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A group theoretical classification of p-wave pairing superconducting states is made for a system with
cubic crystalline symmetry in the absence of the spin-orbit coupling. The 15 inert p-pairing states which
make the Ginzburg-Landau free energy stationary are enumerated and characterized, indicating that the
energy gap vanishes along lines on the Fermi surface in some of those states. This is contrasted with the

. strong spin-orbit coupling case by others. :

.§1. Introduction

Recently much attention has been focused on the so-called heavy electron systems
with large effective mass experimentally”~® and theoretically.”~?® In particular, some
superconducting properties in these systems exemplified by CeCu.Siz, UBei1; and UPt; are

unusual and very different from those of the conventional singlet pairing superconductors.:

Namely the power-law behavior of physical quantities in the low temperature region
instead of the exponential one expected for the isotropic pairing state are observed: (1)
The specific heat behaves as T2 in UBi:.? (2) The nuclear relaxation rate 717! ex-
hibits 73-dependence for both CeCu»Si;® and UBes.¥ (3) The ultrasonic attenuation
coefficient® in UPts is proportional to T2. All these particular power-law dependences
are indicative of an anisotropic superconducting state in which the superconducting
energy gap vanishes at points-for (1) and along lines for (2) and (3) on the Fermi surface.
The observation® of the second superconducting transition in U:-rTh:Beis (x <0.06)
further leads us to speculate the unconventional pairing states which possess internal
degree of freedom. ’

Corresponding to this experimental situation, several theories both for singlet and
triplet pairings have been already proposed. Among others Anderson,'® and Ueda and
Rice'” have given possible pairing states for triplet pairing in cubic crystalline symmetry.
Volovik and Gorkov'® have discussed quite thoroughly various states for triplet and
singlet pairings in cubic, hexagonal and tetragonal symmetries. Taking into account the
crystalline field symmetry and spin-orbit coupling simultaneously, they obtain the possible
superconducting phases group-theoretically. As for triplet pairing their conclusions
agree to yield no phase with lines of the zeros in the energy gap, that is, the gap in the
stable phases is nodeless or disappears at isolated points on the Fermi surface.

In this paper we take a view™ that the residual spin-orbit coupling felt by a Cooper
pair is relatively weak compared with the pairing energy although the spin-orbit coupling
for individual electrons near the Fermi surface is very strong. The spin-orbit coupling,
which acts as fixing the relative orientation of the orbital part and spin direction for a
pair, are regarded as a perturbation and neglected here.

*) A similar opinion has been expressed by K. Miyake and S. Maekawa.
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222 M. Ozaki, K. Machida and T. Ohmi

We shall list up all possible stable triplet pairing states under a certain crystalline
symmetry, namely we consider cubic symmetry in this paper. The listed phases are
confined to the so-called “inert phases”?® which make each term of the free energy
functional stationary, that is, in an inert phase the order parameter does not vary with the
coefficients in the free energy functional. Since the enumeration of the singlet pairing
states such as s-and d-wave pairing done by Volovik and Gorkov'®'is valid even for the
case in which the spin-orbit coupling is weak, our work together with Volovik and
Gorkov’s work, exhausts possible inert s-, p- and d- palrmg states under cubic crystalline
symmetry.

The paper is organized as follows The Ginzburg-Landau free energy functional for
p-wave pairing in cubic symmetry is derived in the next section. Group theoretical
classification is made in § 3 by using the Michel theorem?**® which is powerful in finding
extremum points of an invariant function under compact group action. We characterize
the classified phases and examine the relative stability of these phases in § 4. The final
section is devoted to discussion and conclusion.

§2. Symmetry properties and Ginzburg-Landau functional

In this section we examine the symmetry properties of the order parameter for p-
pairing and construct the Ginzburg-Landau (GL) free energy valid up to fourth order in
the order parameter.

We first introduce the order parameter dus(k) for p-wave pairing which is described
by

Aap(R) =< araa-1s>=i(0 - d (k) 02)as , (2-1)

where @ and S stand for spin indices. The wave number near the Fermi surface is % and
o: is the Pauli matrix (i=x,y and z). The vector d(k) is expressed by

d(k)=A-F | (2+2)

where k is a unit vector of k. The 3X3 complex matrix A specifies various phases of p-
pairing. Denoting 7a=ic10: and A=A +74® (A” and A® are the 3X3 real matrices),
we rewrite Eq. (2-1) as

A(R) =2 0 3 AG kil @9

where we have introduced /i=1 and L=1.

The symmetry properties of the order parameter 4(k) in Eq. (2-3) determine the
functional form of the GL free energy. It is to be noted that the GL functional should be
invariant with respect to the combined symmetry group Go=0 XS X M in the absence of
the spin-orbit coupling where O is the cubic point group, S the spin rotation group and M
=@+ {@, in which @ and ¢ are the groups of the gauge and time reversal transformations.
Therefore, let us examine the transformation properties of 4(k). We denote an element
of O by p, an element of S by u(e, 0), which corresponds to spin rotation around an axis
e by an angle 6 and an element of @ by ¢ which corresponds to a phase change e*.
Using this notation we can see that each part {&;, 7, I:} of A(k) transforms for a
combined group element g =pu(e, §) & as
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pk;=2D(D) sk,

u(e, 6) m=;Svm(e, 0w,

L= M o §) 1,

t9l =3I vs(t5) L, (2-4)

where D(p) is the matrix of the irreducible representation 73 in O, S (e, 8) is the three
dimensional rotation matrix characterized by the angle 8 and the axis e, and .

M(3)= (cos¢ —sin¢>

sme cose/’
ri+s)—( COSg —sing .
M (1) =(_2%9 _Sine ). (2:5)

Putting e = Tk il:, we have
geri= 3 Suiw) Dok ) M im) e (2+6)

for g=pum (p€ O, u€ S and me M ); y Thus {e\/}ji} is a basis og the irreducible represen-
tation over the real number field: Go=T:®S®M where G denotes an irreducible
representation over the real number field of G. It is readily shown from Eq. (2-6) that

g A= 3 Suu(10) Dis (D) Mis(m) A} . (2-7)

From the transformation property in Eq. (2-7) for A we can construct the GL free energy
F(A) which leaves invariant under Go: It is easy to see that the second order term in the
order parameter is proportional to Tr(4A"). The detailed derivation of the fourth order
terms is given in Appendix A. Then we have the free energy valid up to the fourth order:

F(A)=aTr(AA")+ ZA.R: (2-8)

where @ and §; are the GL coefficients. The five invariants R, ~ Rs defined in Egs. (A-18)
~(A-22) have been already discussed by Barton and Moore?® (B-M) and are invariant
also under SO(3) X S X M where SO(3) is the spatial rotation group, corresponding to the
spherical symmetry of the Fermi surface in He®. The newly appeared terms R and R; in
Egs. (A-23) and (A-24) are attributed to cubic crystal symmetry.

The next task is to find the possible order parameter A which minimizes the GL free
energy F(A). The minimization problem is difficult to solve completely in general
because we must treat 18 dimensional variational problem. Here we look for only the
inert phases® whose order parameter does not depend on the GL coefficients 8, that is,
we seek a solution which makes each fourth order invariant term stationary. Even if we
restrict -our solutions to the inert phases, the variation problem is still hard to handle
analytically. Instead, we treat it group-theoretically.

We note here that Michel’s theorem?**® is powerful in finding extrema of a certain
function invariant under a group action. Let us introduce Michel’s theorem briefly: For
a point 7 in the order parameter space Eo={A} the little group G(m) of m is defined by

Gim)={g € Golgm=m} . (2-9)
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224 M. Ozaki, K. Machida and T. Ohwmi

Then Michel’s theorem states that if G(m) is a maximal little group™ and the vector space
V(G(m))={A€ EdgA=A for g € G(m)} is one-dimensional, the point  is a stationary
point of every Go invariant function. Therefore we can find the inert phases by looking
for the point A=A"+i4® of E, whose little group is maximal. It should be noted that
such a point of A4 is a stationary point even for the general GL function including any
higher order terms than fourth order terms. In the next section we derive such points in
E,.

§3. Enumeration of the inert states

In order to know possible inert states for p-pairing, we find maximal little groups for
the combined group Go =0 XSXM by utilizing a similar method developed in the
previous papers.®?” We first introduce some notations*® and definitions: G is an
irreducible representation of G over the real number field (we denote it R-rep). An
invariance group of G is defined by a maximal subgroup G' < G such that

gA=A forge G, 3-1)

where A(+0) is some element in the R-rep space of G. We denote such a maximal
subgroup G’ by [G] and such an element A by A [G] which is called the invariance vector
of [G] Similarly we define the anti-invariance extension of [G] as a subgroup G"=G’
+ G’ S G which satisfies the following condition; for A=A[G] and g € ¢’

gA=A,

where % is an element of G. We call such h an anti- 1nvar1ance extension factor of [G]
denoted by alG]. In Table I we give [G] A[G] and ¢[G] for T of the cubic point group,
S and M which will be used to deduce maximal little groups later.

Table 1. The 1nvar1ance group,. its invariance vector and its anti-invariance extension factor

of T, S and M
G G [G] ALG] alG)
0 T C. ke Coz
C:a EI-[‘ kA_y Cas
Ca Ex+/;y+5z Cas
S § A( ez) ) Tz uz,tb)
M M

T I T

a) A(ez):{u(ez, 0)[0§9§27[}
b)  u=wules, n).
¢y T=(1, 1), group of time reversal transformation.

*) In the set of all subgroups of G, a partial ordering relation “<” can be introduced: For two subgroups G:
and G. we shall write G:<G: if G, is a proper subgroup of gG:¢~* for some element ¢ in Go. The term
“maximal” is defined with respect to this partial ordering “<”.

**) In the following we use the Schonflies notation® for point groups and their elements.
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On p-Wave Pairing Superconductivity under Cubic Symmetry 225

Table II. The non-product type invariance group of Gi®Ga.

Gi1X G2 é;@ éz [él® éz]non_p A[Gv1® éz]non—-p . d[Cvr‘1® éz]non—p
(199 T1®§ : 20? %( Z'.rkA.r"‘ TykAy‘l‘ Z'z/;z)
uDy _}?( Z'z:l;z'*' Tyk;y) Cozthay
1 ~ ~ —~ —~
—=relly— k) +oy(ka— ki
#Ca® \/é{z. ( R ) Ty( ) Coothzs
+ Tz( kz:_ Ey)} .
OxM T.®M (1+£Co) 69 S5kt ik 7
WG Co®  lilat ekt ) 7
SXM é@j{{ (1+tuzz)A~(ez)“ 715(71'*'2.75’) U2z

a) «P={pu(p)|lpe P, u(p) is the spin rotation about the same rotation axis by rotation angle as p}.
b) Caxz{E, C3,+1, C('L_l}. 4

o) Ci={E, CL(TT?), Cal—7TD), Co:it).

d) é3l:{E, Cﬁ(m), CEI(_%)}.

e) 626(2’”3“.
f) Ales)={ules 6)8l0=6=2r).

As an ﬂlustratlve purpose of our method to find the maximal little group: [Go]
—[T1®S®M] we take up a case in which a group is given by a direct product:
G=G1XGs. Certain types of the maximal little group [G]= [61 ®G] are readily con-
structed from the knowledge of individual [G:], A[G ] and a[G.] for each group G, (i=
or 2), namely, the product-type invariance group [G] and vector A[G] given by

[G1={1+alGlalGalH[G1]X [Ga)) |
AlGI=A[GA[C:] (3-3)

are easily seen to be an invariance group of é=é1® sz and its invariance vector.

On the other hand, it is rather difficult to obtain the non-product type invariance group
in a general form. However, we have constructed the non- product type invariance groups
for several particular cases; that is, T1®S T 1®M and S®M using the method of the
previous paper.?® The result is summarized in Table 11, furmshlng enough information
from which we can obtain the invariance group of Go= T1®S ®M

Now let us enumerate the inert states by constructing the maximal little groups
according to the method mentioned above. The inert states are classified into two
categories, depending on whether the order parameter is real or complex. We consider
each state separately. -

3.1. Real states

The states with a real order parameter are described in general by

A(k)—(ZA“’rﬂk ). (3-4)
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226 M. Ozaki, K. Machida and T. Ohwmi

Noting that /; is the invariance vector of [Zlvl 1=T=(1, t) where T is the group of time
reversal transformation, we derive the inva}riance group of the real state from Eq. (3+3)
by putting G:=0XxS, G.=M and Li=A[G] as

[Golren= {1+ al T:®S1alMIN[ T:®S1x [M])
={1+aW®SIZN[T®SIXT) (3-5)

with the basis v
A[Gvo]reale[T1®§] . : (3'6)

Let us first consider the product-type invariance group of [T1®§ ] appearing in Egs.
(3:5) and (3:6). This is also obtained by Eq. (3:3) and Table I

[T\® S Toroa= {1+ [ T2]a[STHIT:1X [SD)
={1+al T uz}([T1]X Alez)) (3-7)
with the basis

AIT:® S Torea= A[THA[S]
=AlTi)e: ©(3+8)
and N v ‘
a[Tl®S]prod:a[T1] or Cl[s]- (3‘9)

From Egs. (3-5)~(3-9) and Table I we have the following spin axial states and the
corresponding little groups:

(Cl) N N

A(CI) =Tzkz ,

G(c)) =(1+4 Cox ) (1 + Coztzz) [CsX Alez) X TT, (3-10)
(c2) R ' 1 R R

A(Cz):ﬁfz(kx'i' ky), |

G(c2) =(1+ CooT)(1+ Cooth22) [C2a X Alez) X T1, (3-11)
(Cs)

j(Cs) :%Tz( Ez“— /;y"‘ kAz) ,

G(Cs) :(1+ Czb?f)(l‘*‘ Czb%z.r) [C’leA(ez) X T] . (3‘12)

We use the same label «, b, -+, & for the obtained states as in Barton and Moore?® (B-M)

to emphasize the correspondence between our states and theirs. The three states ci1~cs

become equivalent to the ¢ state®® (or the polar phase) in the absence of the crystal field.

Let us now consider the non-product type invariance group of [7:®S] appearing in

Egs. (3+5) and (3:6). The relevant invariance groups are listed in Table II. From the
first row of Table II and Egs. (3-5) and (3-6) we have

(a)
j(d) :%( Z’zk’\x_i_ z-yk?y_'_ Z'z/;z)_ y
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On p-Wave Pairing Superconductivity under Cubic Symmetry ' 227

Gla)=u0OXT. (3-13)
This state is identical to the « state in B-M or the so-called B phase in He®. From the
second and third rows in Table II and Egs. (3+5) and (3-6) we have
(b1)

J(by) :%( roket 1ok

G(b)=(1+ CoxttayT) [11D4 X T] , (3-14)
(b2)

j(bz) :%{Tx( Ey— Ez)“i‘ Ty( kAz_ Ez)"‘fz(k:t_ Ey)} y

G(b2) =1+ Coottos®@) [uCs: X T . (3-15)

We note that in these 6 states obtained so far the order parameters are real and the
corresponding invariance groups contain the time reversal group 7.

3.2. Complex states

The complex states are obtained by non-trivially combining two symmetries of O X S

and M. Two product-type complex states are derived from Eq. (3-3) by putting [Gi]
[T1®M]non » and [ ] [S] or [ 1] [S@M]non » and [GZ] [ ]

The f1 and f; states, which are obtained from the second row in Table I, the fourth

and fifth rows in Table II and Eq. (3-3), correspond to the f state in B-M or the so-called

Table III. The inert phase and its little group.

state order parameter little group G(J4)
BW phase a (l/\@)(frk‘r"‘ Ty/;y+ TzkAZ) dOXT .
planar b (1/V2) 12kt roky) (14 Coxttzy®) DX T}
1 A ly— k)t _
Phase bz ( /\/6{:_ ;:jarf;y)} y(k k ) (1+C2buzb7[) {llC:«uX T}
polar Ci Z'z/;z (1+Cz;ﬁ)(l-Fszuzx){CkXA(ez)>< T}
phase ez (VD ol bat £y (14 Coa) (1 + Coottar) {C2a X Ale2) X T}
¢ (13l lbat byt £ (14 Coo ) (1+ Costtzx) { €51 X Al e} X T}
a phase d (1/‘/5)(IIEI+5T,,Ey+52[z/€z) (14 ¢tCas) uC uD®
bipolar e (1/VD(rakztitsky) (14 ttt22) uD2* s C.»
phase :
axial fl (I/V/Q)Z.Z(k’\.l‘_*—lk’\_)) (1+uzxﬁ)(1+[C2z){C~4XA(ez)}
phase S (1/V3)itol bt ekotethy) (1 2 ) (14 1Cox) {Car X Aler))
B phase e (1/ V2 (retiry) ke (1+ Coxttzz) (14 tuz ) {Co X Al e2)}
g2 (1/2)(Tz+lfy)(£x+£y) (1+Czbuzz)(l"l‘tuzx){Czaxg(ez)}
gs (1//6)(Tr+ify)(gx+gy+gz) (1+C2bu22)(1+t7423:){C;«}lx/f(ez)}
y phase h (U2t it ket iky) (1 + tCoztto) {Ci X Ae2)}
he (1 V8)ilretin))(Batehote?y) (1+ iCaptt22) (Car X Alez)}

a) uCa=1{E, Chu(C3)2T3), Cau(C)(—27/3)).
b) 564:{E, szuza(m), C«t_zuza( ;l'7_/ CZziT
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A phase in He®.

Similarly from the first row in Table I, the sixth row in Table II and Eq. (3-3) we
obtain three states g:, g. and gs which are listed in Table III. These correspond to the g
state (or the 4 phase) in B-M. The third type of the complex states % and % is derived
from the product: A[Ti®M Jnon-pA[S®M Jnon-p» correnponding to the /4 state (or the 7
phase) in B-M.

Finally the fourth type of the complex state are obtained by a nontrivial combination
of all the three groups: O, S and M. By rather cumbersome application of the method
in the previous paper®® we obtain two states d and e, which coincide with the d state (or
@ phase) and the e state (or bipolar phase) in B-M.

All these results are summarized in Table III. As is seen in the next section each
state enumerated here indeed makes all R;(i=1~7) in the GL free energy functional
extremum.

§4. Characterization of the states and relative stability

In this section we give some characterization of the p-pairing states listed in the
previous section. The temparature dependence of physical quantities at low tempera-
tures such as the specific heat, the ultrasonic attenuation or the nuclear relaxation rate is
mainly determined by the topology of zeros in the energy gap. The zeros in the energy
gap are given by d?(k) =0 on the Fermi surface. In Table IV we show the topology of
zeros in the energy gap (lines or points) for each state. It is to be noted that lines of zeros
exist for several states. This is contrasted with the strong spin-orbit coupling case
treated by others'®'” where the states with only nodeless or points of zeros in the energy
gap are realized for p-pairing.

The unitarity of a state is defined by the condition: 44*o<g, where g is the 2 X 2 unit
matrix. This can be rewritten®” as d(k) X d*(k)=0. The unitarity property is shown in
Table IV. For the non-unitary states a Cooper pair at a point % on the Fermi surface has
a net average spin:

S(k)ocid(B) X d* (k) . N CSY
Integrating S(k&) over the Fermi surface we have

<Sp>oci§€yuAAulA§l:l‘geﬂux(AA+)uA s . (4'2)

where p# is the component of the spin direction. This is the coefficient of the linear term
of the external field H =(H., Hy, H.) in the GL free energy. The third column in Table
IV shows the presence or absence of {S.>. '

The deviation of the zero-field susceptibility x:; from the normal state value is
proportional to (AA%):;;. Therefore the eigenvalues of AA* determine the magnetic
susceptibility in the superconducting state. If none of three eigenvalues vanishes, the
susceptibility differs from the normal state value. The three eigenvalues are listed in the
fourth column of Table IV.

The fifth column in Table IV shows the symmetry property under the time reversal
transformation. Since in the states d ~ &: the order parameters are complex, the time
reversal symmetry is broken in these states.
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Table 1IV.
topology . . .
unitarity eigenvalues time
R R® R R R R,
state of zero and<S> of AA* reversal ! : ! : ¢ !
gap
a no node u® %, %, % +9 1 1/3 1/3 1/3 1/3 1/3
by points u 0,1, 1 + 1 1/2 1/2 1/2 1/2 1/2
b points ” 0, -3 + 1 1/2 12 12 13 1/3
C1 lines u 0, 0,1 + 1 1 1 1 1 1
Cz lines u 0,0, 1 + 1 1 1 1 1/2 1/2
Ca lines u 0, 0, 1 + 1 1 1 1 1/3 1/3
d points n, <S>=0° + % + —n 0 1/3 1/3 1/3 1/3 1/3
e points 7, <S>=0 0, 5. 5 0 Y2 12 12 1/2 1/2
f points u 0, 0, 1 — 0 0 1 1 1/2 1/2
/e points u 0, 0, 1 - 0 0 1 1 1/3 1/3
a1 lines n,{S>+0? 0, 0,1 - 0 1 1 -0 0 1
g» lines n, {S>+0 0,0, 1 — 0 1 1 0 0 1/2
gs lines 7, {S>+*0 0, 0,1 — 0 1 1 0 0 1/3
I points 7, (S>#0 0, 0,5 - o 0 1 0 0 1/2
hs points 7, {SDF0 0, 0,1 — 0 0 1 0 0 1/3

a) Note that R,=[TrAA4*)*=1.

b) % denotes a unitary state. . :

¢) n denotes a non-unitary state. <S> is the value defined by Eq. (4-2).
d) <Sz>#0 means that <S:>+0 and <Sz>=<S,>=0.

e) + denotes the state which has time reversal symmetry.

f) — denotes the state in which the time reversal symmetry is broken.

In order to know the relative stability of the state in Table IV, it is convenient to
rewrite the free energy: Eq. (2-8) in the form

F(4, A)=ad*+K4*, (4-3)

so that the matrix A can have a standard normalization

Tr AA*=1, (4-4)
K= éBiRi (4'5)

with Rz#[TrAA+]2=1. The parameter 4 is determined by minimizing Eq. (4-3) with
respect to 4 at fixed K.and ¢ and is given by

2__ a . T .
4 —ﬁ@ Tc). | (4-6)

We have taken ¢ in its customary form —a’(1— 7/ T:.) where T is the transition tempera-
ture. The free energy is completely minimized by finding the matrix 4 for given £’s,
subject to the normalization constraint Eq. (4-4). Such a matrix yields the smallest value
of K.
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230 M. Ozaki, K. Machida and T. Ohmi

In Table IV we give the values of R:(i=1~7) for each state. Barton and Moore?®
have shown that at the inert stationary point R: has the values 0 or 1, B3 and R:s have the
values 0, 1/3, 1/2 and 1, R, has the values 1/3,1/2 and 1. The new terms Rs and R; are
investigated in Appendix B, showing that Rs has the stationary values 0, 1/3, 1/2 and 1
and that R, has the values 1/3,1/2 and 1. We can see from Table IV that the listed inert
states indeed take the stationary values for each R.(i=1~7).

We can also see that the 41, b2 and c¢: states cannot give the absolute minimum of the
free energy F because F(b:) lies between F(a) and F(ci), F(b2) lies between F(a) and
F(cs) and F(c.) lies between F(c1) and F(cs) irrespective of the values of 8:(i=1~7).
The relative stability of the states is determined once a set of the values of B: is given
which should be calculated by a microscopic model Hamiltonian.

It should be noted that in the listed states the spin direction is arbitrary, therefore each
state has continuous degeneracy with respect to the spin rotation. This is contrasted with
the case by others'®~'” in which their states have discrete degeneracy with respect to the
spin rotation because the orbital and spin parts in the order parameters are not indepen-
dent and are coupled due to the spin-orbit coupling.

§ 5. Discussion and conclusion

We compare the p-pairing states which are derived by Volovik and Gorkov,'® and
Ueda and Rice'” when the spin-orbit coupling is strong. In the strong spin-orbit coupling
the 18 dimensional irreducible representation space: Eo={4=A%+i4?} of the order
parameter is decomposed into the irreducible components of 1O XM, that is, A,.QM
+EQM+ TiQM + T>Q@M which have dimensions 2, 4, 6 and 6 respectively. They have
solved the variational problem in each irreducible space to find stable states.'” Here
according to the notation by Ueda and Rice'” (U-R), let us compare their states with ours:
The A; states in U-R is equivalent to the « state in our theory. One of the states among
the three E states in U-R (the first one in Table II in U-R,'” we denote it E and so on
hereafter) is equivalent to the b; states because the equivalence can easily be seen from the
following transformation:

oo A(ED) = un%( reka—TEy)

:%( fIEI+ Z'y/;y) :Zj(bl) .

In the same way we can see that 71" and 7»" are equivalent to 4:, and that E® and 71
are equivalent to 4 and & respectively. The other states in U-R are not stationary point
in our larger variational space Eo, anymore. The obtained p-pairing states have continu-
ous degeneracy with respect to the spin rotation while in the strong spin-orbit case U-R
degeneracy is discrete as is mentioned before. In some of our states the energy gap
vanishes on lines of the Fermi surface in contrast with the strong spin-orbit case'” where
the zeros of the energy gap are isolated points or none.

In summary, we have enumerated all the possible inert p-wave pairing states under
cubic symmetry. Volovik and Gorkov'® enumerate both singlet and triplet pairing states
in the strong spin-orbit coupling case. Their classification of the singlet pairing states is
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valid also for the case in the absence of the spin-orbit coupling. Therefore our work,
together with Volovik and Gorkov exhausts all possible non-trivial s-, p- and d-pairing
states under cubic crystalline symmetry.

The present work might help to examine the nature of exotic superconductivity
observed in heavy Fermion materials.
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Appendix A
— Derivation of the Fourth Order Terms ——

We derive the fourth order terms in the GL free energy. We first note that in order
that the fourth order term is invariant under gauge transformation, it must be written by
a sum of the form An:A.;A%.A%. Since A.: transforms by the T: representation of O
with respect to the suffix 7, the space {Ap:.A.,;}*?, spanned by AuxAu (i,j=x,y z) for
fixed # and v over the complex number field, is decomposed into the irreducible
components of O according to 7. X T1=A,+E+ T:+ T>. The basis ¢ of each component
is explicitly written with the aid of the Clebsch-Gordan coefficient as

Ali

o(As, 1, u)=%(AHAH+A“AUZ+A#3AU3> , (A1)

¢1(E, K, IJ) :%(A;UAUI+A#2Au2_2A#3Au3) ,

¢2(E, K, V) Z%(—Am/lm'*‘z‘lyzz‘luz) , (A'Z)
T

¢l( Tl, K, V) :%(AIIZAUS—AAL3AV2) ,
9?’2( Tl, L, U) :%(A,usAul—AﬂlAuﬁl) ,

(Ds( T1, K, V) :‘;_g(AylAUZ_A#ZAVI) , (A'3)
Tz

¢’1(Tz, L, V) :L(AuzAus'FAusAuz) ,
/270
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@a( Tz, 1, v) :%(A#IiAvl'i_AﬂlAys) ,

@s( Tz, 1, v) :%(AIHAUZ—*_AI‘ZAVI) . (A-4)

Similarly {A%.A3%:}** for fixed o and A is decomposed into the irreducible components:
A+ E+ T+ T; with the basis ¢* (41, 0, 1), @1.*(E, p, A) etc. Since the invariant of the
product representation comes only from the product of the same representation, we obtain
the following four types of the fourth order invariants under O for fixed g, v, o and A:

I{A) =e(Ay, 1, V)" (A, 0, 4), (A-5)
IE)=Zou(E, 1, os'(B,0,0), (A-6)
I(T)= 2ol Th, 1, Vo6 (Th, 0,2, (A7)
I(T) = 2 06T, 11, V)05 (T, 0, 1) (A-8)

Rearranging the combination of the four invariants in Eqs. (A+5) ~(A+8) as 1=3I(A,), I
=I1(A)+I(E), L=I(A)+I(E)+I(T)+I(T:) and L=I1(A)+I(E)—I(T)+1(T:), we
have

11:%:(14#1'141&')(14:.7' ) (A-9)
L=3AuAuA% AL, (A-10)
1= S AwAR) (AuAL) @
1= S A A (AuA3) (a1

On the other hand, A,: transforms by the representation (L =1) of SO(3) with respect
to the suffix #. Therefore the space {A4:4.:}*? for fixed 7 and j is decomposed as

{A’piA uj}(i'j) = {AuiAuj}iiéjz) + {AﬂiAuj}(Li;j{ + {ApiAuj}(Li-’—-jg , (A' 13)

where {A.:A.;}¥2) denotes the L= # irreducible representation space of SO(3) spanned by
AumiAy; (¢, v=1x,y, z) for fixed 7 and ;. In the same way we have

{A:kA,;L}(k'l): {A:kAjl}(Lkéz)_*_ {A:kA:l}(Lkéll)'i_ {A:kAjz-}S_ké%) . (A . 14)

Using a similar discussion in the case O, we obtain three SO(3) invariants: K, K and
K of the product representation as

KIZ#ZU(A#iA#j)(AT/kAt/L) , (A-15)

KFﬂZ‘L(Am- w)(AAY) , : (A-16)
K3:I‘2U(A/li ) (AviATe) (A-17)

for fixed 7,7, k and .
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From the compatibility condition of both sets of the invariants: {I\, I, Is, I.} and {K,
K., K} we finally obtain the following seven kinds of the fourth order invariants under Go
=0XSXM:

Ri=33AnAuAlLs 1 =(TrAA)(TraA)*, (A-18)
Re=315 A A AL 1=[TrdA"]?, (A-19)
Re=3 2 AumiAviAl; =Trl[A"A(47A)*], (A-20)
Re= S5 AuAuAlAl=Tr[A4*A4"], (A-21)
Re=3 2 AumAwAL;AL=Tr[AA*(AA7)'], (A-22)
Re=2 3 AuiAuiAl: L=31(44):(44)%, (A-23)
Ri=3 B AwAvluAt=2(A Dk, (A

where A is the transposed, A* hermitian conjugate and A* complex conjugate matrices of
A.

Appendix B
— Extrema of Re and R ——

We write the complex element Ay of the 3 X3 matrix A4 in terms of the amplitude and
its phase; Aux:= Cusexpipu: . The normalization condition TrAA*=1 is written as

2(CL+CL+Ch)=1. (B-1)

Let us first consider extrema of K; which is expressed as
R7:2i(A+A)ii(A+A)z’i
ZEEALAWA?:'AW

. :2(C§i+cjzu‘+cgi)2. ) (B'Z)

Introducting the Lagrange multiplier A, we examine the extremum of the function ¥':

U =R —MI(CL+C3:+CE)—1}. (B-3)

The extremum conditions with respect to Cu; and ¢u: (4=x, v, 2) yield

Cxil C3:+ Coi+ C3:) =2ACui

Cyi(Coit+ C3:+ C2) =ACs:

Czi(C%L+Cs4C4)=AC:: . (i=zx,v, 2) (B-4)
When all the Cm-’s‘ are non-vanishing, then we obtain

Cfci+C§i+C§i=/1. (i=x,y, Z) (B'5)
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Therefore the extrema of R; are R:**=1 / 3 when Eq. (B-5) is satisfied for all ;(i=x, v, ),
R:**=1/2 and 1 when two of ¢ and one of / among /=x, vy and z satisfy Eq. (B-5).
Let us consider K¢ which is rewritten as

Re= E(AA) ii(z‘IA)*ii

= §§A’}ii ,,ZiAuiA IIJi
= Z [C;ci + C;i + Céi + ZCii C;Z»iCOSZ( Pxi ™ ¢yi)

+2C3: C2:icos2{ @y — ¢2:) +2C2 C2:cos2( @zi— pz:)] . (B-6)
The extremum conditions for C.: and ¢.; (¢=2x, v, z) yield
Cx:[CE:4 Chicos2(@zi— ¢3:) + C2:c082(@zi — @2:) | = ACx:i ,
Cy:[C%ic082( @y — @zi) + C3:+ C2:ic082( 0yi — 92:) | = ACs:
Cz:[C2:c082(@2i — @zi) + C3:082(@zi — @3:) + C2:]= ACi ; (B-7
C%[Chisin2( @z — @y:) + Coisin2( @z — 92:) =0,
C%[CLsin2( @y — @z:) + Ciisin2( @y — 92:) =0,
CL[Coisin2( @z — @a:) + Chisin2( @z — 942 ]=0, (B-8)

where A is a Lagrange multiplier.
(1) Pxi = Pyi = Pazi
In this case Egs. (B-7) and (B-8) are reduced to Eq. (B-4), thus giving rise to
Re*=1, + and 1.
(11) Qi = Pyi ¥ Qai
From Eq. (B-8) we obtain Cz:= Cy: =0 or Cz;=0, then Eq. (B-7) becomes independent
of ¢z: and ¢y:. The problem is reduced to that of R, giving rise to Rs**=1/3,1/2 and 1.
(111) Pxi ¥ Qyi ¥ Qai ‘
- When C.:=0, then Cy;=0 or Cz;=0. Therefore the problem is reduced again to that
of R.. When Cz:*0,.Cy:%0 and Cx*0, Eq. (B+8) becomes '

Cz=—C2, Sin2(¢zi_ ¢yi)
> " Sin2( @z — @xi)

2 _ _ 2 SIN2(@yi— @) .
C=—Ca sin2( @y — @z:) (B-9)

This readily yields Re**=A=0 by using Eq. (B-7).
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