442

Prog. Theor. Phys. Vol. 75, No. 2, February 1986, Progress Letters

On p-Wave Pairing Superconductivity
under Hexagonal and Tetragonal Symmetries

Masa-aki OZAKI, Kazushige MACHIDA and Tetsuo OHMI
Depariment of Physics, Kyoto University, Kyoto 606
(Received September 20, 1985)

A group-theoretical classification of p-wave pairing superconducting states is made for systems with
hexagonal and tetragonal crystalline symmetries in the absense of the spin-orbit coupling. For each
symmetry ten inert p-pairing states are enumerated. In some of them the energy gap vanishes on lines of

the Fermi surface.

Recently much attention has been focused on
heavy electron systems® such as UBeys, UPt; and
CeCusSis.  One of the most controvertial points is
the nature of the superconductivity: Whether it
is a convensional singlet pairing or triplet pairing.
Volovik and Gor’kov,” Ueda and Rice,® and
Blount® have discussed non-trivial pairing super-
conducting states under certain crystal-field
symmetries when the spin-orbit coupling is strong.
In particular, Volovik and Gor’kov® have listed
all possible states for both triplet and singlet
pairings in the systems with cubic (Q), hexagonal
(De) and tetragonal (Ds) symmetries. They?~*
all agree that there is no triplet pairing states in
which the energy gap vanishes on lines of the
Fermi surface.

In an earlier paper® (referred to as I) we have
listed up 15 inert p-wave pairing states for a
crystal with cubic symmetry (e.g., UBe;s) in the
absence of the spin-orbit coupling. In order to
complete our discussion we continue to enumerate
all possible p-pairing states in heXagonal (eg,
UPts) and tetragonal (e.g., CeCu:Siz) symmetries
in the absence of the spin-orbit coupling. The
method and notation used here are the same as
those in L

The order parameter 4(k) for p-wave pairing
is specified by

A(k)zéuééz‘l&i}h/;jli (1)

in terms of a 3X3 complex matrix A=A4® -

+iA®(AY is 3X3 real matrix) where 7;=i0.0s,
k; is the j-th component of E=k/|k|, =1 and l,
=¢. Here r; and /; transform according to Eq.
(2-4) inI for a combined group element g = pule,
0)é (peDsor D, ule,0) €S, § € M) where S
is the spin rotation group, and M=0+¢® in

which @ and ¢ denote the 'group of the gauge and
time reversal transformations. Since (&, £y, k2)
transforms as (x, y, z) for an element p in Ds or
D., the linear space {z, £y, kz}x spanned by (%,
ky, kz) over the real number field is decomposed
into the irreducible components:

{kz, ky, kz}R; {kz}rt {kz, B3}z, - (2

where {£:}z belongs to the A, representation of
D¢ or D., and {kz, ky}r belongs to the E(E)
representation of Ds(Ds). In the same way as in
I we can enumerate the inert phases by finding the
maximal little group. The results are summar-
ized in Tables I and II where all the possible
stable phases and the little groups for each repre-
sentation are listed.

We note first that the physical character of the
states enumerated can be found in Table IV of I,
namely, the state with the same label (5, c, etc.)
has the same character. In particular, the gap
vanishes at lines (points) on the Fermi surface in
the states labeled by ¢ and g (b, e, f and h).
There exists no nodeless state such as the BW
phase or @ phase described by 4(k)=(rskx
+1yks+ 12k2)/ /3 which is stabilized in the cubic
case® because of the decomposition of the space
{k=, ky, kz}r as shown in Eq. (2).

By a method similar to the one in Appendix A
in I we can derive the following GL free energies
valid up to the fourth order in A under each
symmetry:

3 3
f(A) = ‘ZEIA#-?A’:B +Blp§=1AﬂzAuzAT/zAtz

+8s 3 ApeAheAunAle - ®

#v=1

for Az of Ds and D,,

A A =a 2 3 Aullit S8R, (4)
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Table I. The inert phase ahd its little group in the case of De.

represen-

i state : order parameter little group G(4)
tation
A, polar e Taka (14 Coe®) (14 Cozttar) { Ce X Alez) X T}
B phase g U/ VD (rztir) k- (14 Cozttzz) (1+ tatzz) {Cs X Alez)}

E:  planar phase b (1/v2){zzkz+5k5)
polar phase ¢ o

Cs Z'z];_v
bipolar phase e (1/v2) (zzkz+irsks)
axial phase £ (1/vD bzt iky)
B phase g1 (1 VDzatity) bz

g5 (/2 (zxtivy) by

y phase o (2 retiny)(ketiky)

(1+szuzyﬁ) {IIDGX T}

(1+ szff)(l‘l‘ CZZuZ.t) {CZIXA(eZ) X T}
(14 Coe®) (1+ Cazttez) {Coy X Ae2) X T}
(14 touex) (14 Coz T uD2 )

(14 2122 7) (1+$Coz) {Ce X Ale2) }?

(14 Coctter) (1+ tutz2) {Cox X Ale2)}
(1+sz%zz)(l"‘tuzz){Czyx/f(ez)}

(1+ tCozttaz) {Ce X Ale2))

a) Cs= {Csjm ’

7=0,1,-5}.

Table II. The inert phase and its little group in the case of D..

repr?sen- state order parameter little group G(4)
tation
Az  polar C1 Tzka (14 CozB) (14 Coztuz) {Cs X Ale2) X T}

g1 (1/1/?)(2'14'1.2'31)/%;
E planar phase & (1/v2(rebz+rrky)
polar phase ¢4 Takz
co (/v rlkztky)

(1+ uzzCu)(l‘l‘tuzx)-{CGX/I(Ez)}

(14 Cozttey7) {11D4X T}

(1+ Coe T) (1 + Coztdar) {szXA(ez) X T}
(1+sz7?)(l+CZbuzx){CzaXA(ez) X T}
(1+ ttt22) uD2+ s Cs

(14 s227) (14 tCx) {Ca X Al e2) P
(1+szuzz)(1+tuzz){CZ.rXA'(ez)}

(1+ Cozttar) A+ totzz) {Caa X Ale2) }
(1+tC2zu21){64xg(ez)}

bipolar phase e (1/v2){(rzkz+irsks)

axial phase £ (1/v2) Tz(ij‘*‘l'lé;v)

B phase gs (1/V/D(z2tits) box

g: (U (ext i) ket k)

y phase o (U 2 (zz+iny) (kztiky)
a) Co={C’GmTD, j=0,1,-3).
for E, and Ds, and

3 2 7
7(4) ZQEIEIAMATH‘FEB{RZ- (5

for £ of D.. The fourth order invariants R; (¢
=1~7) are the same as before (see Appendix A in
I) except that the 7,7-sum there is restricted to 1
and 2. Note that within the fourth order f(A)
in Eq. (4) is invariant to the D. symmetry.
Because of this invariance the ¢: and ¢s phases,
for example, in Ds give rise to the same free
energy. However, due to higher order terms
than the fourth order the free energies of the cs
and cs states are different as indicated in Table L.
We should remark that the phases listed above
are indeed extremum for general GL free
energies.

In summary we have enumerated all the pos-
sible inert p-wave pairing states under hexagonal
and tetragonal crystalline symmetries in the
absence of the spin-orbit coupling. In some of
our states the energy gap vanishes on lines of the
Fermi surface which is contrasted with the strong
spin-orbit coupling case”?~* where zeros of the
energy gap are isolated points or none.
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