory, which look so
elementary at the surface, have turned out to be so formidable.

This article focuses on the arithmetic setting, wherein the underlying
field of computation has characteristic zero. This setting captures the self
referential difficulty in the boolean setting. Once this is resolved in the
arithmetic setting, it is no longer an issue. But additional problems need to
be resolved to change the base field of computation from Q or C, as in the
arithmetic setting, to a finite field, as in the boolean setting. These addi-
tional problems and the resulting decomposition of the boolean nonuniform
P vs. NP problem will described in a later paper.

We also describe in this article two concrete lower bounds in GCT. These
are currently the best known lower bounds in the context of the P vs. NC
and permanent vs. determinant problems. The first lower bound is a special
case of the P 6= NC conjecture proved in [GCTpram] using a weaker form
of the flip much before the stronger flip was formalized in [GCTflip] (cf.
Section 3). The second lower bound in [LMR] for the permanent vs. deter-
minant problem implies (but is stronger than) the earlier quadratic lower
bound for the permanent in [MR] (cf. Section 4.4).

One may ask if GCT can be used to reprove the earlier known lower
bounds in complexity theory such as the ones for constant depth [BS] or
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monotone [Rz] circuits. Unfortunately, the answer is no. The explicit con-
struction problems in GCT for constant depth circuits are not fundamentally
different from the ones in GCT for polylogarithmic depth circuits. GCT is
geared towards proving lower bounds in natural and realistic models of com-
putation that are powerful enough to allow efficient computation of the de-
terminant and related algebraic problems. This is because the determinant
lies at the foundation of algebraic geometry and representation theory. The
explicit construction (upper bound) problems in these fields that arise in the
flip strategy of GCT cannot be solved in a model in which the determinant
cannot be computed efficiently. As such, GCT does not help in the world
without determinants. By this, we mean the models of computation, such
as constant depth, monotone, or quadratic size circuits, in which efficient
computation of the determinant is not possible. Not surprisingly, both the
lower bounds in GCT mentioned above are in the models in which efficient
computation of the determinant is possible.

The rest of this article is organized as follows. Section 2 describes the
flip strategy to resolve the self referential paradox, and the Flip Theorem
in [GCTflip] that formalizes this paradox. Section 3 describes the special
case of the P 6= NC conjecture proved in [GCTpram]. Section 4 gives an
overview of the GCT approach to implement the flip for the permanent vs.
determinant problem [V] in characteristic zero. It describes the Decompo-
sition Theorem in [GCT6] that decomposes this problem into subproblems
without self referential difficulty based on the positivity hypotheses in al-
gebraic geometry and representation theory. The story for the arithmetic
P vs. NP problem defined in [GCT1] is similar; cf. Decomposition The-
orem 4.15. The lower bound in [LMR] based on GCT is also described in
Section 4. Section 5 gives concluding remarks.

The first half of this paper does not assume any familiarity with algebraic
geometry or representation theory. The second half (from Section 4 onwards)
assumes familiarity with basic notions in these fields. They are reviewed in
the Appendix for the readers not familiar with them. It may also be helpful
to go through the video [GCTtutorial] of the FOCS 2010 tutorial based on
this overview.

Acknowledgement: The author is grateful to Janos Simon and Josh Gro-
chow for helpful discussions, and to the referees for helpful comments.
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2 The flip and the self referential paradox

In this section we describe the defining flip strategy of GCT to resolve the
self referential paradox and the Flip Theorem in [GCTflip] that formalizes
this paradox.

Towards this end, let us fix anNP -complete function f(X) = f(x1, . . . , xn),
say SAT. The goal of the nonuniform P vs. NP problem is to show that
there does not exist a circuit C of size m = poly(n) that computes f(X),
n→∞. Symbolically, let C(X) denote the function computed by C. Then
we want to prove that

∀n,m = poly(n) ∀C∃X : f(X) 6= C(X). (1)

Equivalently, the goal is to prove:

Hard Obstruction Hypothesis (HOH): For every large enough n, and
m = poly(n), there exists a trivial obstruction (i.e. a “proof-certificate” of
hardness) to efficient computation of f(X). Here by a trivial obstruction we
mean a table (cf. Figure 1) that lists for every small C a counterexample X
such that f(X) 6= C(X).

The number of rows of this table is equal to the number of circuits of size
m = poly(n). Thus the size of this table is exponential. The time to verify
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whether a given table is a trivial obstruction is also exponential, and so is
the time of the obvious algorithm to decide if such a table exists for given
n and m. From the complexity theoretic viewpoint, this is a hard task. So
we call this trivial brute force strategy for proving the nonuniform P vs.
NP conjecture, based on existence of trivial obstructions, a hard strategy.
Hence, the terminology Hard Obstruction Hypothesis. It is really just a
restatement of the original problem.

Any proof strategy for the P vs. NP problem has to answer the following
question:

Question 2.1 (a) In what sense is the strategy fundamentally different from
the trivial brute force strategy above and not just a restatement of the original
problem?

(b) Why should the strategy be even feasible, i.e., lead to a proof of O(1)
(finite) size?

Question (b) is basically the one we discussed in the introduction: namely,
why should the P 6= NP conjecture even have a proof? Why can it not be
independent of the axioms of the set theory? The natural proof barrier
[RR] says that the proof technique used for proving lower bounds for con-
stant depth circuits cannot be used to prove P 6= NP essentially because
the conjecture itself stands in its way. Why cannot this conjecture stand in
the way of every proof technique like this? As we shall see, (a) and (b) are
closely related. Hence, let us address (a) first. We will address (b) later in
Section 2.4.

2.1 The flip

In the context of (a), the most natural abstract strategy that is fundamen-
tally better than the trivial strategy is suggested by the P vs. NP problem
itself. Before we formally define it, let us first see what is wrong with the
trivial obstruction from the complexity-theoretic perspective. That is quite
clear. First, it is long, i.e., its description takes exponential space. Second,
it is hard to verify (and also construct); i.e., this takes exponential time.
Since NP is the class of problems with proof-certificates that are short (of
polynomial-size) and easy to verify (in polynomial-time), this then leads
to the following strategy for proving the nonuniform P 6= NP conjecture,
based on proof certificates (obstructions) that are short, and easy to verify
(and also easy to construct). We call this strategy the flip. This refers to the
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transition from the “hard” (exponential time verifiable/constructible) triv-
ial obstructions to the “easy” (polynomial time verifiable/constructible) new
obstructions. It also refers to the transition from the lower bound problem
to the upper bound problem—specifically, the problem of finding an efficient
algorithm to verify and construct an obstruction.

Formally, we say that a technique for proving the nonuniform P 6= NP
conjecture (using the function f(X)) is a flip if there exists a family O =
∪m,nOn,m of sets of bit strings called obstructions (or obstruction labels),
which serve as proof certificates of hardness of f(X), having the following
Flip properties F0-F4.

F0 [Short]: The set On,m is nonempty and contains a short obstruction
string s if m is small, i.e., when m = O(poly(n)), or more generally, m =
O(2loga n), a > 1 a fixed constant. Here short means the bit length 〈s〉 of s
is poly(n,m).

To state F1, we define a small global obstruction set Sn,m to efficient
computation of f(X), for given n and m, to be a small set {X1, . . . , Xl}, l =
poly(n,m), of inputs such that, for any circuit C of size ≤ m, Sn,m contains
a counterexample XC = Xj , for some j ≤ l, such that f(XC) 6= C(XC).
Then:

F1 [Easy to decode:] Each bit string s ∈ On,m, m small and s short, de-
notes a small global obstruction set Sn,m(s) to efficient computation of f(X)
such that: (a) given s, n and m, Sn,m(s) can be computed in poly(〈s〉, n,m)
time–in particular, if s is short, the size of Sn,m(s) is poly(n,m)–and, (b)
given s, n,m and any circuit C of size ≤ m, a set Sn,m,C(s) ⊆ Sn,m(s) of
O(1) size can be computed in poly(〈s〉, n,m) time such that Sn,m,C(s) con-
tains some counterexample XC such that f(XC) 6= C(XC). A stronger form
of (b) is (b’): given s, n,m and C, a counterexample XC ∈ Sn,m(s) as above
can be computed in poly(〈s〉, n,m) time (we do not explicitly study this
variant in this paper).

F2 [Rich]: For every n and m = poly(n), On,m contains at least 2Ω(m)

pairwise disjoint obstructions, each of poly(n,m) bitlength. Here we say
that two obstructions s, s′ ∈ On,m are disjoint if Sn,m(s) and Sn,m(s′) are
disjoint.

F3 [Easy to verify]: Given n,m and a string s, whether s is a valid
obstruction string for n and m–i.e., whether s ∈ On,m–can be verified in
poly(n, 〈s〉,m) time.

F4 [Easy to construct]: For each n and m = poly(n), a valid obstruction
string sn,m ∈ On,m can be constructed in poly(n,m) = poly(n) time.
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This finishes the description of F0-4 defining a flip.

We say that a proof of the NP 6⊆ P/poly conjecture (using f(X)) is
extremely explicit if it proves existence of an obstruction family O satisfying
F0-4. It is called explicit (or strongly explicit) if only F0, F2 and F3 (resp.
F0, F2,3, and 4) are formally proved. By GCT, we henceforth mean any
approach that is geometric and explicit.

We can similarly define the flip and explicit proofs in the context of
other lower bound problems in complexity theory, such as the #P vs. NC
problem or the P vs. NC problem. An “easy” algorithm means an NC-
algorithm in this context. We can also define these notions for the arithmetic
permanent vs. determinant problem [V] or the arithmetic (nonuniform)
version of the P vs. NP conjecture [GCT1] described below (Section 2.3).
In the arithmetic setting, the underlying field of computation in the circuit
is a field of characteristic zero, such as Q or C.

2.2 Self-referential paradox

We now explain in what sense implementation of the the flip amounts to
extremely explicit resolution of the self referential paradox.

Towards this end, let us examine the properties F in Section 2.1 more
closely. For an obstruction s ∈ On,m, let Sn,m(s) denote the corresponding
global obstruction set in F1 (a) (for decoding) that can be computed in
polynomial time. To simplify the argument, let us replace F1 (b) by (b)’.
The decoding algorithm in (b)’ gives in polynomial time a counterexample
XC ∈ Sn,m(s) for every small circuit C of size ≤ m. Let S̃n,m(s) denote the
trivial obstruction of exponential size that lists for every small C this XC .
Then the new obstruction Sn,m(s) can be thought of as a polynomial size
encryption (information compression) of the trivial obstruction S̃n,m(s); cf.
Figure 2. To verify a given row of S̃n,m(s), we have to check if f(XC) 6=
C(XC) for the C corresponding to that row. For general XC , this cannot be
done in polynomial time, assuming P 6= NP , since f is NP -complete. Yet
F3 (for verification) says that whether s is a valid obstruction, i.e., whether
each of the exponentially many rows of S̃n,m(s) specifies a counterexample,
can be verified in polynomial time. At the surface, it may seem that to prove
P 6= NP , this requires proving P = NP . Implementation of the flip thus
amounts to extremely explicit resolution of this self referential paradox. At
the surface it seems impossible.

8



C X

XC

Trivial obstruction

Exponential

Size
Polynomial 

size

Encryption

(Information

compression)

New obstruction

Figure 2: The new obstruction Sn,m(s) as an encryption of the trivial ob-
struction S̃n,m(s)

2.3 The flip theorem

If so, why are we going for explicit proofs, especially when proving existence
of obstructions even nonconstructively suffices in principle? The reason
is provided by the following Flip Theorem 2.3. It says that any proof of
the arithmetic version of the P vs. NP conjecture can be converted into
an extremely explicit proof assuming that circuit identity testing [KI] can
be derandomized in a blackbox fashion. This standard derandomization
assumption is generally regarded as easier than the target lower bound. Thus
the arithmetic P vs. NP conjecture forces an extremely explicit resolution
of the self referential paradox, modulo derandomization. This formalizes
the self referential paradox in the arithmetic setting. There is also a similar
result for an invariant theoretic average case version of the boolean NP 6⊆
P/poly conjecture [GCTflip]. We only consider the nonuniform setting here.
See [GCTflip] for analogous results in the uniform setting.

We begin with a preliminary lemma.

Lemma 2.2 (Flip) (cf. GCTflip) Suppose the permanent of an n× n in-
teger matrix X cannot be computed by any arithmetic circuit (over Q) of
m = poly(n) total bit size. Suppose also that the complexity class E (con-
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sisting of the problems that can be solved in exponential time) does not have
subexponential size circuits, or, less stringently, that black box polynomial
identity testing [Ag, KI] can be derandomized (cf. GCTflip for a precise
statement of what this means). Then:

(1) For every n and m = poly(n), it is possible to compute in poly(n,m) =
poly(n) time a small set Sn,m = {X1, . . . , Xl}, l = poly(n,m) = poly(n), of
n×n integer matrices such that for every arithmetic circuit C of total bit size
≤ m, Sn,m contains a matrix XC which is a counter example against C; i.e,
such that perm(XC) is not equal to the value C(XC) computed by the circuit.
The set Sn,m is thus a small global obstruction set of poly(n,m) = poly(n)
size against all small circuits of total bit size ≤ m.

(2): Furthermore, assuming a slight strengthening (given in GCTflip) of
the assumption that E does not have subexponential size circuits , or less
stringently, that black box polynomial identity testing can be derandomized,
arithmetic hardness of the permanent has an extremely explicit proof. Specif-
ically, there exists, for every n and m = poly(n), a set Õn,m of obstructions
(bit strings) satisfying F0-F4. (F0-F4 for arithmetic hardness of the perma-
nent are very similar to F0-F4 in Section 2.1. Hence we do not state them
here).

This result (except for F1 (b)) follows easily by derandomizing [NW, IW]
the co-RP algorithm in [KI] for testing if a given arithmetic circuit com-
putes the permanent using its downward self-reducibility. But we cannot
prove an analogous result for the P vs. NP problem using self reducibil-
ity alone. Using downward self reducibility, the article [At] gives, assuming
NP 6⊆ P/poly, a probabilistic polynomial time algorithm for finding, given
any small circuit C, a counterexample on which it differs from SAT; but this
algorithm cannot efficiently produce a small global obstruction set against all
small circuits. The best earlier result in the context of the P vs. NP prob-
lem was proved in [FPS]. It gave a probabilistic polynomial time algorithm
with an access to the SAT oracle for computing a small set of satisfiable
formulae that contains a counterexample against every small circuit claim-
ing to compute SAT. The main difficulty in the context of the P vs. NP
problem is to accomplish the same task in polynomial time under reason-
able complexity theoretic assumptions without any access to the SAT oracle.
This difficulty is overcome in the arithmetic setting in the following result
(Theorem 2.3).

Before stating it, let us review the arithmetic nonuniform version of the
P vs. NP problem from [GCT1]. The role of the permanent is played in this
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problem by the following function E(X) defined over Q. Take a set {Xj
i |1 ≤

j ≤ k, 1 ≤ i ≤ m} of m-dimensional vector variables, for a fixed constant
k ≥ 3. Here each Xj

i is an m-vector. So there are km vector variables
overall. Let X be the m × km variable matrix whose columns consist of
these km variable vectors. For any function σ : {1, . . . ,m} → {1, . . . , k},
let detσ(X) denote the determinant of the matrix Xσ whose i-th column is

X
σ(i)
i . Define E(X) =

∏
σ detσ(X) where σ ranges over all such functions.

The function E(X) is also characterized by symmetries (cf. GCTflip) just
like the permanent. Let n = km2 be the total number entries in X. By
the (nonuniform) arithmetic P vs. NP problem in characteristic zero we
mean the problem of showing that E(X) is hard in the arithmetic setting.
Specifically, the problem is to show that E(X) cannot be computed by an
arithmetic circuit over Q or Z of poly(n) size. This is a formal implication
of the usual nonuniform P vs. NP problem (i.e., NP 6⊆ P/poly conjecture)
since deciding if E(X) is zero is NP -complete [Gu].

The following is an analogue of Lemma 2.2 in this setting.

Theorem 2.3 (Flip) (cf. GCTflip) The arithmetic nonuniform P vs. NP
conjecture above has an extremely explicit proof, assuming that it holds and
that black box polynomial identity testing can be derandomized.

This is proved using the fact that E(X) (like perm(X)) is character-
ized by its symmetries (cf. Section 4.1) in conjunction with the hardness
vs. randomness principle [NW, IW, KI]. See [GCTflip] for an analogue of
Theorem 2.3 for a stronger average case form of the boolean NP 6⊆ P/poly
conjecture based on the above characterization of E(X) by its symmetries.
This result implies that any NP -complete function (e.g. SAT) has an ex-
tremely explicit proof assuming this average case conjecture and that BPP
can be derandomized in a black box fashion.

The article [GCTflip] also proves stronger versions of Lemma 2.2 and
Theorem 2.3 by combining the hardness vs. randomness principle [IW, KI]
and characterization by symmetries with classical algebraic geometry. These
stronger versions say that certain stronger forms of the arithmetic hardness
and derandomization conjectures under consideration imply polynomial time
algorithms for formidable explicit construction problems in algebraic geom-
etry. We shall state such a result (cf. Theorem 4.6) in the context of the
permanent vs. determinant problem later.
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2.4 Breaking the circle

In view of the flip theorems, the main conceptual difficulty in any approach
towards the P vs. NP and related problems is to break the circle of self
referential difficulty around them by decomposing each hardness problem
into subproblems of the form

hardness ∼= subproblem1 + subproblem2 + · · · (2)

with a reasonable justification as to why each subproblem on the right hand
side does not have the self referential difficulty. This can then be taken as a
concrete evidence that the approach can resolve the self referential paradox
and lead to proofs of finite size of the fundamental hardness conjectures,
thereby answering Question 2.1 (b).

This self referential difficulty is an issue only if the lower bound problem
under consideration is at least as hard as derandomization of polynomial or
determinant identity testing. Otherwise, an analogous flip theorem for such
a lower bound will really be a statement about the difficulty of the additional
derandomization hypothesis. Not surprisingly, the known lower bounds that
are easier than derandomization, such as a quadratic lower bound for the
permanent [MR] or lower bounds for monotone [Rz] or constant depth [BS]
circuits, have proofs that are far from explicit. For example, PARITY 6∈
AC0 [BS] is proved by decomposing this problem into two subproblems: (1)
Show that AC0 is easy to approximate by low degree polynomials, and (2)
Show that PARITY is hard to approximate by such polynomials. Here (1)
is an easiness hypothesis that depends solely on AC0, and (2) is an hardness
hypothesis that is easier to prove than the original hardness hypothesis.
Thus this decomposition decouples PARITY (and NC1) from AC0. Though
the proof of this decomposition is trivial, it is the main high-level conceptual
step in the proof of this lower bound. We want similar decompositions of the
fundamental hardness conjectures in complexity theory that decouple the
underlying complexity classes. But this task is far harder for the conjectures
harder than derandomization, because this decoupling amounts to breaking
the circle of self referential difficulty.

Indeed, there is a fundamental difference between the P vs. NP problem
and the lower bound problems in the restricted models of computation such
as constant depth circuits. The latter are statements about the weakness
of the restricted models. In contrast, by the flip Theorem 2.3, the P vs.
NP problem is a statement about the strength of the complexity class P . It
does not say that P is small and weak, but rather that P is big and strong–
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strong enough to assert that “I am different from NP”. This assertion is self
referential and also paradoxical, being a statement of strength rather than
weakness. To resolve this self referential paradox, one essentially has to show
(modulo derandomization) that P contains formidable explicit construction
problems akin to the ones which arise in the flip Theorem 2.3 and the strong
flip Theorem 2.3 stated later. The same is also true for other fundamental
hardness conjectures harder than derandomization. This strength of P and
related complexity classes makes decomposition leading to decoupling in the
fundamental hardness conjectures in complexity theory a challenge.

The Decomposition Theorem described in Section 4 gives the sought con-
crete decompositions of the type (2) of the arithmetic P vs. NP and per-
manent vs. determinant problems into subproblems without self referential
difficulty. This decomposition is fundamentally different from the decom-
position of the PARITY vs. AC0 problem in two ways. First, it is based
on the flip strategy going towards explicit proofs. This is natural, though
not necessary, in view of the flip Theorem 2.3. It is also consistent with
the natural proof barrier [RR] by which decompositions based on approxi-
mation cannot work. Second, the decomposition is based on nonelementary
constructions in algebraic geometry and representation theory.

3 The P 6= NC result without bit operations

Now one may ask why we are going via algebraic geometry to get such
decompositions when the lower bound problems under consideration have
elementary statements that make no mention of algebraic geometry. To see
why, we describe in this section the special case of the P 6= NC conjecture
proved in [GCTpram] via algebraic geometry before we turn to the Decom-
position Theorem. We shall call this special case the P 6= NC result without
bit operations. This can be considered to be the first concrete lower bound
result of GCT. It was proved using a weaker form of the flip much before
the stronger form was formalized in [GCTflip]. It says that:

Theorem 3.1 (cf. [GCTpram]) The P -complete max-flow problem cannot
be solved in polylog(N) parallel time using poly(N) processors in the PRAM
model without bit operations, where N denotes the total bit length of the
input, not just the number of input parameters.

The model here is the usual PRAM model with arithmetic +,−, ∗, com-
parison and branching operations, but no bit operations. It includes virtu-
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ally all known parallel algorithms for algebraic and weighted optimization
problems. Most importantly, it contains efficient algorithms [KV] for com-
puting the determinant and roots of polynomials. Hence it is quite realistic
and natural in contrast to the the constant depth [BS] or monotone [Rz]
circuit models used for proving lower bounds earlier. Theorem 3.1 seems to
be the only known superpolynomial lower bound that is a nontrivial impli-
cation of a fundamental separation conjecture (comparable to the P 6= NC
conjecture) and holds unconditionally in a natural and realistic model of
computation powerful enough to allow efficient computation of the determi-
nant and roots of polynomials.

The proof of Theorem 3.1 is based on classical algebraic and diophantine
geometry, though the result itself can be stated in purely elementary and
combinatorial terms. No elmentary proof of this result is known so far. This
should explain why we are going via algebraic geometry in GCT. After all,
Theorem 3.1 is a much weaker implication of the P 6= NC conjecture since
it does not involve the self referential difficulty (being easier than deran-
domization). Until we can prove this result or a comparable implication of
a fundamental hardness conjecture without algebraic geometry, it is unre-
alistic to expect that we will be able to prove the P 6= NC conjecture or
anything comparable without it.

The proof of Theorem 3.1 is quasi-explicit in the sense that (1) it produces

a global obstruction set SN of 2logO(a) N inputs that contains a counterex-
ample against every branching program C (i.e. a circuit with arithmetic,
branching and comparison operations) of depth logaN and size 2loga N , for
any positive constant a, and (2) SN can be constructed in O(logO(a)N)

time using 2logO(a) N processors in the PRAM model without bit opera-
tions. Specifically, for given N , it produces an explicit parametrized graph

gN (z1, z2) with 2logO(a) N nodes and edges labelled with capacities that are
linear forms in z1 and z2 such that any branching program C of depth logaN
and size 2loga N fails to compute the max flow correctly on gN (z1, z2) for some
integral z1 and z2 of bitlengh O(logO(a)N). The set SN consists of instan-
tiations of gN (z1, z2) for all integral z1 and z2 of O(logO(a)N) bitlength.

But this proof technique cannot prove the unrestricted P 6= NC conjec-
ture for two reasons. First, it is quasi-explicit instead of explicit. This is
too weak to resolve the self referential paradox in the P vs. NC conjecture.
Second, it associates with a computation an algebraic object (a semialge-
braic set) and then reasons solely on the basis of the degree of this object. It
was pointed out in [GCTpram] (cf. Chapter 7 therein) that any such purely
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degree based proof technique can not work in the context of the fundamental
separation conjectures such as the P vs. NC conjecture. The recent article
[AW] also says something similar.

The article [GCTpram] also suggested an idea for overcoming this al-
gebraic degree barrier: namely, associate with the fundamental complexity
classes algebraic varieties with group actions that capture the symmetries
of computation and then reason on the basis of the deeper representation
theoretic structure of these varieties rather than just their degrees. This
was the starting point for the investigation in [GCT1]-[GCT8] via geometric
invariant theory.

4 GCT approach to implement the flip

In this section we outline the resulting GCT approach to implement the flip
via geometric invariant theory focussing on the permanent vs. determinant
problem [V] in characteristic zero (over C), the story of the arithmetic P vs.
NP problem being similar. The goal is to decompose this problem (cf. De-
composition Theorem 4.15) into positivity hypotheses in algebraic geometry
and representation theory and an easier hardness hypothesis, all without self
referential difficulty. We also describe the concrete lower bound in [LMR]
based on a weaker form of the flip. The basic notions of representation
theory and algebraic geometry needed in this section are reviewed in the ap-
pendix. The reader not familiar with algebraic geometry and representation
theory may refer to it whenever necessary.

The permanent vs. determinant problem (in characteristic zero, over
C) is to show that perm(X), the permanent of an n× n variable matrix X,
cannot be represented linearly as det(Y ), the determinant of anm×mmatrix
Y , if m = poly(n), or more generally, m = 2loga n, for a fixed constant a > 0,
and n → ∞. The best known lower bound on m at present is quadratic
[MR]. Here, by a linear representation, we mean that the entries of Y are
(possibly nonhomogeneous) linear functions (over C, Q, or Z) of the entries
of X.

The goal now is to make enough progress towards the flip properties F
until we get a concrete decomposition of the permanent vs. determinant
problem of the form (2).
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4.1 Characterization by symmetries

The starting point is an observation [GCT1] that the permanent and deter-
minant are exceptional polynomial functions, where by exceptional we mean
they are completely characterized by symmetries in the following sense.

Let Y be a variable m×m matrix. Let C[Y ]m be the space of homoge-
neous forms of degree m in the m2 variable entries of Y . Then, by classical
representation theory [Fr], det(Y ) is the unique nonzero form in C[Y ]m, up
to a constant multiple, such that, for any m×m invertible matrices A and
B with det(A) det(B) = 1,

(D): det(Y ) = det(AY ∗B),

where Y ∗ = Y or Y t. Thus det(Y ) is completely characterized by its
symmetries, and hence, is exceptional. We refer to this characteristic prop-
erty of the determinant as property (D) henceforth.

Similarly, by classical representation theory [MM], perm(X) is the unique
form, up to a constant multiple, in the space C[X]n of homogeneous forms
of degree n in the entries of X such that, for any diagonal or permutation
matrices A and B,

(P): perm(X) = perm(AX∗B),

where X∗ = X or Xt, and the product of the entries of A is one, when
A is diagonal, and similarly for B. Thus perm(X) is also completely char-
acterized by its symmetries, and hence, is exceptional. We shall refer to this
characteristic property of the permanent as property (P) henceforth.

The proofs of the flip Lemma 2.2 and Theorem 2.3 are based on the
characterization by symmetries. Hence a natural strategy for implementing
the flip is to exploit this characterization by symmetries.

4.2 Geometric obstructions

Towards that end, we first recall from [GCT1, GCT2] the notion of geometric
obstructions which would let us exploit these symmetries of the permanent
and the determinant.

This is done in two steps. First, [GCT1] constructs certain projective
algebraic varieties ∆[perm, n,m] and ∆[det,m] such that if perm(X), X an
n×n variable matrix, can be represented linearly as det(Y ), with dim(Y ) =
m > n, then
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∆[perm, n,m] ⊆ ∆[det,m]. (3)

The goal is to show, using algebraic geometry and representation theory,
that this inclusion (3) is impossible when m = poly(n), or more generally,
when m = 2loga n, a > 0 a constant.

Here by a projective algebraic variety we mean the zero set of a system of
homogeneous multivariate polynomials with coefficients in C; cf. Appendix.
The formal definition of ∆[perm, n,m] and ∆[det,m] is as follows.

Let Y be an m×m variable matrix. We think of its entries, ordered say
rowwise, as coordinates of Y = C

r, r = m2. Let X be an n × n variable
matrix. We identify it with an n× n submatrix of Y , say, the bottom-right
minor of Y , and let z be any variable entry of Y outside X. We use it as a
homogenizing variable.

Let V = C[Y ]m be the space of homogeneous polynomials of degree m
in the variable entries of Y . It is a representation of G = GL(Y) = GLr(C)
with the following action. Given any σ ∈ G, map a polynomial g(Y ) ∈ V to
gσ(Y ) = g(σ−1(Y )):

σ : g(Y ) −→ g(σ−1Y ). (4)

Here Y is thought of as an m2-vector by straightening it rowwise.

Let P (V ) be the projective space of V consisting of the lines in V through
the origin. Let g = det(Y ), thought of as a point in P (V ), and let f =
zm−nperm(X), again thought of as a point in P (V ).

Let
∆[det,m] = Gg ⊆ P (V ),

∆[perm, n,m] = Gf ⊆ P (V ),
(5)

where Gg denotes the projective closure (cf. Appendix) of the orbit Gg
of g. Then it follows from classical algebraic geometry that ∆[det,m] and
∆[perm, n,m] are projective varieties. Furthermore, it can be shown that
they are projective G-varieties, i.e., varieties with a natural action of G (that
moves the points in the varieties around) induced by the action on the G-
orbits. We call ∆[perm, n,m] a class variety of the complexity class #P
based on the permanent function which is #P -complete [V], and ∆[det,m]
a class variety of the complexity class NC based on the determinant which
belongs to NC and is almost complete [V].

It is easy to show (cf. Propositions 4.1 and 4.4 in [GCT1]) that if
perm(X) can be expressed linearly as the determinant of an m × m ma-
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trix, m > n, then
∆[perm, n,m] ⊆ ∆[det,m], (6)

and conversely, if ∆[perm, n,m] ⊆ ∆[det,m], then f = zm−nperm(X) as
a point in P (V ) can be approximated infinitesimally closely by a point in
P (V ) of the form det(AY ), A ∈ G, thinking of Y as an m2-vector. The
following conjecture is thus a stronger form of the arithmetic permanent vs.
determinant conjecture in [V] over C.

Conjecture 4.1 (Strong arithmetic form of the permanent vs. determinant
conjecture) [GCT1] The point f ∈ P (V ) cannot be approximated infinitesi-
mally closely as above if m = poly(n), and more generally, m = 2loga n for
any constant a > 0.

Equivalently, if m = poly(n), or more generally, m = 2loga n, a > 0 fixed,
n→∞, then

∆[perm, n,m] 6⊆ ∆[det,m]. (7)

Geometric obstructions are meant to be proof certificates of (7). Intu-
itively, they are representation theoretic objects that live on ∆[perm, n,m]
but not on ∆[det,m] (for m = poly(n)); cf. Figure 3. Their very existence
then serves as a guarantee that the embedding as in (6) is not possible,
because otherwise they would be living on ∆[det,m] as well.

To define them formally, we need to recall some basic representation the-
ory; cf. Appendix. By a classical result of Weyl [Fu], the irreducible (poly-
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nomial) representations of G = GLr(C) are in one-to-one correspondence
with the partitions λ of length at most r. By a partition λ = (λ1, λ2, . . .)
we mean an integral sequence λ1 ≥ λ2 · · · ≥ λk > 0, k ≤ r, where k is called
the length of λ. The irreducible representation of G in correspondence with
λ is denoted by Vλ(G). It is called the Weyl module of G indexed by λ; cf.
Appendix for its explicit description. Symbolically:

Irreducible representations of G
Weyl
⇐⇒ partitions λ.

Weyl module Vλ(G)←→ λ.

Weyl also proved that every (polynomial) finite dimensional representation
of G can be decomposed into irreducible representations. This means it
can be written as a direct sum of Weyl modules. Thus Weyl modules are
the basic building blocks of the representation theory of G, and every finite
dimensional representation of G can be thought of as a complex building
made out of these blocks.

Definition 4.2 [GCT2] A geometric obstruction On,m is a Weyl module
Vλ(G) that lives on ∆[perm, n,m] but not on ∆[det,m] (Figure 3). Formally,
this means Vλ(G) occurs as a subrepresentation of G in the (dual of the)
homogeneous coordinate ring R[perm, n,m] of ∆[perm, n,m] but not in the
(dual of the) homogeneous coordinate ring R[det,m] of ∆[det,m]. We call
λ the obstruction label.

A relaxed geometric obstruction is a Weyl module Vλ(G) that occurs
as a subrepresentation of G in I[det,m]/(I[det,m] ∩ I[perm, n,m]), where
I[det,m] denotes the ideal of ∆[det,m] and I[perm, n,m] the ideal of ∆[perm, n,m].
This is equivalent to saying that Vλ(G) has a copy in I[det,m] that does not
vanish identically at f = zm−nperm(X).

Here the homogeneous coordinate ring of a projective variety W ⊆ P (V )
means the ring of all polynomial functions on its affine cone in V consisting
of all lines in V corresponding to the points in W . By the ideal of W , we
mean the ring of polynomial functions which vanish on it. See Appendix for
further details.

It is easy to show that a geometric obstruction is also a relaxed geometric
obstruction. Existence of a geometric obstruction On,m, for given n and m,
implies that the inclusion (3) is not possible, since On,m cannot live on
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∆[det,m]. Existence of a relaxed geometric obstruction also implies the
same.

Thus:

Proposition 4.3 [GCT2] Existence of a geometric obstruction (or a relaxed
geometric obstruction) On,m, for given n and m, implies perm(X), with
dim(X) = n, cannot be represented linearly as det(Y ), with dim(Y ) = m.

Hence Conjecture 4.1 is implied by the following conjecture.

Hypothesis 4.4 (Geometric Obstruction Hypothesis (GOH)) (cf. [GCT2])
A geometric obstruction exists if m = poly(n), or more generally, if m =
2loga n, a > 0 fixed, n→∞.

See [GCT2] for supporting results and [GCT6] for evidence, based on
the Strong Flip Theorem (Theorem 4.6) below, leading to conjectural equiv-
alence between a relaxed form of this hypothesis and the strong permanent
vs. determinant Conjecture 4.1. Also see [Bu] for computer-based numeri-
cal evidence for the analogous hypothesis for the lower bound problem for
matrix multiplication.

4.3 A high level plan

A high level of plan of GCT in the context of the permanent vs. determinant
problem can now be described as follows.

Let Gg ⊆ G be the group of symmetries of g = det(Y ) ∈ V . Since
det(Y ) is characterized by its symmetries, it is completely determined as a
point in V by the triple:

Gg →֒ G →֒ K = GL(V ). (8)

Thus the G-module structure of the homogeneous coordinate ring R[det,m]
is also completely determined by this triple. Since algebraic groups are de-
termined by their representations [DM], all information about the G-module
structure of R[det,m] is thus contained in the representation theory of the
group triple (8). Now:

1. Study the representation theory of the group triple (8) in depth and use
it to understand the G-module structure of the homogeneous coordi-
nate ring R[det,m]. Understand the G-module structure of R[f, n,m]
similarly using the characterization of f by its symmetries.

20



2. Compare these G-module structures to locate a geometric obstruction,
when m = poly(n).

The goal is to carry out these steps explicitly, exploiting the character-
ization by symmetries of the permanent and determinant. We shall specify
what explicit means later; cf. Hypothesis 4.8. This approach is extremely
rigid in the sense that it only works for extremely rare hard functions that
are characterized by their symmetries. This extreme rigidity is much more
than what is needed to bypass the natural proof barrier [RR].

4.4 A quadratic lower bound

The following result provides a concrete lower bound application of a relaxed
form of GCT in the context of the permanent vs. determinant problem.

Theorem 4.5 (cf. Theorem 1.0.1 and 1.0.2 in [LMR]) A strongly explicit
relaxed geometric obstruction Vλ(G) exists when m ≤ n2/2. By strongly
explicit, we mean that a relaxed obstruction label λ can be constructed in
O(n) time1.

Thus ∆[perm, n,m] 6⊆ ∆[det,m], when m ≤ n2/2.

This proves Conjecture 4.1 form ≤ n2/2 and implies the earlier quadratic
lower bound for the permanent in [MR].

4.5 Strong flip theorem

However, it is still far from the final goal because it does not address the self
referential difficulty in the permanent vs. determinant problem. We have
already remarked in Section 2.4 that this difficulty is not an issue in the
context of the quadratic lower bound problem above since it is easier than
derandomization. Explicit constructions to overcome this difficulty would
have to be far more difficult. This is the content of the following stronger
form of the flip theorem in this setting.

1This obstruction is the explicit Weyl module in the ideal I[det, m] described in Theo-
rem 1.0.2 in [LMR]. It is not shown in this paper that this Weyl module does not vanish
identically at f = zm−nperm(X). But this follows easily from the results in this paper
and in [MR].
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Theorem 4.6 (Strong Flip) Suppose Conjecture 4.1 holds and that black
box determinant identity testing [KI] can be derandomized in a stronger form
as specified in [GCTflip] (cf. Section 8.1 therein). Then Conjecture 4.1
has an extremely explicit proof satisfying analogous F0-4 and an additional
property (G) described below.

In particular, this means there exists an obstruction familyO = ∪n,mOn,m,
with On,m nonempty when m = poly(n), such that, for any obstruction la-
bel s ∈ On,m, m = poly(n), one can compute in poly(n,m) time a global
obstruction set Sn,m(s) = {X1, . . . , Xl} of inputs, l = poly(n,m), with the
following property. Fix any homogeneous polynomial p(Y ) in V that belongs
to ∆[det,m] (thinking of a homogeneous polynomial in V , by an abuse of
notation, as a point in P (V )). Let p′(X) denote the polynomial obtained
from p(Y ) by substituting zero for all variables in Y other than z and X,
and 1 for z. Then there exists a counter example Xi ∈ Sn,m(s) such that
p′(Xi) 6= perm(Xi). This specifies F1 (decoding) in this setting. Other flip
properties are analogous; cf. GCTflip for their details.

Let ψ = ψs : V → C
l be the homogeneous linear map that maps any

homogeneous form p(Y ) ∈ V to the point (p′(X1, ), . . . , p
′(Xl)) ∈ C

l. Let
ψ̂ = ψ̂s denote the corresponding morphism from the projective variety
∆[det,m] to the projective variety P (Cl). It is not defined when the tuple
(p′(X1, ), . . . , p

′(Xl)) is identically zero. Its image is ψ̂(∆[det,m]) ⊆ P (Cl).
It can be ensured that that ψ(f) ∈ C

l, f = zm−nperm(X), is not an iden-
tically zero tuple. Hence it defines a point in P (Cl), which we denote by
ψ̂(f). Then Sn,m(s) is a global obstruction set iff ψ̂s(f) 6∈ ψ̂s(∆[det,m]).

The property (G) mentioned above is that:

(G): The point ψ̂s(f) does not belong to the projective closure of ψ̂s(∆[det,m]) ⊆
P (Cl), when m = poly(n).

This follows from F0-F4 and classical algebraic geometry. It is crucial
because in GCT we are finally interested in constructing an obstruction
by geometric techniques. If ψ̂s(f) belongs to the closure of ψ̂s(∆[det,m]),
every polynomial function that vanishes on ψ̂f (∆[det,m]) will also vanish on

ψ̂s(f). No algebro-geometric technique can construct such ψ̂s. The property
(G) rules out this pathology and says that ψ̂s is well behaved geometrically.

The linear map ψ̂s above is called an extremely explicit separator be-
tween ∆[det,m] and f = zm−nperm(X). It is called extremely explicit
because (assuming the relevant hardness and derandomization conjectures)
(1) given s, Sn,m(s) can be computed in O(poly(n,m)) time by Theorem 4.6,
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and (2) each coefficient of ψ̂s in the standard basis of V 2 can also be com-
puted in poly(n,m) time; this also easily follows from Theorem 4.6. We call
l = poly(n,m) the dimension of ψ̂s. Thus Theorem 4.6 says that, assuming
the strong arithmetic permanent vs. determinant and derandomization con-
jectures, one can construct an extremely explicit family of linear separators
of small dimension between ∆[det,m] and f .

Theorem 4.6 critically depends on the exceptional nature of f and g =
det(Y ). It will almost never hold for general f and g in place of the per-
manent and determinant. For general f and g, a global obstruction set
Sn,m that gives a linear separator ψ between ∆[g,m] = Gg and f can
be constructed (if it exists) using general purpose algorithms for elimina-
tion theory in algebraic geometry for computing multivariate resultants and
Gröbner bases of the ideals of algebraic varieties. But these algorithms take
Ω(2dim(V )) time. Since dim(V ) is exponential in n and m, the time taken
is at least double exponential in n and m. Nothing better can be expected
for general f and g, because elimination theory is intractable in general.
For example, the problem of computing the Gröbner basis is EXPSPACE-
complete [MMr]. This means it takes in general space that is exponential in
the dimension of the ambient space, which is P (V ) here. In contrast, The-
orem 2.3 says that a short specification Sn,m of an extremely explicit linear
separator between ∆[det,m] and f = zm−nperm(X) can be computed in
poly(n,m) time exploiting the exceptional nature of the permanent and the
determinant. This may seem impossible on the basis of the existing algebraic
geometry.

At present, such extremely explicit separators of small dimension can be
constructed in algebraic geometry only between very special kinds of alge-
braic varieties, such as the Grassmanian or the flag varieties [Fu], and very
special kinds of points. This can be done using the second fundamental
theorem of invariant theory [Fu], which gives a very nice explicit set of gen-
erators for the ideals of these varieties. But these varieties have very low
complexity in comparison to ∆[det,m]. Specifically, their complexity ac-
cording to a certain measure of complexity of orbit closures defined in [LV]
is zero, whereas that of ∆[det,m] is O(m2). The problem of explicit con-
struction of linear separators when the complexity of the underlying variety
is so high seems very formidable and far beyond the reach of the existing
machinery in algebraic geometry.

2The standard basis representation of any form f ∈ V = C[Y ]m is given by its coeffi-
cients.
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By Theorem 4.6, problems comparable in difficulty to the formidable
explicit construction problems in algebraic geometry occurring in the con-
clusion of this theorem can be expected in any approach towards the fun-
damental hardness and derandomization conjectures in complexity theory.
We call this the law of conservation of difficulty. It may explain why these
conjectures, which seem so elementary at the surface, have turned out to be
so hard.

4.6 Flip hypothesis

The Strong Flip Theorem 4.6 and Theorem 4.5 suggest the following strength-
ening of Hypothesis 4.4.

Hypothesis 4.7 (Flip) (cf. [GCT6]) A strongly explicit geometric ob-
struction exists if m = poly(n). By strongly explicit we mean that the par-
tition λ specifying this obstruction Vλ(G) can be constructed in poly(n,m)
time for any m = poly(n). Furthermore, it can be assumed that the size
|λ| =

∑
i λi is O(poly(n,m)).

The following is the more elaborate form of this hypothesis suggested by
the Strong Flip Theorem 4.6.

Hypothesis 4.8 (Flip Hypothesis, FH) (cf. [GCT6])

FH[General]: The family of geometric obstructions (cf. Definition 4.2) is
extremely explicit, satisfying analogues of F0-F4 for global obstruction sets
Sn,m(s) in Theorem 4.6. In particular, this means:

1. Verification: Given n,m and λ, whether λ is a geometric obstruction
label can be verified in poly(n,m, 〈λ〉) time, where 〈λ〉 =

∑
i log2 λi de-

notes the bitlength of the specification of the partition λ = (λ1, λ2, . . .).

2. Construction: For given n and m = poly(n), a geometric obstruction
label (partition) λ can be constructed in poly(n,m) time. Furthermore
it can be assumed that the size |λ| is poly(n,m).

3. Decoding: Given a geometric obstruction label λ for given n and
small m, a small global obstruction set Sn,m(λ) = {X1, . . . , Xl}, l =
poly(n), of inputs can be computed in poly(n,m) time such that, for
any form p(Y ) ∈ ∆[det,m], there exists Xi, i ≤ l, such that p′(Xi) 6=
perm(Xi).
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FH[Determinant]:

1. Verification: Given m and λ, whether Vλ(G) lives on ∆[det,m] (i.e.,
whether Vλ(G) is a G-subrepresentation of the dual of the homogeneous
coordinate ring R[det,m]) can be decided in poly(m, 〈λ〉) time.

2. Construction and decoding: Given m, one can compute in poly(m)
time a label λ of poly(m) size such that Vλ(G) does not live on ∆[det,m].
Furthermore, given n ≤ m and any such λ, one can compute in
poly(m) time a small hitting set Hn,m,λ = {X1, . . . , Xl}, l = poly(m),
of inputs such that for any form p(Y ) ∈ ∆[det,m], with p′(X) not
identically zero, there exists Xi, i ≤ l, such that p′(Xi) 6= 0.

FH[Permanent] [Verification]: Given n,m, and λ, whether Vλ(G) lives
on ∆[perm, n,m] can be decided in poly(n,m, 〈λ〉) time.

See [GCT6] for a detailed justification of these flip hypotheses based on
the Strong Flip Theorem 4.6, which suggests that these hypotheses may be
in essence implications of the hardness and derandomization conjectures in
the statement of Theorem 4.6.

FH[Determinant] for construction and decoding implies derandomization
[KI] of determinant identity testing. This provides a GCT approach to
derandomization. There is an analogous hypothesis for the arithmetic form
of the P vs. NP problem and derandomization [KI] of general polynomial
identity testing; cf. [GCT6].

Like the Strong Flip Theorem 4.6, Hypothesis 4.8 crucially depends on
the exceptional nature of the permanent and the determinant. For general
functions, not characterized by their symmetries, this hypothesis will al-
most always fail. Hence the approach to implement the flip based on this
hypothesis is extremely rigid.

FH[Determinant] does not have the self referential difficulty in the sense
that (1) m is not required to be a small function of n in its statement, and
(2) it only depends on the properties of the determinant, and not on the
relationship between the permanent and the determinant (or equivalently,
between the complexity classes #P and NC). The case of FH[Permanent]
is similar. FH[Determinant](verification) and FH[Permanent] (verification)
together imply FH[general] (verification), which says that geometric ob-
structions in GOH are easy to verify. We saw in Section 2.2 that the self
referential difficulty is the main obstacle to ease of verification of obstruc-
tions (F3). Hence, once FH[Determinant](verification) and FH[Permanent]
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(verification) are proved, GOH (Hypothesis 4.4) does not have the self ref-
erential difficulty any more. This decomposes the strong permanent vs.
determinant Conjecture 4.1 into three subproblems without self referential
difficulty, namely, FH[Determinant](verification), FH[Permanent] (verifica-
tion), and GOH. Pictorially,

Strong perm. vs. det. ∼=
FH[Determinant](verification) + FH[Permanent](verification) +GOH.

(9)

This decomposition breaks the circle of self referential difficulty. Here the
exceptional nature of geometric obstructions is crucial. For example, such
a break is not possible using a relaxed geometric obstruction, in general, or
the global obstruction set Sn,m(s) in the strong flip Theorem 4.6.

The goal now is to prove FH[Determinant] and FH[permanent] for verifi-
cation to get an efficient criterion for verifying a geometric obstruction as in
FH[general](verification), and then use this criterion to guess and construct
a geometric obstruction explicitly, when m = poly(n).

4.7 How to prove FH?

We now describe the approach in [GCT6] to prove somewhat weaker forms of
FH[determinant] (verification) and FH[permanent] (verification), assuming
certain positivity hypotheses (cf. Section 4.7.3) in algebraic geometry and
representation theory. This will lead to a more refined decomposition than
(9) in terms of these positivity hypotheses.

We begin by recalling what is known about the analogue of FH and
positivity in the context of the simplest and best understood multiplicities in
representation theory–namely, the Littlewood-Richardson coefficients [Fu].
Then we describe what is needed to lift the Littlewood-Richardson story to
general FH (Hypothesis 4.8).

4.7.1 Littlewood-Richardson coefficients

Given partitions α, β, and λ, the Littlewood-Richardson coefficient cλα,β is
the multiplicity (the number of copies) of the Weyl module Vλ(G) in the
tensor product Vα(G)⊗Vβ(G), considered as a G-module by letting G act on
both factors independently. Thus Vα(G)⊗Vβ(G) has the following complete
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decomposition (cf. Appendix) as a G-module:

Vα(G)⊗ Vβ(G) = ⊕λc
λ
α,βVλ(G).

Let c̃λα,β(k) = ckλ
kα,kβ be the associated stretching function [Rs]. The following

results are known.

Polynomiality: The stretching function c̃λα,β(k) is a polynomial in k [Rs].

Polyhedral LR (Littlewood-Richardson) rule]: There exists an ex-
plicit polytope (e.g. Hive polytope [KT]) P = P λ

α,β such that (1) cλα,β is equal

to the number integer points in P , and more generally, (2) c̃λα,β(k) = fP (k),
where fP (k) is the Ehrhart function of P , i.e., the number of integer points
in the dilated polytope kP . It is a polynomial by the preceding polynomi-
ality property. For general rational P , fP (k) is a quasipolynomial; cf. [St]
and Section 4.7.2 below. By an explicit polytope, we mean, given a rational
point x, whether x ∈ P λ

α,β can be decided in poly(〈x〉, 〈α〉, 〈β〉, 〈λ〉) time,
where 〈x〉 denotes the bitlength of x.

The preceding polyhedral LR rule is basically a consequence of the clas-
sical Littlewood-Richardson rule. See [Fu2] for its full description and an
elementary proof, and [GCT3] for a full elementary description of the poly-
hedral LR rule. This rule implies a #P -formula for cλα,β .

LR Saturation Theorem [KT]: The polynomial c̃λα,β(k) is saturated. This

means if c̃λα,β(k) is nonzero for some k ≥ 1, then cλα,β is also nonzero.

LR saturation theorem is a consequence of the following conjecture in
[KTT] supported by substantial experimental evidence. We refer to it as
the second positivity hypothesis PH2.

LR PH2 [KTT]: All coefficients of the polynomial c̃λα,β(k) are nonnegative.

Nonvanishing of LR coefficients: The problem of deciding nonvanishing
of Littlewood-Richardson coefficients belongs to the complexity class P (cf.
[GCT3] and [KT2]). That is, given α, β, and λ, whether cλα,β is nonzero
can be decided in poly(〈α〉, 〈β〉, 〈λ〉) time. This easily follows from the poly-
hedral LR rule, LR saturation theorem, and a polynomial time algorithm
[GLS] for linear programming. It proves the analogue of FH[Determinant
and Permanent][verification] (Hypothesis 4.8) for Littlewood-Richardson co-
efficients.
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4.7.2 Definitions

Now we wish to lift this Littlewood-Richardson story to general FH (Hy-
pothesis 4.8). Towards that end, we need some definitions.

Let Fλ,n,m(k) denote the number of copies of the Weyl module Vkλ(G)
that live on ∆[perm, n,m]. Here kλ denotes the partition obtained by
multiplying each number in the integral sequence (partition) λ by k. Let
Gλ,m(k) denote the number of copies of the Weyl module Vkλ(G) that live
on ∆[det,m]. Thus Vλ(G) is a geometric obstruction (cf. Definition 4.2) iff
F (λ, n,m) = Fλ,n,m(1) is nonzero and G(λ,m) = Gλ,m(1) is zero.

Given a polytope Q, let fQ(k) denote the number of integer points in the
dilated polytope kQ. More generally, given a parametrized polytope P (k)
defined by a linear system of the form:

P (k) : Ax ≤ kb+ c, (10)

where A is an s× t integer matrix, x a variable t-vector, and b and c some
integral constant s-vectors, let fP (k) denote the number of integer points in
P (k). It is a classical result of Ehrhart [St] that fP (k) is asymptotically a
quasi-polynomial for general c and a quasipolynomial when c = 0. We call
it the (asymptotic) Ehrhart quasipolynomial of the polytope P (k). Here we
call a function f(k) an asymptotic quasipolynomial if there exist a nonneg-
ative integer a(f), which we call the asymptotic defect of f(k), a positive
integer l, which we call the period of f(k), and polynomials f1(k), . . . , fl(k)
such that, for every integer k > a(f), f(k) = fi(k) if k = i modulo l. We
call f(k) a quasipolynomial if a(f) = 0.

We define the positivity index p(fP ) of f(k) = fP (k) to be the smallest
nonnegative integer such that: (1) for every j, the coefficients of fj(k+p(fP ))
are all nonnegative, and (2) p(fP ) ≥ min{a(fP ), b(fP )}, where b(fP ) =
min{k + 1|P (k) 6= ∅}; it is −∞ if P (k) is always nonempty. We define
the saturation index s(fP ) of f(k) = fP (k) to be the smallest nonnegative
integer such that (1) for any j, fj(k) > 0 for every k ≥ s(fP ), k = j mod
l, whenever fj(k) is not an identically zero polynomial, and (2) s(fP ) ≥
min{a(fP ), b(fP )}. Clearly, s(fP ) ≥ a(fP ).

4.7.3 Positivity hypotheses

In this section, we describe the positivity hypotheses in algebraic geometry
and representation theory which provide an approach to prove FH.
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The following result generalizes in a relaxed form the polynomiality
property of the stretching function associated with LR-coefficients (cf. Sec-
tion 4.7.1).

Lemma 4.9 [GCT6] The functions Fλ,n,m(k) and Gλ,m(k) are asymptotic
quasi-polynomials.

This follows from the classical work of Hilbert.

The following positivity hypothesis says that the asymptotic quasipoly-
nomials in Lemma 4.9 can be realized as asymptotic Ehrhart quasi-polynomials
of explicit polytopes. This generalizes the polyhedral LR rule (cf. Sec-
tion 4.7.1).

Hypothesis 4.10 (PH1) [Positivity Hypothesis] (cf. [GCT6])

(a) For every λ, n,m ≥ n, there exists an explicit parametrized polytope
P (k) = Pλ,n,m(k) such that

Fλ,n,m(k) = fP (k). (11)

If such a polytope exists it is guaranteed by the proof of Lemma 4.9 that
its dimension is poly(n) regardless of what m is. By explicit we mean the
polytope is given by a separation oracle [GLS] that, given any rational point
x, decides if x ∈ P (k) and gives a separating hyperplane if it does not in
poly(n,m, 〈x〉, 〈k〉, 〈λ〉) time, where 〈 〉 denotes the bitlength of specification.

(b) For every m and λ, there exists an explicit parametrized polytope Q(k) =
Qλ,m(k) such that

Gλ,m(k) = fQ(k). (12)

If such a polytope exists it is guaranteed by the proof of Lemma 4.9 that its
dimension is poly(n) regardless of what m is as long as the length of λ is
poly(n) (as it will be in our applications). Explicitness is defined similarly.

The following hypothesis says that Gλ,m(k) and Fλ,n,m(k) have a satura-
tion property that generalizes in a relaxed form the LR saturation theorem
(cf. Section 4.7.1).

Hypothesis 4.11 (Saturation Hypothesis (SH)) The saturation indices
of Gλ,m(k) and Fλ,n,m(k) are poly(n,m, 〈λ〉).

This follows from the following generalization in a relaxed form of LR
PH2 (cf. Section 4.7.1).
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Hypothesis 4.12 (Positivity Hypothesis (PH2)) The positivity indices
of Gλ,m(k) and Fλ,n,m(k) are poly(n,m, 〈λ〉).

See [GCT6] for a detailed justification of PH1 and SH based on the
Strong Flip Theorem 4.6, which suggests that these positivity hypotheses
may be in essence implications of the hardness and derandomization conjec-
tures in the statement of Theorem 4.6.

PH1, in particular, implies that Fλ,n,m(k) and Gλ,m(k) have #P formu-
lae. Positivity refers to the positive form of a #P -formula, i.e., the absence
of any negative sign as in the usual formula for the permanent. PH1,SH,
and PH2 critically depend on the fact that the permanent and determi-
nant are characterized by their symmetries (cf. Section 4.1). If we replace
these functions with general functions without symmetries, these hypotheses
would almost certainly fail (just like the Strong Flip Theorem 4.6, which is
the key ingradient in the justification of these hypotheses in [GCT6]).

These positivity hypotheses are fundamentally different from the original
hardness hypothesis (the permanent vs. determinant conjecture) because
the self-referential difficulty is absent in them for two reasons: (1) m is not
required to be a small function of n in their statements, and (2) they do not
depend on the relationship between the permanent and the determinant (or
equivalently, between the complexity classes #P and NC). This is because
PH1 and SH (PH2) for the class variety ∆[perm, n,m] are statements only
about the properties of the permanent and do not depend in any way on the
determinant or the complexity class NC, and similarly PH1 and SH (PH2)
for the class variety ∆[det,m] are statements only about the properties of
the determinant and do not depend in any way on the permanent or the
complexity class #P .

The following result proves weaker forms of FH[Determinant] (verifica-
tion) and FH [Permanent] (verification) assuming these positivity hypothe-
ses.

Theorem 4.13 [GCT6] Assume that PH1 and SH for Fλ,n,m(k) (Hypothe-
ses 4.10,4.11) hold. Then given λ, n,m, and k′ greater than the satura-
tion index of Fλ,n,m(k), whether Fλ,n,m(k′) is nonzero can be decided in
poly(〈λ〉, n,m, 〈k′〉) time. Similar result holds for Gλ,m(k) assuming PH1
and SH for Gλ,m(k).

This follows from the following result that provides a polynomial time
algorithm for a special case of integer programming, called saturated integer
programming. In contrast, integer programming is NP -complete in general.
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Theorem 4.14 (cf. [GCT6]) Let P (k) be a parametrized polytope speci-
fied as a separation oracle [GLS] with bitlength of specifcation 〈P (k)〉. Let
k′ be a nonnegative integer guaranteed to be greater than the saturation in-
dex s(Fp) (cf. Section 4.7.2) of the asymptotic Ehrhart quasipolynomial
fP (k) of P . Then whether P (k′) contains an integer point can be decided in
poly(〈P (k′)〉, 〈k′〉) time.

This implies Theorem 4.13 since Fλ,n,m(k′) is nonzero iff the polytope
Pλ,n,m(k′) in PH1 contains an integer point.

4.8 Decomposition theorem

Now we describe how these positivity hypotheses can be used for decompos-
ing the permanent vs. determinant problem, the story for the arithmetic P
vs. NP problem being similar.

Theorem 4.15 (Decomposition) (cf. [GCT6])

(A): There exists an explicit family O = ∪n,m{On,m} of geometric obstruc-
tion labels for the permanent vs. determinant problem for m = 2loga n, a > 1
fixed, n→∞, assuming,

1. PH1, and

2. OH (Obstruction Hypothesis):

For all n→∞, there exists λ, and k of poly(n,m, 〈λ〉) bitlength greater
than the saturation index of Fλ,n,m(k) (polynomially bounded in SH),
such that:

(a) Pλ,n,m(k) 6= ∅ and the affine span of Pλ,n,m(k) contains an integer
point. Here by an affine span we mean the smallest dimensional
affine space containing the polytope.

(b) The affine span of Qλ,m(k) does not contain an integer point.

In this case, Vkλ(G) is a geometric obstruction for given n and m. The
set On,m consists of the specification labels (k, λ) of such Vkλ(G) for given
n amd m. Explicitness of O means (cf. Section 2.1) the obstruction-labels
(k, λ) are easy to verify: specifically, given n,m, and (k, λ), whether OH is
satisfied can be checked in poly(n,m, 〈λ〉, 〈k〉) time.
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(B): Analogous result holds for the arithmetic P vs. NP problem (Sec-
tion 2.3), letting a class variety for NP based on E(X) play the role of
∆[perm, n,m], and a class variety for P based on a function H(X) defined
in [GCT1] play the role of ∆[det,m].

This follows from the proof of Theorem 4.14. See [GCT6] for justification
of OH based on the strong flip Theorem 4.6. Though SH is not explicitly
needed in the statement of this result, it is crucial for OH to hold; cf. [GCT6].

We have already seen that the self-referential difficulty is absent in PH1
and SH (cf. Section 4.7.3). Once these positivity hypotheses are proved,
there is no self referential difficulty in OH too, because it then becomes “easy
to verify”. Specifically, by Theorem 4.15, the problem of verifying whether
a given obstruction label (k, λ) satisfies the condition in OH then belongs to
the complexity class P . Recall (Section 2.2) that the self referential difficulty
is the main obstacle to ease of verification of obstructions (F3). This is
resolved once PH1 and SH are proved. Thus Theorem 4.15 decomposes
the strong permanent vs. determinant Conjecture 4.1 into the positivity
hypotheses PH1 and SH, and an easier hardness hypothesis OH, all without
the self referential difficulty. Pictorially,

Strong perm. vs. det. problem ∼= PH1 + SH +OH. (13)

This decomposition breaking the circle of self referential difficulty is more
refined than (9). The problems on the right hand side here are polyhedral
and linearized, and hence, simpler than the ones on the right hand side of
(9). The decomposition for the arithmetic P vs. NP problem is similar.

The goal now is to prove PH1 and SH, and use the explicit polytopes
P (k) = Pλ,n,m(k) and Q(k) = Qλ,m(k) in PH1 to find a geometric obstruc-
tion satisfying OH explicitly. For this P (k) and Q(k) need to be explicit
not just in a theoretical sense but also in a practical sense so that they can
be used to prove OH. In this strategy, an explicit proof–specifically, F3 for
verification–is essentially forced on us. We need to know the polytopes P (k)
and Q(k) in PH1 explicitly to prove OH, and once this is done, Theorem 4.15
gives a polynomial time criterion for verifying obstructions in O whether we
care for explicitness or not.
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4.9 How to prove positivity?

The multiplicities Fλ,n,m(k) andGλ,m(k) in PH1 are akin to but much harder
than the so-called plethysm constants in representation theory [Fu]. The
classical plethysm problem in algebraic geometry and representation theory
asks for positive formulae (without any alternating signs) for the plethysm
constants, but without raising any complexity theoretic issues, such as ex-
plicitness. As such, the positivity hypothesis PH1 encompasses and goes
far beyond this plethysm problem. Its statement brings together algebraic
geometry, representation theory, and complexity theory, the last because
explicitness is its crucial ingradient. The articles [GCT4, GCT7, GCT8]
suggest an approach to prove PH1 via generalizations of quantum groups
[Dr] called nonstandard quantum groups; we refer the reader to these articles
for this story.

4.10 What is P?

The modest lower bounds in Theorems 3.1 and 4.5 are separated from the
strong lower bound problems harder than derandomization (such as the per-
manent vs. determinant or the arithmetic P vs. NP problems) by the circle
of self referential difficulty; cf. Figure 4. To break into this circle, we have to
show that P contains formidable explicit construction problems in algebraic
geometry and representation theory, such as the ones that arise in the strong
flip Theorem 4.6 or the various flip and positivity hypotheses in Sections 4.6
and 4.7.3. By the law of conservation of difficulty (cf. Section 4.5) based
on the Strong Flip Theorem 4.6, comparable understanding of P would be
needed in any approach. Unfortunately, our current understanding of P is
too modest. Until we understand P and the theory of upper bounds at the
required strong level, we may not expect any further lower bounds that are
fundamentally different from the known modest bounds.

5 Summary

We have outlined in this article the GCT approach to resolve the self ref-
erential paradox in the context of the arithmetic P vs. NP and related
problems. GCT has revealed formidable explicit construction and positivity
problems at the crossroads of algebraic geometry, representation theory, and
complexity theory hidden underneath the fundamental hardness and deran-
domization conjectures. It is hoped that these three fields will now come
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Figure 4: What is P?

together to work on this approach towards the P vs. NP problem.
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Appendix: Basic representation theory and alge-

braic geometry

In this appendix we review the basic notions of representation theory and
algebraic geometry used in this paper; cf. [Fu, Fu2, Mu] for more details.

Basic representation theory

Let G be a group. By a representation of G, we mean a vector space W with
a homomorphism from G to GL(W ), the space of invertible linear transfor-
mations of W . It is called irreducible if it contains no nontrivial proper
subrepresentation. We say that G is reductive if every finite dimensional 3

representation of G is completely reducible; i.e., can be written as a direct
sum of irreducible representations.

All finite groups are reductive–a classical fact [Fu]. Weyl proved [Fu]
that G = GLn(C), the general linear group of invertible n × n matrices,
is reductive, so also SLn(C), the special linear group of invertible n × n
matrices with determinant one.

This means every finite dimensional representation W of G can be writ-
ten as a direct sum:

W = ⊕imiWi, (14)

where Wi ranges over all finite dimensional irreducible representations of G
and mi denotes the multiplicity of Wi in W . Thus the irreducible represen-
tations are the building blocks of any finite dimensional representation.

Weyl also classified these building blocks. Specifically, he showed that
the (polynomial4) irreducible representations of G are in one-to-one corre-
spondence with the partitions (integral sequences) λ : λ1 ≥ λ2 ≥ λk > 0
of length k ≤ n; we denote this partition by λ = (λ1, . . . , λk). It can be
pictorially depicted by the corresponding Young diagram consisting of λi

boxes in the i-th row (Figure 5). An irreducible representation of G in cor-
respondence with a partition λ is denoted by Vλ(G), and is called a Weyl
module.

If λ = (r), i.e., when the Young diagram consists of just one row of r
boxes, then Vλ(G) is simply the space Symr(X) of all homogeneous forms

3There are some technical restrictions on what types of finite dimensional representa-
tions can be considered here (e.g. rational), which we ignore here.

4We say that a representation ρ : G → GL(W ) is polynomial if the entries of ρ(g),
g ∈ G, are polynomial functions of the entries of g.

39



Figure 5: A Young diagram for the partition (4, 3, 1)

of degree r in the variables x1, . . . , xn with the following action of G. Given
f(X) ∈ Symr(X) and σ ∈ G, map f(X) to

fσ(X) = f(Xσ), (15)

thinking of X = (x1, . . . , xn) as a row vector. This construction can be
generalized to arbitrary λ as follows.

Let Z be an n× n variable matrix. Let C[Z] be the ring of polynomials
in the entries of Z. It is a representation of GLn(C). Action of a matrix
σ ∈ GLn(C) on a polynomial f ∈ C[Z] is given by

(σ · f)(Z) = f(Zσ). (16)

By a numbering (filling), we mean filling of the boxes of a Young diagram
by numbers in [n]. We call such a numbering a (semistandard) tableau if
the numbers are strictly increasing in each column and weakly increasing in
all rows.

The partition corresponding to the Young diagram of a numbering is
called the shape of the numbering.

With every numbering T , we associate a polynomial eT ∈ C[Z], which is
a product of minors for each column of T . The l× l minor ec for a column c
of length l is formed by the first l rows of Z and the columns indexed by the
entries cj , 1 ≤ j ≤ l, of c. Thus eT =

∏
c ec, where c ranges over all columns

in T . The Weyl module Vλ is the subrepresentation of C[Z] spanned by eT ,
where T ranges over all numberings of shape λ over [n]. Its one possible
basis is given by {eT }, where T ranges over semistandard tableau of shape
λ over [n].

Basic algebraic geometry

Let V = C
m, P (V ) the associated projective space consisting of lines in

V through the origin, C[V ] the coordinate ring of V , which can also be
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thought of as the homogeneous coordinate ring of P (V ). Let x1, . . . , xm be
the coordinates of V . A projective algebraic variety Y in P (V ) is defined
to be the zero set of a set of homogeneous forms in x1, . . . , xm (it is also
assumed that this zero set is irreducible; i.e., cannot be written as the union
of two similar nonempty zero sets). The ideal I(Y ) of Y is defined to be the
space of all forms in C[V ] that vanish on Y . The homogeneous coordinate
ring R(Y ) of Y is defined to be C[V ]/I(Y ).

Basic geometric invariant theory

Now let V be a finite dimensional representation of G = GLn(C). Then
C[V ] is a G-module (i.e., a representation) with the action that, for any
σ ∈ G, maps f(v) ∈ C[V ] to

fσ(v) = f(σ−1v). (17)

(This is dual of the action in (15)). Here σ−1v denotes ρ(σ−1)(v), where
ρ : G→ GL(V ) is the representation map.

Definition 5.1 A projective variety Y ⊆ P (V ) is called a G-variety if the
ideal I(Y ) is a G-submodule (i.e., a G-subrepresentation) of C[V ].

This means, under the action of G, the points of Y are moved to the
points within Y , i.e., each σ ∈ G induces an automorphism of Y .

Let v ∈ P (V ) be a point, and Gv the orbit of v:

Gv = {gv | g ∈ G}. (18)

The orbit closure of v is:

∆V [v] = Gv ⊆ P (V ).

The closure is taken in the complex topology on P (V ) by adding all limit
points of the orbit.

Basic fact of algebraic geometry: ∆V [v] is a projective G-variety.

The algebraic geometry of the orbit closure ∆V [v] for general v is hope-
less. It can be tractable only if v is exceptional. The class varieties in
GCT (cf. Section 4.2) are orbit closures of exceptional functions–namely
the determinant and the permanent.
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