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Abstract. We obtain the topological configurations of the lines of curvature, the as-
ymptotic and characteristic curves on a cross-cap, in the domain of a parametrisation of this
surface as well as on the surface itself.

1. Introduction. Given a surface patch parametrised by r : U ⊂ R
2 → R

3, Whitney
showed that r can have a stable singularity under smooth changes of coordinates in the source
and target. A local model of this singularity is given by (x, y) �→ (x, xy, y2). The image of
this map is a singular surface called a cross-cap or a surface with a pinch-point. (The zero
set of the function ZX2 − Y 2 = 0 is the union of a cross-cap together with a “handle" and is
called a Whitney umbrella.)

Because the cross-cap is a stable singular surface in R
3, it is natural to seek to understand

its differential geometry. Work in this direction was carried out in [12, 20, 22, 40]. In [12] (see
also [40]) the flat geometry of the cross-cap is investigated using singularity theory. It is shown
for instance in [12] that there are generically two types of cross-caps, one labelled hyperbolic
cross-cap where all non-singular points of the immersed surface are hyperbolic, and the other
labelled elliptic cross-cap where the parabolic set consists of two smooth curves meeting
tangentially at the singularity and partitions the surface into hyperbolic and elliptic regions.
This classification turned out to be very useful when seeking to understand the projections of
smooth two dimensional surfaces in R

4 to 3-spaces [31].
We study in this paper pairs of geometric foliations of a cross-cap. There are three clas-

sical pairs of foliations defined on a smooth oriented surface M in R
3. These are the lines of

curvature and the asymptotic and characteristic curves. A line of curvature of M is a curve
whose tangent line at each point is parallel to a principal direction. The lines of curvature
are defined everywhere on the surface and form an orthogonal net away from umbilic points.
Their configurations at umbilics were drawn by Darboux, but a rigorous proof is given in [34]
and [5] (see also [30] for related results). The study of the behaviour of these foliations in a
neighbourhood of a closed orbit is also carried out in [34].

An asymptotic curve of M is a curve whose tangent line at each point is parallel to an as-
ymptotic direction. The asymptotic curves are defined in the closure of the hyperbolic region
of the surface. They form a family of cusps at a generic parabolic point. Their configurations
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at a cusp of Gauss are given in [1, 2, 29] and a more general approach for studying the singu-
larities of their equation at such points is given in [14, 15, 30, 38]. Global properties of these
foliations including the study of their cycles are given in [23].

Characteristic directions are defined in the closure of the elliptic region. At elliptic points
there is a unique pair of conjugate directions for which the included angle is extremal ([19]).
These directions are called the characteristic directions and their integral curves are called the
characteristic curves. Their study is carried out independently in [11] and [21]. In [21] they
are labelled harmonic mean curvature lines and are defined as curves along which the normal
curvature is K/H , where K is the Gauss curvature and H is the mean curvature.

When the surface is given in a parametrised form, in the domain of the parametrisation,
the above three foliations are the solution curves of some binary differential equations (BDEs),
also called quadratic differential equations. BDEs are implicit differential equations that can
be written, in a local chart, in the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0 ,(1)

where the coefficients a, b, c are smooth functions (here smooth means C∞). A BDE defines
no directions where δ = (b2 − ac)(x, y) < 0, two directions in the region where δ > 0,
and a double direction on the set ∆ = {δ = 0} provided that the coefficients of the equation
do not all vanish at a given point. At such points, every direction is a solution. The set
∆ is called the discriminant of the equation. BDEs are studied, using various approaches, in
[5, 6, 8, 9, 10, 13–18, 25–28, 30, 35, 36, 38]. The solutions of (1) determine a pair of foliations
Fi , i = 1, 2, in the region δ > 0. In this paper, the configuration of the solutions of (1) refere
to the triple {∆,F1,F2}. In all the figures, we draw one foliation in black and the other in
grey, and the discriminant in thick black.

In this paper we obtain the local topological configurations of the lines of curvature and
of the asymptotic and characteristic curves of a cross-cap. We do this in two steps. Given a
local parametrisation r : R

2, 0 → R
3, 0 of the surface, we first obtain the configurations of

the pairs of foliations in the domain. These are given by BDEs with coefficients all vanishing
at the origin. We obtain in Section 3 a topological classification of BDEs with coefficients
vanishing at the origin and whose discriminant has the same K-singularities as those of the
geometric foliations on the cross-cap. The topological models are obtained by extendending
Guíñez’s blowing-up technique [25, 26, 27] to cover the cases where the discriminant is not
an isolated point.

Mapping the foliations to the surface is the second step. This is trivial for smooth surfaces
as the parametrisation is a diffeomorphism from the domain to the image. However, this is
not the case for the cross-cap. Here we need to analyse how the leaves of the foliations in the
domain intersect the double point curve D. There is an involution σ on D that interchanges
points with the same image under r . We show in Section 2 that if a leaf intersects D in two
points, then generically these are not mapped to the same point by r . This allows us to draw
the pairs foliations on the cross-cap (Section 2).

I would like to thank Evaggelia Samiou for usefull discussions.
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2. Classical BDEs on a cross-cap. Let g : R
2, 0 → R

3, 0 be a germ of a smooth
mapping. If we allow smooth changes of coordinates in the source and target (i.e., consider
the action of the Mather group A), then f has a local stable singularity if and only if it is
A-equivalent to f (x, y) = (x, xy, y2). We shall follow the notation in [12] and define a
cross-cap as the image of any map-germ r : R

2, 0 → R
3, 0 that is A-equivalent to f , and say

that r parametrises the cross-cap.
Given a smooth surface M in R

3 with a family of normals N , we have a Gauss map
N : M → S2. At a point p, the map −dN(p) : TpM → TN(p)S

2 can be thought of
as an automorphism of TpM . This is the classical shape operator Sp , or simply S. If M is
parametrised by r(x, y) with shape operator S, the coefficients of the first fundamental form
Ip : TpM × TpM → R, with Ip(u, v) = u · v, are given by

E = rx · rx , F = rx · ry , G = ry · ry .

Those of the second fundamental form IIp : TpM × TpM → R, with IIp(u, u) = Sp(u) · v,
are given by

l = S(rx) · rx = N · rxx ,

m = S(rx) · ry = N · rxy ,

n = S(ry) · ry = N · ryy .

When considering the cross-cap singularity, we run into a problem as there is no well defined
normal to the surface at the singular point. Away from the cross-cap point, the unit normal N

is given by N = rx × ry/||rx × ry ||. However, the equations of the principal, asymptotic and
characteristic directions are homogeneous in l,m, n (see below), so we can multiply them by
an appropriate power of ||rx×ry ||, alternatively, replace l,m, n respectively in their equations,
by

l1 = (rx × ry).rxx , m1 = (rx × ry).rxy , n1 = (rx × ry).ryy .(2)

The flat differential geometry of the cross-cap (i.e., the geometry captured by its contact
with lines and planes) is explored in [12] and [40], using singularity theory. It is shown there
that the surface can locally be parametrised (after smooth changes of coordinates in the source
and isometries in the target) by

r(x, y) = (x, xy + p(y), λx2 + µxy + y2 + q(x, y)) ,(3)

where p(y) and q(x, y) are germs of functions with zero 2-jets and λ,µ are constants. We
shall write

j4p(y) = p3y
3 + p4y

4 ,

j3q(x, y) = q30x
3 + q31x

2y + q32xy2 + q33y
3 ,

where the notation j k
g means the k-jet of the map g , that is, its Taylor polynomial of order k at

the origin. We use the above parametrisation of the cross-cap when seeking the configurations
of the integral curves of the BDEs of interest.

REMARK 2.1. It is shown in [4] that the right framework for studying the singularities
of the discriminant is via the action of some group G on families of symmetric matrices. A list
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of all the G-simple singularities of families of symmetric matrices is obtained in [4]. However,
some of the singularities of the discriminant in this paper are not G-simple. So we refere to
these singularities by their K-type. (See [41] for the singularity theory concepts.)

2.1. Asymptotic curves. The equation of the asymptotic directions of a smooth sur-
face is given by

ndy2 + 2mdydx + ldx2 = 0 .

For a cross-cap, we take the equation to be

n1dy2 + 2m1dydx + l1dx2 = 0 ,

where n1, l1,m1 are as in (2).
The configuration of asymptotic curves is affine invariant ([12]), so we can use affine

changes of coordinates in the target and set the local parametrisation of the surface in the
form

r(x, y) = (x, xy + p(y), y2 + εx2 + q(x, y)) , ε = ±1 .

The discriminant ∆ = δ−1(0) = (m2
1 − l1n1)

−1(0) is the parabolic set. The function
δ has an A1-singularity (i.e., it is A-equivalent to x2 ± y2). When ε = −1, the singularity
is of type A+

1 so the parabolic set is an isolated point. Then every non-singular point on the
surface is hyperbolic, and the cross-cap is labelled hyperbolic cross-cap in [12]. In this case,
West showed in [40] that the BDE of the asymptotic directions in the domain is topologically
equivalent to ydy2 + 2xdxdy − ydx2 = 0 (Figure 1, left).

When ε = +1, the parabolic set has an A−
1 -singularity in the domain (a pair of transverse

curves). These are mapped to two smooth curves intersecting tangentially at the cross-cap
point ([40]). This cross-cap is labelled parabolic cross-cap in [12]. We shall labell it here
elliptic cross-cap and call, as in [31], a parabolic cross-cap the one whose discriminant has
an A2-singularity. (A change from an elliptic to a hyperbolic cross-cap occurs at a parabolic
cross-cap.) The asymptotic curves are defined in the closure of the hyperbolic region. To
determine their configurations, we proceed as follows.

The coefficients of the asymptotic BDE are given by

(a, b, c) = (x + M1(x, y),−y + M2(x, y), x + M3(x, y)) ,(4)

where Mi , i = 1, 2, 3, are smooth functions depending on p(y) and q(x, y) (in (3)), and

j2M1 = q32x
2 + 3q33xy − 3p3y

2 ,

j2M2 = 1

2
q31x

2 − 3

2
q33y

2 ,

j2M3 = 3q30x
2 + q31xy + 3p3y

2 .

We can therefore apply the results in Section 3.1 and Theorem 3.1 to deduce the topological
models of the asymptotic curves in the parameter space. (The change of variables (x, y) �→
(y, x) is required to get the same normal forms as in Section 3.1.) The genericity conditions
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FIGURE 1. Configurations of the asymptotic curves in the domain: hyperbolic cross-
cap left, elliptic cross-cap centre and right.

in Section 3.1 (Λ1 �= 0 and Λ2 �= 0) are now expressed in terms of the coefficients of the
Taylor expansions of p(y) and q(x, y):

Λ1 = −1/2(9q30 + 5q31 + q32 − 3q33 + 6p3) �= 0 ,

Λ2 = 1/2(9q30 − 5q31 + q32 + 3q33 + 6p3) �= 0 .

PROPOSITION 2.2. The equation of the asymptotic curves in the domain of a parame-

trisation of a cross-cap is topologically equivalent to one of the following.

1. At a hyperbolic cross-cap ([40]): ydy2 + 2xdxdy − ydx2 = 0 (Figure 1, left).

2. At an elliptic cross-cap:
(i) ydy2 + 2(−x + y2)dxdy + ydx2 = 0 (Figure 1, centre), or

(ii) ydy2 + 2(−x + xy)dxdy + ydx2 = 0 (Figure 1, right).

The topological type is completely determined by the 3-jet of the parametrisation of the

surface.

The configurations of the asymptotic curves in Figure 1 are in the parameter space. We
need now to map them to the surface. When the surface is parametrised as in (3), the 3-
jet, at the origin, of a parametrisation of the double point curve in the domain is given by
(−p3y

2 − p3(−µp3 + q33)y
3, y). (We can take µ = 0 when dealing with the asymptotic

curves.) In particular, this curve is transverse to the two branches of the parabolic set when
the later has an A−

1 -singularity. We observe that the double point curve lives in the hyperbolic
region of the surface (see [40]).

There is one separatrix in the case of a hyperbolic cross-cap and three at an elliptic cross-
cap. (Here, a separatrix is a curve in the parameters space which is the blowing-down of a
stable/unstable or centre manifold of the fields associated to the BDE in Section 3. This is
an abuse of notation as these separatrices, in some cases, do not separate distinct sectors.)
The 3-jet, at the origin, of a parametrisation of the unique separatrix at a hyperbolic cross-
cap and of the separatrix transverse to the parabolic set at an elliptic cross-cap is given by
(−p3y

2 + 1/5(3q33p3 − 8p4)y
3, y). Therefore this separatrix and the double point curve

have generically a 3-point contact at the origin. The image of the above separatrix under r has
a cusp at the cross-cap point (see Figures 2 and 4).

Mapping the solution curves in the parameter space to the surface can be done without
difficulties in the elliptic cross-cap case. In the parameter space, a solution curve of the as-
ymptotic BDE intersects the double point curve in at most one point in a neighbourhood of
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FIGURE 2. Configurations of the asymptotic curves at an elliptic cross-cap, in the do-
main left and on the surface right. The thick curves are the parabolic set and
the double point curve.

the origin (Figure 2, left). One can then map, in the appropriate way, the configuration in each
hyperbolic region in the domain to the surface, as shown in Figure 2.

PROPOSITION 2.3. The configurations of the asymptotic curves at an elliptic cross-

cap are as shown in Figure 2.

A regular solution curve of the asymptotic BDE of a hyperbolic cross-cap intersects the
double point curve at two points in a neighbourhood of the origin (Figure 3(a)). The question
is whether or not these two points map to the same image on the surface.

There is an involution σ on the double point curve in the parameter space that inter-
changes two points with the same image on the surface. This involution is smooth in a neigh-
bourhood of the origin.

The BDE of the asymptotic curves determines a pair of foliations Fi , i = 1, 2, in the
parameter space. In turn, each foliation determines an involution τi , i = 1, 2, on the double
point curve which interchanges the two points of intersection of a leaf of the foliation with the
double point curve. (We define τi(0) = 0.)

The set C×3
2 of germs of mappings R

2, 0 → R
3, 0 is endowed with the Whitney topology.

The subset W1 ⊂ C×3
2 of germs of parametrisations of hyperbolic cross-caps is given the

induced topology.

THEOREM 2.4. For an open and dense set of parametrisations of hyperbolic cross-

caps, τi(p) �= σ(p), i = 1, 2, for any point p �= (0, 0) on the double point curve in a

neighbourhood of the origin. As a consequence, the configuration of the asymptotic curves at

a hyperbolic cross-cap is as shown in Figure 3.

PROOF. The equation of the asymptotic curves has a unique separatrix at a hyperbolic
cross-cap (see for example [8]). This curve is smooth and for a surface parametrised as in (3),
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FIGURE 3. Configuration of the asymptotic curves at a hyperbolic cross-cap, in the
domain (a) and on the surface (b), (c), (d) viewed from different directions.
The thick curve is the double point curve.

it is given locally by the graph of a function x = h(y). The function h satisfies the following
identity

a(h(y), y) + 2b(h(y), y)h′(y) + c(h(y), y)h′(y)2 ≡ 0 ,

where (a, b, c) are as in (4).
We seek changes coordinates in the form x = X + f (Y ), y = Y so that the unique

separatrix is along the Y -axis. The new BDE is given by

A(X, Y )dY 2 + 2B(X, Y )dXdY + C(X, Y )dX2 = 0 ,(5)

with

A(X, Y ) = a(X + f (Y ), Y ) + 2b(X + f (Y ), Y )f ′(Y ) + c(X + f (Y ), Y )f ′(Y )2 ,

B(X, Y ) = b(X + f (Y ), Y ) + c(X + f (Y ), Y )f ′(Y ) ,

C(X, Y ) = c(X + f (Y ), Y ) .

The unique separatrix is along the Y -axis if and only if A(0, Y ) ≡ 0. So we take f (Y ) =
h(Y ), with h as above. A calculation shows that j 3f (Y ) = −p3Y

2 + 1/5(3q33p3 − 8p4)Y
3.

In this new system of coordinates the double point curve is given by

X = ζ(Y ) = 8

5
(−q33p3 + p4)Y

3 + h.o.t .

The horizontal direction is a solution of the BDE along a smooth curve C given by
C(X, Y ) = 0. A calculation shows that C is the graph of a function

X = −2p3Y
2 −

3

5
(q33p3 + 4p4)Y

3 + h.o.t .
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Given a point (0, t) (t �= 0) on the Y -axis, there is a leaf of, say, F1 that passes transver-
sally through (0, t) for t < 0 and a smooth leaf of F2 that passes transversally through (0, t)

for t > 0. We shall consider only the foliation F1 as the approach is the same for F2.
Let γt denote the leaf of F1 passing through (0, t), t < 0. This curve intersects the

X-axis at two points. Denote by U(t) the positive point.
The foliation F1 is given by the direction field parallel to the vector field ξ1 = a∂/∂x +

(b +
√

b2 − ac)∂/∂y. The polar blowing-up x = ρ cos θ , y = ρ sin θ of ξ1 yields a regular
vector field η1 for (θ, ρ) ∈ [−π/2, 0] × [0, l), with l a small positive real number. So the
map k : −π/2 × [0, l1) → 0 × [0, l2) determined by the flow of η1 is smooth and k′(0) �= 0
(here l1 and l2 are appropriately chosen small positive real numbers). Blowing-down yields
U(t) = k(t), so U(t) depends smoothly on t and U ′(0) �= 0. Therefore U(t) = t (u + L(t)),
for some non-zero scalar u and a smooth function L vanishing at t = 0.

In the new system of coordinates, the involution σ = (σ1, σ2) takes a point p1 =
(ζ(Y ), Y ) to a p2 = (σ1(p1), σ2(p1)), with σ2(p1) = −Y (1 + Ψ (Y )), for some smooth
function Ψ vanishing at the origin. We want to show that σ(p1) �= τ1(p1) (Figure 4).

The double point curve intersect the leaf in consideration in two points p1 and l (see
Figure 4). For generic cross-caps, the double point curve has a genuine inflection at the origin
(p4 − p3q33 �= 0). We assume, without loss of generality, that the double point curve is as in
Figure 4, that is, p4 − p3q33 > 0; the other case is similar.

FIGURE 4. Involutions on the double point curve.
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Consider the point q1 = (ζ(Y1), Y1) on the double point curve with X-coordinate U1(t).
Then σ2(q1) > σ2(p1). We have t (u + L(t)) = ζ(Y1) implies Y1 = t1/3k(t), for some
function k smooth off the origin, continuous at the origin and with k(0) �= 0. (In the above
setting, k(0) < 0, Figure 4.)

Now σ2(q1) = −t1/3k(t)(1 + Ψ (t1/3k(t))), and therefore σ2(q1) < t for t small. But
as the graph of the leaf in consideration is strictly decreasing for X < 0, the Y -coordinate of
l = τ1(p1) is bigger than t , hence l is distinct from q2, and therefore l is distinct from p2.

In the above calculations we assumed p3 �= 0 and −q33p3 + p4 �= 0 (we also need
Λ1Λ2 �= 0 for the topological models in the domain). So the subset of parametrisations of
cross-caps satisfying these conditions is open and dense in W1. ✷

2.2. Lines of curvature. The equation of the principal directions of a smooth surface
is given by

(Fn − Gm)dy2 + (En − Gl)dydx + (Em − F l)dx2 = 0 .

For a cross-cap, we take the equation to be

(Fn1 − Gm1)dy2 + (En1 − Gl1)dydx + (Em1 − F l1)dx2 = 0 ,

where n1, l1,m1 are as in (2). When the surface is parametrised as in (3), the coefficients of
the principal directions BDE at a cross-cap are given by

(a, b, c) = (M1(x, y), x + M2(x, y),−2y + M3(x, y)) ,

where Mi , i = 1, 2, 3, are germs of smooth functions depending on p and q , with

j3M1 = 4λµx3 + 4(1 + µ2 + 2λ)x2y + 12µxy2 + 8y3 ,

j2M2 = q32x
2 + 3(q33 − µp3)xy − 3p3y

2 ,

j2M3 = q31x
2 + 3(µp3 − q33)y

2 .

We can make changes of coordinates (see for example the proof of Proposition 3.2) in
the source and write the 3-jet of the coefficients of the BDE in the form

(a, b, c) =
(

−4y3,−1

2
x + 3

2
p3y

2 + βy3, y

)

,

where β is a constant depending on the coefficients of the monomials in the 4-jet of the
parametrisation of the surface. We can therefore use the results in Section 3.2 and Theorem
3.3 to deduce the following.

PROPOSITION 2.5. The equation of the lines of curvature in the domain of a paramet-

risation of a cross-cap is topologically equivalent to

−y3dy2 − xdxdy + ydx2 = 0 .

See Figure 5(a) for illustration.

REMARKS 2.6. 1. The result in Proposition 2.5 is also obtained in [22] by studying
directly the equation of the lines of curvature.
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2. Proposition 2.5 shows that, for any surface with a cross-cap point, the singularity of
the BDE of its principal directions is locally an isolated point. Therefore, there is no sequence
of umbilic points on the smooth part of the surface that converges to the cross-cap point. (I
would like to thank Masaaki Umehara for asking the question that led to this remark.)

We investigate now how the configuration of lines of curvature in the domain is mapped
to the cross-cap. We first observe that there are three separatrices in this case. When the
surface is parametrised as in (3), one separatrix has a horizontal tangent and is given by
y = −(1/2)q31x

2 + h.o.t. and the remaining two have a vertical tangent and are given by
x = αiy

2+h.o.t., i = 1, 2, where αi are the roots of the quadratic equation α2+3p3α−2 = 0.
These last two separatrices are tangent to the double point curve given by x = −p3y

2 + h.o.t.
We observe that the double point curve is between the two separatrices.

The equation of the principal curves determines a pair of foliations Fi , i = 1, 2, in
the parameter space. In turn, each foliation determines an involution τi , i = 1, 2, on the
double point curve which interchanges the two points of intersection of a smooth leave with
the double point curve, see Figure 5 (a). (We define τi(0) = 0.)

THEOREM 2.7. We have τi(p) �= σ(p), i = 1, 2, for p �= (0, 0) on the double point

curve in a neighbourhood of the origin. As a consequence, the configuration of the lines of

curvature on a cross-cap is as in Figure 5.

PROOF. The double point curve is given by x = h(y), for some smooth function h with
a zero 1-jet. We re-parametrise the surface by taking x = X + h(Y ), y = Y . In the new
coordinate system (that we still denote by (x, y)), the double point curve is along the y-axis.
We denote by (ā, b̄, c̄) the coefficients of the lines of curvature BDE in this new coordinates

FIGURE 5. Configuration of the lines of curvature at a cross-cap, in the domain (a) and
on the surface (b), (c), (d) viewed from different directions. The thick curve
is the double point curve.
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system. We have

j2ā(x, y) = −4p3xy ,

j2b̄(x, y) = x + q32x
2 + (−3µp3 + 3q33)xy ,

j2c̄(x, y) = −2y + q31x
2 + (3µp3 − 3q33)y

2 .

Given a point (0, t), t �= 0, on the Y -axis, there is a smooth leaf say of F1 that passes
through this point and another of F2. We shall consider the foliation F1 as the approach is the
same for F2.

We consider the polar blowing up x = ρ2 cos θ , y = ρ sin θ of the direction field parallel

to ξ1 = ā∂/∂x + (b̄ +
√

b̄2 − āc̄)∂/∂y, which is tangent F1. The resulting field η1 is regular
for (θ, ρ) ∈ [−π/2, π/2] × [0, l), with l a small positive real number. So the map k : π/2 ×
[0, l1) → −π/2 × [0, l2) determined by the flow of η1 is smooth and k′(0) �= 0. Blowing
down yields τ1(t) = −k(t).

The involution σ on the double point curve is given by σ(t) = t (−1 + Ψ (t)) for some
smooth function Ψ with Ψ (0) = 0. We shall show that τ ′

1(0) �= σ ′(0).
We seek changes of coordinates of the form x = X+Yf (X), y = Y , so that the direction

determined ξ1 is vertical on the X-axis. The new BDE is given by

A(X, Y )dY 2 + 2B(X, Y )dXdY + C(X, Y )dX2 = 0 ,(6)

with

A(X, Y ) = ā(X + Yf (X), Y ) + 2b̄(X + Yf (X), Y )f (X) + c̄(X + Yf (X), Y )f (X)2 ,

B(X, Y ) = (1 + Yf ′(X))(b̄(X + Yf (X), Y ) + f ′(X)c̄(X + Yf (X), Y )) ,

C(X, Y ) = (1 + Yf ′(X))2c̄(X + Yf (X), Y ) .

So we need the coefficient of dY 2 to vanish when Y = 0, that is,

A(X, 0) + 2B(X, 0)f (X) + C(X, 0)f 2(X) ≡ 0 .

We can factor out X, and since (B(X, 0)/X)(0, 0) �= 0, it follows (by the implicit function
theorem) that there exists a germ of a smooth function f that solves the above identity. A
calculation shows that

j3f (X) = −2λµX2 +
((

1

2
µ2 − 2λ + 1

2

)

q31 − 3µq30q31

)

X3 .

We observe that the change of coordinates x = X + Yf (X), y = Y preserves the Y -axis, that
is, the double point curve in the domain.

It follows from the above setting that the leaf of F1 through (0, t) is the graph of a smooth
function X = Gt (Y ), with say Gt (0) = 0. We can find the Taylor expansion of Gt (Y ) in Y

for t fixed by substituting X and dX in the BDE (6). The coefficient α1 and α2 of Y − t and
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(Y − t)2 respectively are smooth functions given in the form

α1(t) = t
(

− 2
√

p2
3 + 1 + α̃1(t)

)

α2(t) = −1

2

(

p3 + 3
√

p2
3 + 1

)

+ β̃(t)

with α̃i(0) = 0, i = 1, 2. We can show, by induction, that the coefficient of (Y − t)k , for
k ≥ 3, in the Taylor expansion of Gt , is of the form t2−kαk(t) for some smooth function αk .

The point τ1(t) is the solution of Gt (Y ) = 0 which is distinct from Y = t , that is, the
solution of

α1(t) + α2(t)(Y − t) + O2(Y − t) = 0 .

Therefore τ ′
1(0) = 1 − α′

1(0)/α2(0) = (p3 −
√

p2
3 + 1)/(p3 + 3

√

p2
3 + 1). We have τ ′

1(0) �=
−1 = σ ′(0) and hence τ1(t) �= σ(t) for t near the origin and t �= 0. ✷

2.3. Characteristic curves. The equation of the characteristic directions of a smooth
surface is given by

(2m(Gm − Fn) − n(Gl − En))dy2

+ 2(m(Gl + En) − 2F ln)dydx

+ (l(Gl − En) − 2m(F l − Em))dx2 = 0 ,

(see for example [19, 7, 11]). These are the analogue of the asymptotic directions in the elliptic
region. (The above BDE has no solutions in the hyperbolic region.) Characteristic/harmonic
curves are studied in [19, 32, 33], and more recently in [7, 11, 21].

For a cross-cap, we take the equation to be

(2m1(Gm1 − Fn1) − n1(Gl1 − En1))dy2

+ 2(m1(Gl1 + En1) − 2F l1n1)dydx

+ (l1(Gl1 − En1) − 2m1(F l1 − Em1))dx2 = 0 .

where n1, l1,m1 are as in (2). There are no characteristic curves on a hyperbolic cross-cap as
all regular points are hyperbolic. We analyse the situation at an elliptic cross-cap.

When the surface is parametrised as in (3), the coefficients of the characteristic directions
BDE at a cross-cap are given by

(a, b, c) = (x2 + A(x, y),−xy + B(x, y),−λx2 + 2y2 + C(x, y)) ,

where A,B,C are smooth functions depending on p and q (in (3)).
We can make changes of coordinates in the source and write the 4-jet of the coefficients

(a, b, c) of the BDE in the form

(x2 +(36p2
3 +8)y4,−xy +b3(x, y)+b4(x, y),−λx2 +2y2 +c1x

2y +c2y
3 +c3xy3 +c4y

4) ,
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FIGURE 6. Configurations of the characteristic curves in the domain left and on the
surface right at an elliptic cross-cap. The thick curves are the parabolic
curves.

with

c1 = −(−6λ2p3 + 3λq32 + 3q30)/λ ,

c2 = −(3λq33 − 3λµp3 + 3q31)/λ ,

and bi , i = 3, 4, are homogeneous polynomial of degree i. The coefficients of y3 in b3 is
given by −6p3. So the discriminant has always an X1,2-singularity (which is K-equivalent to
x4 + ax2y2 − y6 with a < 0).

The constants in Section 3.3 that determine the topological type of the BDE are Λ1 =
−(1/2)(λc2 +

√
λc1) and Λ2 = −(1/2)(λc2 −

√
λc1) with c1 and c2 as above.

We can now use the results in Theorem 3.6 and deduce the following.

PROPOSITION 2.8. The equation of the characteristic curves in the domain of a para-

metrisation of an elliptic cross-cap is topologically equivalent to one of the following normal

forms.

(i) (x2 + y4,−xy,−x2 + 2y2 + y3) if Λ1Λ2 > 0 (Figure 6, top), or

(ii) (x2 + y4,−xy,−x2 + 2y2 + xy2) if Λ1Λ2 < 0 (Figure 6, bottom).

The topological type is completely determined by the 3-jet of the parametrisation of the sur-

face.

Mapping the solution curves in the domain to the surface can be done without difficulties
in this case. As observed before, the double point curves lies in the hyperbolic region of the
surface. So one only need to map each sector of the configuration in the parameter space to
the surface in the appropriate way (as shown in Figure 6).

3. Topological normal forms of BDEs. The three foliations in the previous section
are solution curves of binary differential equations (BDEs), also called quadratic differential
equations. These are implicit differential equations that can be written, in a local chart, as in
(1).
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One approach for dealing with the qualitative study of BDEs that define at most two
directions in the plane is given in [38] (see also [14]). It consists of lifting the bi-valued
direction field defined in the plane to a single field ξ on the surface M̃ = F−1(0) in R

3. (The
vector field ξ is determined by the restriction of the standard contact form dy − pdx in R

3 to
the surface.)

When the coefficients a, b, c all vanish, say at the origin, all directions are solutions at
this point. One way to proceed is given in [5] where the associated surface

M =
{

(x, y, [α : β]) ∈ R
2, 0 × RP 1 | aβ2 + 2bαβ + cα2 = 0

}

to the BDE is considered. The discriminant function δ = b2 −ac plays a key role. When δ has
a Morse singularity the surface M is smooth and the projection π : M → R

2, 0 is a double
cover of the set {(x, y) | δ(x, y) > 0} ([8]). The bi-valued direction field defined by the BDE
lifts to a single field ξ on M and extends smoothly to π−1(0). Note that 0 × RP 1 ⊂ π−1(∆)

and is an integral curve of ξ .
Consider the affine chart p = β/α (we also consider the chart q = α/β), and set

F(x, y, p) = a(x, y)p2 + 2b(x, y)p + c(x, y) .

Then the lifted direction filed is parallel to the vector field

ξ = Fp

∂

∂x
+ pFp

∂

∂y
− (Fx + pFy )

∂

∂p
.

If we write j1a = a1x + a2y, j1b = b1x + b2y, j1c = c1x + c2y, the singularities of ξ on
the exceptional fibre are given by the roots of the cubic

φ(p) = (Fx + pFy)(0, 0, p)

= a2p
3 + (2b2 + a1)p

2 + (2b1 + c2)p + c1 .

The eigenvalues of the linear part of ξ at a singularity are −φ′(p) and α1(p) with

α1(p) = 2(a2p
2 + (b2 + a1) + b1) .

It is shown in [8] (see also [24]) that when M is smooth, we can change coordinates and write
the 1-jet of the coefficients (a, b, c) of the form (y, b1x + b2y,±y). There are special curves
in the (b1, b2)-plane that bound open regions where the configuration of the BDE is topo-
logically constant, and the models for these configurations are given in [8]. The topological
configurations on generic points of these special curve are also determined in [36].

Another way to proceed in the study of BDEs is to consider a blowing-up of the singular-
ity. This is done in [34] for the lines of curvature BDE on a smooth surface. Guíñez [25] used
this technique on BDEs whose discriminant is an isolated point (labelled there positive qua-
dratic equations). However, we show here and in [36] that Guíñez’s method can be extended
to cover general BDEs. We follow this approach to obtain topological models of BDEs whose
discriminants have the same K-singularity type as those of the asymptotic, characteristic and
principal BDEs of the cross-cap.
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Following the notation in [25], let ω denote the BDE with coefficients (a, b, c) and
fi(w), i = 1, 2, the foliation associated to ω which is tangent to the vector field

ξi(ω) = a
∂

∂u
+

(

− b + (−1)i
√

b2 − ac
) ∂

∂v
.

If ψ is a diffeomorphism and λ(x, y) is a non-vanishing real valued function, then ([25]) for
k = 1, 2,

1. ψ(fk(w)) = fk(ψ
∗(ω)), if ψ is orientation preserving;

2. ψ(fk(w)) = f3−k(ψ
∗(ω)), if ψ is orientation reserving;

3. fk(λw) = fk(ω), if λ(x, y) is positive;
4. fk(λw) = f3−k(ω), if λ(x, y) is negative.

3.1. Discriminant with an A−
1 -singularity. We study here BDEs with a discriminant

having a Morse singularity at the origin and where the quadratic α1 and the cubic φ have
two common roots (see above for notation). The last condition is equivalent to two roots of
φ being at the points of intersection of the lift of the branches of the discriminant with the
exceptional fibre. (The case where α1 and φ have one common root is dealt with in [36].)

When j1(a, b, c) = (y, b1x + b2y, y), α1 and φ have a common root if and only if
b1 = ±b2 − 1. So we have two common roots when (b1, b2) = (−1, 0). (At these points the
lifted field ξ on M has generically a saddle-node singularity.) We write

ω = (a, b, c) = (y + M1(x, y),−x + M2(x, y), y + M3(x, y)) ,

where Mi are smooth functions with zero 1-jets at the origin. We set

A(x, y) = j2M1 = a0x
2 + a1xy + a2y

2 ,

B(x, y) = j2M2 = b0x
2 + b1xy + b2y

2 ,

C(x, y) = j2M3 = c0x
2 + c1xy + c2y

2 .

In order to obtain the configurations of the integral curves of these BDEs, we consider
the directional blowing-up x = u, y = uv. (We also consider the blowing-up x = uv, y = v,
but this does not yield extra information.) Then the new BDE is given by ω0 = (u, v)∗ω =
ādv2 + 2b̄dudv + c̄du2 with

ā = u2(uv + M1(u, uv)) ,

b̄ = uv(uv + M1(u, uv)) + u(−u + M2(u, uv)) ,

c̄ = v2(uv + M1(u, uv)) + 2v(−u + M2(u, uv)) + uv + M3(u, uv) .

We can write ω0 = u(u2A1, uB1, C1) with

A1 = v + uN1(u, v)

B1 = v2 − 1 + u(vN1(u, v) + N2(u, v))

C1 = v(v2 − 1) + u(v2N1(u, v) + 2vN2(u, v) + N3(u, v))

and Mi(u, uv) = u2Ni(u, v), i = 1, 2, 3.
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The quadratic form ω1 with coefficients (u2A1, uB1, C1) is a product of two 1-forms,
and to these 1-forms are associated the vector fields

Xi = u2A1
∂

∂u
+

(

− uB1 + (−1)i
√

u2(B2
1 − A1C1)

) ∂

∂v
, i = 1, 2 .

We can also write ω1 as the product of two 1-forms associated to the vector fields

Zi =
(

− uB1 + (−1)i
√

u2(B2
1 − A1C1)

) ∂

∂u
+ C1

∂

∂v
, i = 1, 2 .

We can factor out a term u in Xi and consider the vector fields

Yi = uA1
∂

∂u
+

(

− B1 + (−1)i
√

B2
1 − A1C1

) ∂

∂v
, i = 1, 2 .

The blowing-up transformation is orientation preserving if u is positive and orientation
reserving if u is negative. As we have factored out u twice, it follows that Y1 is tangent to the
foliation associated to f1(w) if u is positive and to that associated to f2(w) if u is negative;
while Y2 is tangent to the foliation associated to f2(w) if u is positive and to that associated
to f1(w) if u is negative (see [25] and the statement before Section 3.1).

We study the vector fields Yi in a neighbourhood of the exceptional fibre u = 0. The
fields Yi are only defined in the regions where B2

1 − A1C1 ≥ 0. On u = 0, this means that

(v + 1)(v − 1) ≤ 0 .

(This is distinct from the cases treated by Guíñez, where Yi are defined on the whole excep-
tional fibre.) We observe that the above segment of the exceptional fibre is an integral curve
of both fields Yi , i = 1, 2.

The singularities of Y1 on u = 0 occur when (−B1 −
√

B2
1 − A1C1)(0, v) = 0, that is,

when −(v2 − 1) −
√

1 − v2 = 0. Equivalently, when
{

v2(v2 − 1) = vφ(v) = 0 and
v2 − 1 ≤ 0 ,

where φ is the cubic in Section 3. So Y1 has singularities at v = ±1 and v = 0.
At v = 0, we have B1(0, 0) = −1 < 0, so that

−B1 −
√

B2
1 − A1C1 = −B1 + B1

√

1 − A1C1/B
2
1

= −A1C1

2B1
+ A2

1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. Therefore Y1 is singular
along the curve A1(u, v) = 0. We consider the vector field Ỹ1 = Y1/A1. Then Ỹ1 has a saddle
singularity at the origin.

The singularities at v = ±1 occur at the points of intersection of the exceptional fibre
with the branches of the blown-up discriminant. Consider the situation at v = +1. We change
variables and set s = u, t2 = B2

1 − A1C1, with t ≥ 0. The 2-jet of the vector field (s, t)∗Y1
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FIGURE 7. Integral curves of (s, t)∗Yi (t ≥ 0), i = 1 left, and i = 2 right.

is equivalent to (Λ1s + t)∂/∂t + st∂/∂s, where Λ1 is given by

Λ1 = −1

2
(A(1, 1) + 4B(1, 1) + 3C(1, 1)) .

The singularity of (s, t)∗Y1 is a saddle-node provided Λ1 �= 0, and its integral curves (up to a
reflection with respect to the vertical axis, depending on the sign of Λ1) are as in Figure 7 left,
and therefore those of Y1 are as in Figure 8 top. Observe that the centre manifold of (s, t)∗Y1

is transverse to the t-axis.
We proceed similarly at v = −1, change variables and set s = u, t2 = B2

1 − A1C1, with
t ≥ 0. The 2-jet of the vector field (s, t)∗Y1 is equivalent to (Λ2s + t)∂/∂t + st∂/∂s, where
Λ2 is given by

Λ2 =
1

2
(A(1,−1) − 4B(1,−1) + 3C(1,−1)) .

The singularity of (s, t)∗Y1 is a saddle-node provided Λ2 �= 0, and its integral curves (up to
a reflection with respect to the vertical axis, depending on the sign of Λ2) are as in Figure 7
left, and therefore those of Y1 are as in Figure 8 top.

We have two possibilities (up to a reflection with respect to the vertical axis) for the con-
figuration of the integral curves of Y1 in a neighbourhood of the exceptional fibre depending
on the sign of Λ1Λ2, see Figure 8 top.

The vector field Y2 is singular on u = 0 when (−B1 +
√

B2
1 − A1C1)(0,v)=0, that is, when

v = ±1. Similar calculations to those above for Y1 show that the 2-jet of the vector field
(s, t)∗Y2 is equivalent to (Λ1s − t)∂/∂t + st∂/∂s at v = 1 and (Λ2s − t)∂/∂t + st∂/∂s at
v = −1, with Λ1 and Λ2 as above. We observe that the configurations of the integral curves
of (s, t)∗Y2 can be deduced from those of (s, t)∗Y1 by the change of variable t �→ −t . So
at both points v = ±1, the integral curves of (s, t)∗Y1 and (s, t)∗Y2 are (up to a reflection
of both figures with respect to the vertical axis) as in Figure 7 (left for (s, t)∗Y1 and right for
(s, t)∗Y2). The configurations (two possibilities) of the integral curves of Y2 are as in Figure
8 top. Blowing-down yields the configuration of the integral curves of the original BDE.
Consequently, we have two distinct types of configurations depending on the sign of Λ1Λ2.
One can show that any two configurations of the same type are topologically equivalent. This
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FIGURE 8. Configurations of the integral curves of the BDEs when α1 and φ have two common roots and
their blown up models: Λ1Λ2 > 0 left, and Λ1Λ2 < 0 right.

can be done by choosing an appropriate neighbourhood of the origin and by sliding along
integral curves (see for example [6, 35, 37]).

We have thus the following result.

THEOREM 3.1. Suppose that the quadratic α1 and the cubic φ have two common roots

and the lifted field ξ has genuine saddle-node singularities there. Then the BDE is topologi-

cally equivalent to one of the following normal forms.

(i) ydy2 + 2(−x + y2)dxdy + ydx2 = 0 (Figure 8, left), or

(ii) ydy2 + 2(−x + xy)dxdy + ydx2 = 0 (Figure 8, right).

The topological models are completely determined by the 2-jets of the BDE.

3.2. Discriminant with an A3-singularity. We study here BDEs where the 1-jet of
the coefficients is given by (0, b0x, y), b0 �= 0. We start by reducing the k-jet of the BDE
ω = (a, b, c) to a normal form (see also [10]).

PROPOSITION 3.2. The k-jet (k ≥ 2) of a BDE ω with j 1ω = (0, b0x, y) can be

reduced, for b0 distinct from a finite set of values, by smooth changes of coordinates and

multiplication by a non-zero polynomial to

ak(y)dy2 + 2(b0x + bk(y))dxdy + ydx2 ,

where ak and bk are polynomials with zero 1-jets.

PROOF. We write ω = (a(x, y), b0x +b(x, y), y + c(x, y)), and make smooth changes
of coordinates in the form

x = X + p(X, Y ) , y = Y + q(X, Y ) ,
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where p and q are germs of homogeneous polynomials of degree k in X,Y . We also multiply
the new BDE by 1 + r(X, Y ), where r is a germ of homogeneous polynomial of degree k − 1
in X,Y . The homogeneous part of degree k of the coefficients of the new BDE are given by

Ak = ak + 2b0Xpy ,

Bk = b0p + b0X(pX + qY ) + YpY + b0Xr + bk ,

Ck = 2b0XqX + 2YpX + qk + Yr + ck ,

where all the polynomials are evaluated at (X, Y ). It is clear that we can eliminate all terms
divisible by X in Ak by choosing an appropriate polynomial p. To reduce further Bk and Ck

to the required forms, we need to show that the system in q and r

b0XqY + b0Xr = b̄k ,

2b0XqX + qk + Yr = c̄k

has a solution, where b̄k is the polynomial −(b0p + b0XpX + YpY + bk) with the term Y k

removed and c̄k = −(2YpX + ck) (p chosen as above). The above system has a solution if a
certain matrix has a non-zero determinant. This is the case if b0 �= (i − 1)/(2(k − i)), 1 ≤
i ≤ k − 1. We observe that the system has always a solution when b0 = −1/2, as is the case
in Section 2.2. ✷

In Section 2.2 the discriminant has an A3-singularity. So we can take j3ω =
(a3y

3, b0x + b2y
2 + b3y

3, y), with a3 �= 0. We write

ω = (a3y
3 + M1(x, y), b0x + b2y

2 + M2(x, y), y + M3(x, y)) ,

where the germs M1 and M3 have zero 3-jets and M2 has zero 2-jet.
We consider now the following quasi-homogeneous blowing-ups:
y-direction: x = uv2, y = v,
x-direction: x = u2, y = uv and x = −u2, y = uv, with u ≥ 0.
The blowing-up in the y-direction does not give any singularities at the origin, and so it

is enough to work with the blowing-ups in the x-direction.
The new BDE ω̄ obtained by considering the blowing-up x = εu2, y = uv (ε = ±1)

has coefficients

ā = u2a(εu2, uv) ,

b̄ = uva(εu2, uv) + 2εu2b(εu2, uv) ,

c̄ = v2a(εu2, uv) + 4εuvb(εu2, uv) + 4u2c(εu2, uv) .

We write ω̄ = u3(u2A1, uB1, C1) with

A1 = a3v
3 + uN1(u, v) ,

B1 = 2b0 + 2εb2v
2 + a3v

4 + uvN1(u, v) + 2εuN2(u, v) ,

C1 = v(4(b0 + 1) + 4εb2v
2 + a3v

4) + uv2N1(u, v) + 4εuvN2(u, v) + 4u3N3(u, v) ,

where Mi(εu
2, v) = u4Ni(u, v) for i = 1, 3, and M2(εu

2, v) = u3N2(u, v).
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The quadratic form ω1 = (u2A1, uB1, C1) is a product of two 1-forms, and to these
1-forms are associated the vector fields

Zi =
(

− uB1 + (−1)i
√

u2(B2
1 − A1C1)

) ∂

∂u
+ C1

∂

∂v
, i = 1, 2 .

The blowing-up transformation is orientation preserving if ε = +1 and orientation re-
serving if ε = −1. Furthermore, as u ≥ 0, it follows that Z1 is tangent to the foliation
associated to f1(w) if ε = +1 and to that associated to f2(w) if ε = −1; while Z2 is tangent
to the foliation associated to f2(w) if ε = +1 and to that associated to f1(w) if ε = −1 (see
[25] and the statement before Section 3.1).

We can set a3 = ±1 by a scalar change of coordinates and treat now the cases a3 = 1
and a3 = −1 separately.

(i) The case j3w = (−y3, b0x + b2y
2 + b3y

3, y). The vector fields Zi are defined
along the whole exceptional fibre. The number and type of their singularities along this fibre
depend only on the pair (b0, b2). (Reflecting with respect to the origin shows that the type of
the BDE associated to the pair (b0,−b2) is the same as that associated to (b0, b2).) There are
three curves in the (b0, b2)-plane where the number or the type of the singularities changes.
These are the parabola 1+b0 +b2

2 = 0, and the lines b0 = −1 and b0 = 0 (see Figure 9, left).
In the open regions determined by these curves, the configurations of the foliations associated
to Zi , i = 1, 2, are constant and are as in Figure 10. (The calculations are similar to those in
the previous section and are omitted here.)

(ii) The case j3w = (y3, b0x + b2y
2 + b3y

3, y). Here the vector fields Zi are defined
in a neighbourhood of the exceptional fibre where B2

1 − A1C1 ≥ 0. On the criminant curve
B2

1 − A1C1 = 0, one can show that the integral curves of Zi form a family of regular curves
ending transversally at this curve (the exceptional fibre being a common integral curve of both
fields).

The number and type of the singularities of Zi on the exceptional fibre depend only on
the pair (b0, b2). There are five curves in the (b0, b2)-plane where the number or type of

FIGURE 9. Partition of the (b0, b2)-plane, ε = −1 left and ε = +1 right.
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singularity changes. These are: the parabola 1 + b0 − b2
2 = 0, and the lines b0 = −1, b0 = 0,

2 + b0 − 2b2 = 0, 2 + b0 + 2b2 = 0 (see Figure 9, right). In the open regions determined by
these curves, the configurations of the foliations associated to Zi , i = 1, 2, are constant and
are as in Figure 11.

We have then the following result.

THEOREM 3.3. Suppose that j3ω = (±y3, b0x + b2y
2 + b3y

3, y). Then the topolog-

ical type of the BDE ω is constant in the open regions in the (b0, b2)-plane in Figure 9. The

configurations of the integral curves of the BDE in these regions are as shown in Figures 10
and 11.

REMARK 3.4. Normal forms for the BDEs in Theorem 3.3 can be taken in the form
(±y3, b0x + b2y

2, y) with (b0, b2) any fixed value in the open regions in Figure 9.

3.3. X1,2-singularity. We study in this section certain BDEs with a discriminant hav-
ing an X1,2-singularity K-equivalent to x4 + λx2y2 − y6 with λ < 0. The characteristic BDE
in Section 2.3 has a 2-jet (x2,−xy,−ax2 + 2y2), a > 0.

PROPOSITION 3.5. The 4-jet of a BDE with a 2-jet (x2,−xy,−ax2 +2y2) and whose

discriminant has an X1,2-singularity can be reduced, by smooth changes of coordinates when

FIGURE 10. Configurations of the integral curves of (−y3, b0x + b2y2 + b3y3, y) and
their associated directional blowing-up models.
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FIGURE 11. Configurations of the integral curves of (y3, b0x + b2y2 + b3y3, y) and their associated directional
blowing-up models.

a �= 0, to

(x2 + dy4,−xy + b3(x, y) + b4(x, y),−ax2 + 2y2 + c1xy2 + c2y
3 + c2xy3 + c4y

4) ,

where b3 (resp. b4) is a homogeneous polynomial of degree 3 (resp. 4) and d and ci , i =
1, 2, 3, 4, are constants.

The proof is similar to that of Proposition 3.2 and is omitted.
When a < 0, the discriminant has an X1,2-singularity which is K-equivalent to x4 +

λx2y2 − y6 with λ < 0 if d − b2
33 > 0, where b33 is the coefficients of the term y3 in b3.

We consider the blowing-up x = u, y = uv. (We also consider the blowing-up x =
uv, y = v, but this does not yield any extra information.) We can write the coefficients of the
new BDE in the form (ā, b̄, c̄) = u2(u2A1, u

2B1, C1) with

A1 =1 + u2N1(u, v) ,

B1 =b3(1, v) + uN2(u, v) ,

C1 = − a + v2 + uN3(u, v) ,

where Ni(u, v), i = 1, 2, 3, are smooth functions along the exceptional fibre.
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We consider the vector fields

Zi =
(

− u2B1 + (−1)i
√

u2(u2B2
1 − A1C1)

) ∂

∂u
+ C1

∂

∂v
, i = 1, 2 .

The discriminant lifts to two smooth curves that are generically transverse to the excep-
tional fibre at −a + v2 = 0. The fields Zi , i = 1, 2, are defined in a neighbourhood of the
segment −a + v2 ≥ 0 and are regular along −a + v2 > 0.

At v =
√

a, we change variables and set s = u, t2 = u2B2
1 − A1C1, with t ≥ 0. It

follows that C1 = (uB1 − t)(uB1 + t)/A1 and v = g(s, t). The ODE associated to (s, t)∗Zi

is

((sB̄1 − t)(sB̄1 + t)/Ā1)ds − (−s2B̄1 + (−1)i |s|t)(gsds + gtdt) = 0 ,

where Ā1 = A1(s, g(s, t)) and B̄1 = B1(s, g(s, t)). We can factor out (sB̄1 − t) or (sB̄1 + t),
depending on i and the sign of s (i.e., u). So we need to consider the vector fields

(sB̄1 + sign(s)(−1)i t + sĀ1gs)
∂

∂t
+ sĀ1gt

∂

∂s
, s ≥ 0 , i = 1, 2 .

As the blowing-up transformation is orientation preserving if u (i.e., s) is positive and orien-
tation reserving if u is negative, we can drop sign(s) above and deal with the vector fields

Wi = (sB̄1 + (−1)i t + sĀ1gs)
∂

∂t
+ sĀ1gt

∂

∂s
, i = 1, 2 .

Their foliations are associated to those of fi(w), i = 1, 2 (see [25] and the statement before
Section 3.1).

FIGURE 12. Configurations of the integral curves of a BDE at an X1,2-singularity of the
discriminant and their associated directional blowing-up models: Λ1Λ2 >

0 top, Λ1Λ2 < 0 bottom.
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The 2-jet of Wi is equivalent to (Λ1s + (−1)i t)∂/∂t + (1/
√

a)st∂/∂s, where Λ1 =
−(1/2)(ac2 +

√
ac1). The singularity is a saddle-node provided Λ1 �= 0.

At v = −
√

a, similar changes of coordinates as above show that the 2-jet of Wi , i = 1, 2,
is equivalent to (Λ2s − (−1)i t)∂/∂t + (1/

√
a)st∂/∂s, with Λ2 = −(1/2)(ac2 −

√
ac1). The

singularity is a saddle-node provided Λ2 �= 0.
We have two possible generic configurations for the integral curves of the BDE depend-

ing on the sign of Λ1Λ2 (see Figure 12).

THEOREM 3.6. Suppose that the BDE has a 2-jet equivalent to (x2,−xy,−ax2 +
2y2), with a > 0, and its discriminant has an X1,2-singularity of type x4 + λx2y2 − y6, with

λ < 0. Then it is topologically equivalent to one of the following normal forms.

(i) (x2 + y4,−xy,−x2 + 2y2 + y3) (Figure 12, left),
(ii) (x2 + y4,−xy,−x2 + 2y2 + xy2) (Figure 12, right).
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