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ON PAIRWISE LINDELOF SPACES

by

Ali A. FORA and Hasan Z. HDEIB

ABSTRACT. In this paper we define pairwise Lindelof
spaces and study their properties and their relations
with other topological spaces. We also study certain
conditions by which a bitopological space will reduce to
a single topology. Several examples are discussed and
many well known theorems are generalized concerning Lin-
delof spaces.

RESUMEN. En este articulo se definen espacios p-Lin-
delof y se estudian sus propiedades y relaciones con
otros tipos de espacios topoldgicos. También se estudian
ciertas condiciones bajo las cuales un espacio bitopoldgi-
co (con dos topologias) se reduce a uno con una sola topo-
logia. Se discuten varios ejemplos y se generalizan va-
rios teoremas sobre espacios dé Lindelof.

Introduccidn. Kelly [6] introduced the notion of a bito-

pological space, i.e. a triple (X,Il,12) where X is a set and

Tys T, avre two topologies on X, he also defined pairwise Haus-
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dorff, pairwise regular, pairwise normal spaces, and obtained

generalizations of several standard results such as Urysohn's

Lemma and the Tietze extension theorem. Several authors

have since considered the problem of defining compactness for
such spaces: see Kim [7], Fletcher, Hoyle and Patty [4], and Bir-
san [1]. Cooke and Reilly [2] have discussed the relations be-
tween these definitions.

In this paper we give a definition of pairwise Lindelof
bitopological spaces and derive some related results.

We will use p- , s- to denote pa{wdise and semi-, respect-
ively, e.g. p- compact, s- compact stand for pairwise compact
and semi-compact respectively.

The Ti—closure, Ti—interior of a set A will be denoted by
CliA and IntiA respectively. The product topology of Ty and T,
will be denoted by T1X12.

Let R, I, N denote the set of all real numbers, the inter-
val.[O,i], and the natural numbers respectively. Let Tgs Tye Teo
T T, denote the discrete, usual, cocountable, Left-ray  and

nigth-ray topologies on R (or I).

2. Pairwise Lindelof Spaces. Let us recall known defini-

tions which are used in the sequel.

2.1 [u]. A cover Y of the bitopological space (X’Ti’TQ)
is called T,T,-open if U= T, U T,. If, in addition, U contains
at least one non-empty member of Tl and at least one non-empty
member of Tss it is called p-open.

2.2 [4]. A bitopological space is called p-compact if

every p-open cover of the space has a finite subcover.
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=53 [3]. A bitopological space is calle s-compact if eve-

ry T,T,-0pen cover of the space has a finite subcover.

2.4 [1]. A bitopological space (X,T com-
pact with respect to T, if for each T

a finite 7T

1,T2) is called T1

,~open cover of X there is

,-open subcover.

2.5 [1]. A bitopological space (X, Tl,T2) is called

B-C0 et if it is T, compact with respect to T, and T. compact
p P , comp

1 2

with respecto to Tl'

If we replace the word "finite'" by the word '"countable" in
definitions 2.2, 2.3 and 2.4, then we obtain the definition of
p-Lindeliq, s-Lindeldf, and (X.1,,1,) 46 T, Lindelif with re-
tpect to T,, respectively.

2.6 A bitopological space (X,7,,7,) is called B-Lindeld §

if it is T, Lindelof with respecto to T, and T, Lindeldff with

13
respecto to T

2 2

1

It is clear that (X,T T,) is s-Lindelof if and only if

1,
(X,T) is Lindelof where T is the least-upper-bound topology

of T, and Toe It is also clear that if (X,Tl,rz) is B-Lindeloff

then each (X,Ti) must be a Lindelof space for i = 1,2.

2.7 When we say that a bitopological space (X’Tl’T2) has
a particular topological property, without referring specially
and T, have the

1 2
TQ) is said to be Hausdoff if

to Ti or T2, we shall then mean that both T

property; for instance, (X’Tl’

both (X,Tl) and (X,T,) are Hausdorff.

THEOREM 2.8. The bitopological space (X,Ti,‘rz) 48 s-Lin-
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deldf if and only Lf <t 48 Lindelig and p-Lindeldf.

Proog. Necessity follows inmediately from the observation
that any p-open,T,-open or T,-open cover of (X,T1,12) is T,T,-0-
pen. Conversely, if a T,T,-open cover of (X’T1*T2) is . not

p-open, then it is T,-open or T,-open.

EXAMPLE 2.9. The bitopological space (R,Td,TC) is p-Lin-
deldf but is not s-Lindel©f.

EXAMPLE 2.10. Consider the two topologies T,,T, on R
defined by the basis

B, = {(-~,a):a > 0} U {{x}:x > 0} , and

82 = {(a, ©):a < 0} U {{x}:x < o} .
Then (R,T,,T,) is p-Lindeldf but is not Lindelof. It is also
clear that (R’T1=T2) is not B-Lindelof, for the T,-open cover

{(-=,1)} U {{x}:x > 1} of R has no countable T,-open subcover.

2
2.11 [8]. A bitopological space (X,Tl,rz) is called
p-countably compact if every countably p-open cover of X has a

finite subcover.

2.12 A bitopological space (X,T,,T,) is called s-count-
dble compact if every countably T,T,-open cover of X has a fin-
ite subcover.

2.13 A bitopological space (X,Ti,Tz) is called Tl—couni-
ably compact with respect Lo T, if for each countably T,-open
cover of X there is a finite T,-open subcover.

2.14 A bitopological space (X'T1’T2) is called B-count-
alby compact if it is T, countably compact with respect to T,

and T, countably compact with respecto to Tqe

The following fact is obvious:
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THEOREM 2.15. (i) Every p(resp. s,B)-compact space L4
p(#esp. s.B)-countably compact and p(resp. s.B)-Lindeldf.
(ii) Eveny p(resp. s,B)-countably compact p(resp. s.B)-Linde-
264 space 44 p(resp. s,B)-compact.

EXAMPLE 2.16. The bitopological space (R,Td,‘cc) is a
p-Lindelof space which is neither p-countably compact nor p-com-

pact.

EXAMPLE 2.17. Let s denotes the Sorgenfrey topology
on R. Then the bitopological space (R,TU,TS) is s-Lindelof
but is not B-Lindeldf, because the T_-open cover {[-n,n):n e}
of R has no T ~open countable subcover. It is also clear that

the space (R,Tu,‘rs) is neither s-countably compact nor s-compact.

EXAMPLE 2.18. It is clear that the bitopological space
(N,Td,

B-compact.

Td) is B-Lindelof but is neither B-countably compact nor

THEOREM 2.19. If (X,1,,T,) 48 a hereditary Lindeldq
space then £t 48 s-Lindeldf.
Proog. Let £ {Ua: a <At U {VB:B eTl} be a T,T,-open

cover of X, where UGL e T, for each ae A and VB T, for each

2
-Lindeldf, there exists a

1
e T, SinceU-’-U{UuaEA} is Ty

countable set A, = A such that U = U{Ua:a S ﬂ.l}. Similarly,
since V = U{VB 2
set I’1 T such that V = U{VB:B « Fl}. It is clear that

:B € T} is 1,.-Lindelof, there exists a countable

{Ua:a Ehl} U {VB:B = l"l} is a countable subcover of € for X.

COROLLARY 2.20. Eveny second countable bitopological
space {5 s-Lindelif.
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EXAMPLE 2.21. Let X = RXI and < be the lexicographical

order on X. Let
‘31 = {[x,y):x <y ; x,ye X} and '32 z f(xy]l:x <y 3 xye X},

Let T,,T, be the topologies on X which generated by the basis %1
and 62, respectively. Then (X,T1,12) is a Lindeldf space which

is not p-Lindeldf, because the p-open cover

{[(0,%),(1,x)),((0,x),(1,¥)] :x =R}

of X has no countable subcover. It is clear that (X,Ti,T2) is

neither s-Lindelof nor B-Lindeldf.

EXAMPLE 2.22. Let X and T be the same as in example

2.21. Then the bitopological space (X,T T2) is not hereditary

19
Lindelof but it is s-Lindelof.

EXAMPLE 2.23. Let X = R, B, = {X,{x}:xe X-{0}} and
@2 = {X,{x}:x e X-{1}}. Let TysT,
generated by the bases‘B1 and 32, respectively. Then (X’Tl’T2)

be the topologies on X which are

is B-Lindelsf, for any T,-open cover of X or any T,-open cover
of X must contain X as a member. However, (X’Tl’TQ) is not p-Lin-

delsf, for the p-open cover {{x}:x € X} of X has no countable

subcover.

We may summarize some of the above examples and theorems
by the diagram on the next page (T stands for theorem while E stands

for example).

2.24 [7]. If T is a topology on X and A is a non-empty
subset of X then the adjoint topology (denoted by T(A)) is the
topology on X defined by t(A) = {¢,Xx} U {AUB: B t}.
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" NO E2.23

s-Lindelof NO EZ.47 _ B-Lindelof
A

YE§ O ’ s ¥No

T2{8 EP. E2.21
\ : E2.21 v

p-LindelGf NO E2.10 _ Lindel®f

2.25 A family F of nonvoid subsets of X is T,T,-closed if

every member of F is Ti-closed or T,-closed.

2.26 [8]. A family F of nonvoid T,- or T,-closed sets

in X is p-closed if F contains members F, and F, such that F

1 1
is a T,-closed proper subset of X and F2 is a T2—closed proper

subsetiof X.

2.2¢ [6]. A set U in a topological space (X,T) is called
weakly open if for any p « U there exists an open set V contain-
ing p such that V-U is a countable set. A set F is called weak-
Ly closed if X-F is weakly open. If A is a subset of X and p X,
then p is called a weak-.interior point of A if there exists a
weakly open set V containing p such that V < A. The set of all

weak-interior points of a set A is denoted by WInt A.

It is clear that WInt A is the largest weakly open set
contained in A. It is also clear that WInt A = A if and only if
A is weakly open, and Int B < WInt B for any set B € X.

LEMMA 2.28. Llet (X, 1:1,12) be a p-Lindeldf space and C
be a weakly closed proper subset in (X,1,). Then C 48 T,-Lin-
deld4 -
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Eﬁggﬁ, Let C be a nonempty Ti-weakly closed proper subset
of X and let € = {Va:a e A} be a T,-open cover for C. For each
x € X-C there exists a T,-open set H(x) such that x € H(x) and
H(x)NC is acountable set. Since C # ¢ and C # X, then
{Va:a e A} U {H(x):x € X-C} is a p-open cover for the p-Lindelof
space X. Thus, there exists a countable set Al < A and a count-
able set {xi,x2,...} < X-C such that {Va:a E:Al} U {H(xi),H(x2),-
is a countable cover for X. Since H(xi)n C is countable for all
i e N, the set C (&_z)iﬁ(xi)) is countable, say CN (isziH(xi)) =
{yl,yz,.. .}. Since y; = C, there exists a, & M\ such that y; €
Vg, - It is clear now that {Vy:a € A} U {Wu-ni¢=N} is a count-

able subcover for C. Hence C is TQ—LindeIBf.

Since every closed set is weakly closed, we have the fol-

lowing corollary to Lemma 2.28.

COROLLARY 2.29. A ti—aﬂoéed proper subset of a p-Lin-
deli§ space 4is 'rj—L.énde,?,b'ﬁ (i &4y 1,3 =1.2).

Using a similar technique as above, we obtain the following !

COROLLARY 2.30. A Ti—c,f.clée.d proper subset of a p-compact
space A4 Tj-compacx 2 F 9z 3.9 =3,2).

It is important to note that the word "proper" in Lemma
2.28 can not be removed. For example, R is Tc-closed but R is

not Td-Lindelaf in example 2.16.

We now obtain four alternative characterizations of p-Lin-

delof spaces.

THEOREM 2.31. Fon the bitopological space (X,T,,T,) the
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following are equivalent:
(a) (X,1,T,) 44 p-Lindeld §.
(b) Every p-closed gamily with the countable (internsecition phoper-
ty has nonempty Ainternsection.,
(c) For each non-empty set V in Ty , the topology T L (V) s Lin-
delof, and for each non-empy ae)t V.in T, the topof.ogg
T,(V) 45 Lindeld{.
(e) Each -rl—waa.!aty closed propen subset of X L4 rz—Lmde,Eé'ﬁ,
and each Tz—weak,?.y closed proper subset of X 48 Tl-undeﬁiié.
Proof. The fact that (a) is equivalent to (b) is obvious.
The equivalence of (a), (c¢) and (d) can be obtained in an anal-
ogous way to the proof of [2,Theorem 2]. The fact that (a) im-
plies (e) is due to Lemma 2.28. The fact that (e) implies (e)

is obvious.

An easy characterization of s-Lindeldf spaces can be

found in the following theorem.

THEOREM 2.32. A bitopological space (X,7,,7,) 48 s-Lin-
delif 44 and only if every T,T,-closed family with the count-
able intersection property has nonempty intersection.

THEOREM 2.33. let (X,T sTy) be B-compact and (Y, 'IZ )
be B-Lindelif. Then (xxy,-rlm;,rzxrz) is B-Lindelf.

EXAMPLE 2.34. Let T¢ denote the cofinite topology on
R. Then (R.Tf,'l.' ) is p-compact. However, the space
(R TfXTf, d ) is not even p- Lmdelof, for the p-open cover

{Rx(R- {0})} U {(x,0):xe R} of R has no countable subcover.

2.35 [9]. A space (X.t T,) is said to be p-Hausdor{

1)
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if, for any distinct points x and y, there is a Tl—neighbour-

hood U of x and a T,.-neighbourhood V of y such that UN V = ¢.

2
We observe that if (X,Tl,TQJ is p-Hausdorff, then both T
and T, are T,-topologies. The following theorem characterizes

2 1
p-Hausdorff spaces.

THEOREM 2.36. The foflowing properties are equivalent:
(a) The bitopological space (X,Tl,Tz) s p-Hausdong§.
(b) For each x = X,

i) =) {c1,U :U  is a T, neighbourhood of x}
aeh o o 2
and
{x} =M {Clea:Ul1 is a 1, neighbourhood of x}.

aeh
(c) The diagonal D = {(x,x):x e X} 48 a closed subset <in each of
the product topologies (XXX,T,*T,) and (XXX, T XT, ).
Proog. (a) implies (b). Let x €X and y X such that y # x.

By (a) there exists a T,-open set vy and a T,-open set v, such

that ye V,, x eV, and V. n V, = ¢. This implies that y eCl,V

1 2
This proves the first part of (b). The proof of the second part

2n

of (b) is similar to the one we just proved.
(b) implies (c). Let (x,y) € XXX-D. Then x,y € X and x #
y. By the second part of (b), there exists a T,-open set U,

containing x such that y € X—C12U1. Let U2 = X—ClgU Then U

5 2

is a T,-open set and it is easy to check that (x,y) U xu,
XxX-D. Hence D is a closed set in the topological space

(XxX, T
closed subset of XxX.

(c) implies (a). Let x,y « X such that x # y. Then (x,y)

xT2). In a similar way we can prove that D is T,XT, -

eXxX-D. Since D is a'HfTQ—closed set, there exists a T,-open
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set U1 and a ‘Ez—open set U2

is clear now that x € Ul’ ¥ =1, and Ulﬂ u, = ¢

such that (x,y) EL‘1><U2 c XxXX-D. It

Recall that a space (X,T) in which every countable inter-

section of open sets is open, is called a P-4pace.

COROLLARY 2.37. let (X,T,,Tp)be a p-Hausdongf P-space.
Then evenry Ti—LLndaﬂ'cEﬁ subset 4s rj~c£oz=ed (f #£ 94 2.9 =1,2)
Proof. Let A be a Ti-—Lindel'éf subset and x € X-A. By

Theorem 2.36 we have

i

{x} M {Clan:Ua is a T neighbourhood of x}

(i # §; i, = 1,2). Since A < X-{x}, therefore {X - C1,0,:0 e A}
is a T;-open cover of the Ti—Lindelb'f set A. Thus there exists
a countable set A, <A such that {X «"tx) Va0 € ﬂl} is a cover

for A, i.e. AC U X-Cl.Uy. Let U= ﬁ U,- Then U is a
a el ael;

Tj—open set,contains x and U = X-A. Hence A is Tj—-cloged.
Using the same technique as above we obtain the following.

COROLLARY 2.38. Let (X,7,,T,) be p-Hausdorgg. Then eve-
ny ‘ri—compac,t Aubset 45 Tj—c!.oéed (% 3199 =1.2).

2.39 [6]. In a space (X,T,5T,), Ty 46 sald to be regulan
with respect fo T, if, for each point x in X and each T,-closed
set P such that xyf P, there are a T,-open set U and a T,-open
set V such that x €U, Pc Vand UNV = ¢ -

(X’Tl’T2) is p-tegularn if T, is regular with respect to

'r2 and vice versa.

2.40 [9]. In a bitopological space (X,TI,T2), we say that
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T, 44 coupled to T, iff for all Ue 1., C1,U = CL,U.

1 : 1

It is interesting to note that if T is regular with re-
spect to T, and T, is coupled to Tys then T, C'TQ. Thus, if
(XsTl
1,2) then T1 =T,

1 L]
It is also interesting to note that if T, is coupled to T, and
1

1

,12) is p-regular and T, is coupled to Tj (i # 3, 1,3 =
and the resulting single topology is regular.

T, is regular with respect to T then (X, Ty ) is regular.

2.41 [e]. A space (X,7,,T,) is said to be p-nommal if,
given a tl—closed set C and a T2-closed set F such that CN F = ¢,
there are a T,-open set G and a T,-open set V such that F = G,

CcVand Vng = ¢.

THEOREM 2.42. Eveny p-regulanr, p-Lindeldf bitopological
Apace (X, T1,12) L5 p-nowmal.

Eﬂggﬁ, Let A be a nonempty Tl—closed set and B be a non-
empty Tz—closed set with ANl B = $. Since (X’Tl’TQ) is p-regular
for each a € A, there exist a T,-open set Ga and a Tl~closed set
Fa with a « Ga = Fa < X-B. Also, for each b = B, there exist a
T,-open set: Cy and a T,-closed set M. withbe ¢ < My < X-A.

Let € = {C,:b B} U {X-B} and & = {c_:a =A} U {x-A}. Since €
and € are p-open covers for the p-Lindeldf space X, there
exist countable subcollectlons {Cl, s ..} of € and {Gl’GZ""}

of € such that A < UG and B < Ucl Let V1 = ¢, and, for

each positive 1nteger n>'1, et V = L_)F 5 For each
positive integer n, let H_ = L_)W Let v K_ivn and
o =
= \_)Hn. Then V = Tys He 12, A ©H and B < V. Furthermore,

xeH NV, then x = Hm N Vn for some m and n, and so

m n-1
x & (Gm - %?{Mi) n (Cn - };{Fi)' Considering separately the
cases m > n and m € n yields a contradiction and so Hn V = ¢.

Thus (X,Ti,T2) is p-normal. &
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Let X be a fixed nonempty set, and
EX = {(X,T,T"):Tand 7' are topologies on X} .
Define the partial ordering £ on B by:

1 ]
(X,Ti,Tz) (x5 T Ty ) iff T €Ty ad T, =T, .

Then we have the following theorem.

THEOREM 2.43. Let ® = {(x,T,1") B :(X,T,1') s a
pLindelif P-space} and #={(x,t,T") € B,: (X,7,1') 46 a p-Haus-
donff P-space}. If (X,1,,1,)edn ¥, then (X,7,,T,) 48 a mi-
nimal elLement of ¥ and a mx,ime element of L.

___ﬁ Suppose (X, Tl.,"f ‘) e # such that (X, 'r < (X,Tl,Tg).
Therefore Tl S5 and TQCTQ' let GeT —{¢’} Then X- G is a
Tl—closed proper subset of X. Since (X,T

Corollary 2.29, X-G is T

1,T ) is p-Lindelof, by

2—Linde15f. But T2 =T,. Therefore X-G

is TEmLindelEf. Since (X,T?,T;) is p-Hausdorff P-space, by corol-
ofa

& g

lary 2.37, X-G is Ti—closed. Hence G EiTi. Consequently T 1

1

In a similar way we can show that Ty = Tg.

Now, let (X,T. T') e?f such that (X,T

1] 1]
<
: 1,12) < (X,Tl,Tz).
Let U T —{¢} Then X-U is a T

>
Then Ty c'rl and T21c:Té i—closed
proper subset of X. Since (X Tl’ 2) is p-Llndelof by Corecllary
2.29, X-U is T2-L1ndelof. But T, C:TQ. Therefore X-U is T2~L1nde—
1of. Since (X,Tl,T2) is p-Hausdorff P-space, bx corollary 2.37,
X-U is Tl-closed. Hence U €T,. Consequently Ty & Tyi In a simi-
'
lar way we can show that Ty, = Ty
Using the same technique as above we obtain the following

theorem.

THEOREM 2.44. Let @ = {(X,7,1') € B,:(X,T,T) & p-com-
pact}, and H = {(x,1,7) E‘BX:(X,T,T') 45 p-Hausdonggl. 14
(X,1q1,) € €n #, then (Xs1qo1y) 48 @ minimal element of ¥ and
a maximal element of €.

2.45 A function f:(X,Ti,T2)+(Y,Ul,U2) is p-continuous
Lg



(p-open, p-closed, p-homeomorphismrespectively) iff £:(X,7,) +
(Y,0,) and f£:(X,T,) > (Y,0,) are continuous(open, closed, homeo-

morphism, respectively).

THEOREM 2.46. Let f:(X,Tl,12) > (Y,01,02) be a p-contin-
uous onto map.
(a) I§ (X,T,,T,) 48 p-Lindelif (s-Lindelif, B-Lindelif, respec-
tively), (Y,0,,0,) 48 p-Lindeld{ (s-Lindeldf, B-Lindelif, res-
pectively)
(b) I¢ (X‘Tl‘Tz) L5 p-compact (s-compact, B-compact, hespective-
Ly), then (Y,0 02) L5 p-compact (s-compact, B-compact, respec-
tively).
(c) 14 £ 48 one-to-one, (Y, 0y ,02) 44 p-Hausdorngf P-space and
(X,7,,T,) 48 p-Lindeldd, then £ is a homeomorphism.
(d) 1§ £ 48 one-to-one, (Y,0,,0,) &5 p-Hausdorfg and (X,T,T,)
L5 p-compact, then f 48 a homeomorphism.

E&g_ﬁ.(a)hm:§'={va:a e A} U {Ua:a e A} be a p-open cover
(o.€A). Then

1’

of V such that V, = 01 2
{flfva):u.ezﬁ} U {fl(Ua):a e A} is a p-open cover of X because

and Uh g

f is p-continuous and onto. Since (X,Tl,T2) is p-Lindelof, there
exists a countable set Al < A such that

{Ei(va):azal} u {?%Uﬂ):aeﬁi} is a cover for X. Thus

'[\a'm’:t:)tE 131} U {Ua:a = Al} is a countable subcover of € for X.

The remaining parts of the statement (a) are similarly proved.
(b) The proof is similar to that in (a).

(c) It suffices to show that f is p-closed. Let A be a T,-closed
proper subset of X. Then, by Corollary 2.29, A is T2—Linde15f.

Hence f(A) is 0,-Lindelof because f:(X,Tz) * (Y,U2) is continuous.

2
By Corollary 2.37, f(A) is Oi—closed. Similarly, it can be shown
that the image of every TQ~closed subset of X is a cg—closed

subset of Y. Hence f is p-closed.

(d) The proof is similar to that in (c).
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3. Conditions under which a bitopological space is

reduced to a single topology.

THEOREM 3.1. let (X,7,,T,) be a Hausdorndg p-Lindelif

p-4pace. Then T2ty

Proog. Let G e Tl—{¢}. Then X-G is a Tl—closed proper sub-

set of X. By Corollary 2.29, X-G is T,-Lindeldf. By Corollary

2
2.37 we have: "every Lindelof subset of a Hausdorff P-space

(X,T) is closed". Thus X-G is T2—closed, i.e. G = 12. Hence

T, =« T,. Similarly we have T, =Ty Consequently T, =71

1 2 1 o

THEOREM 3.2. Llet (X,Ti,'rg) be a compact p-Hausdords

space. Then Ty = B
waoﬁ. Let G = - Then X-G is a Tl—closed subset of the

compact space (X,Tl). Therefore X-G is T, -compact. By Corollary

1

2.38, X-G is T2-closed, i.e. G e Ty- Hence Ty & Ty Similarly

we have T, =Ty Thus Ty = Ty

LEMMA 3.3. let (X,T7,,T,) be a p-Lindelof space and Let
F be a Ti—weafzﬂg closed set such that WInt, (X-F) # ¢. Then F 4s
Ti-unde,ﬁié.

Proog. Let g WInt2(X-F). Then there exists a T,-open set
G containing Qsuch that G N F is a countable set. Let € =
{CO;:OL = A} be a T,-open cover for F. For each x € X-I there
exists a T,-open set H(x) containing x such that H(x) N F is a
countable set. Since {C,:a e« A} U {G} U {H(x):x « X-F} is p-open
cover for the p-LindelBf space X, there exist two countable sets

A, « A and {xlx ...} € X-F such that

1 g

{Ca:a e:ﬁi} u{c} U {H(xi)’ H(XQ),".}iS a cover for X.

(==}
Since H(Xi) N F is countable, the set FN (L JH(x;)) is countable,
1=1
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say {yl,yz,...}. Let o, = A such that y, E:Cu (i €N). Then
{C a A } U {C J_E N} is a countable subcover of € €. F is

Tl»Llndelof

We can use the same technique as above to conclude the fol-
lowing theorem (We replace the word "countable" by the word

"empty" in the proof of Lemma 3.3).

THEOREM 3.4. Let (x,rl,tg) be a p-compact space and Let
F be a Tl—c,f,ozse.d set such that Intz(X—F) #¢. Then F 4is T,-com-

pact.

EXAMPLE 3.5. In the p-Lindeldf space (R,Td,rc), R is a
Td—closed set which is not Td-Lindelaf. This shows that
"WInt,(X-F) # ¢" is a necessary condition in Lemma 3.3.

THEOREM 3.6. Let (X,'rl,'c2) be a p-Hausdonff p-Lindeldf
space, and Let U be a 1 -weakly open set containing a fixed point
p. Then
(a) there emz T,-0pen sets C.(i € N) and a -cl—c,EOéad set F such

that p E;("lc c F c U; and,
(b) either p « Cl,(Xx-U), ox, there exist T,-open sets G, (i €W)
and a T, doaadéexFéuchthatpe ﬁG ¢

H___ﬁ. (a) Since pe U and U is Ti-weakly open set, there
exists a T,-open set A such that p « A and A-U is a countable set.
For each x & X-U there exist a T,-open set B(x) and a T,-open set
G(x) such that x € G(x), p € B(x) and B(x) 1 G(x) = 9. Let D(x) =
AN B(x). Then pe D(x), D(x) « Tys D(x) N G(x) = ¢ , and
D(x)-U is a countable set. Since X-U is a T,-weakly closed proper
subset of the p-Lindelof space X, by Lemma 2.28, X-U is T,-Linde-
18f. Therefore the T,-open cover {6(x):x « X-U} has a countable

subcover {G(xl),G(x2),...} . Since D(x,)-U (i €WN) is a count-
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able set, the set \_)D(x )-U is countable, say {yi,yQ,...}. Let
i'D(X){y}(lv.:]N} Then C, (1+:N) is a Ty
because (Xt ) is a T ,-space. Let F mX—G(x )1 Then

(ﬁc ) N G(x ) =& for all { « N. Hence (ﬁc )n (UG(X ) = ¢

-open set

mc c F. Since {G(x ):j < I} is a cover for X-U, then

FcU. Hencep:mc =2 (o &
i=1

(b) If p e Cl2(X——U), then we are done. Suppose p # Clz(X—U).
Therefore p e Int,U, i.e. Int,(U) # ¢. By Lemma 3.3, X-U is

1
and a T, -open set G(x) such that p = G(x), x € C(x) and

T,-Lindeldof. For each x « X-U there exist a T,-open set C(x)

C(x) n 6(x) =¢ . The Tl-open cover {C(x):x € X-U} has a count-
able subcover {C(x ) C(xg) sk % Dek G; = G(x;) and F =
ﬁx C(x.). Then pe f‘\G c Fe U,
i=1 4 i=1
Using the same technique as in the proof of Theorem 3.6,

we get the following theorem.

THEOREM 3.7. Let (X,T,,T,) be a p-Hausdornfg p-compact

dpace and, Let U be a T -open set containing a fixed point p.

Then

(a) there exist a T -open set C and a T,-closed set F such that
peCcFcU, and

(b) either pe C1,(x-U) o1 there exist a t,-open set G and a

Tl—a&o¢ed set F such that p= G Fc U.

COROLLARY 3.8. A p-Hausdorff p-compact space 45 p-he-
gular (and hence, by Theorem 2.42, 45 p-normal).
Proog. Use Theorem 3.7 (a).

COROLLARY 3.9. A p-Hausdorff p-Lindelif p-space 44
p-tegulan (and hence, by Theorem 2.42, 4is p-nommal).
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Proog. Use Theorem 3.7 (a).

COROLLARY 3.10. Let (X,7,,7,) be a p-Hausdonff p-compact
space. If Int,U # ¢ for all U e 1,-{X}, then 1, = 1,.

P&Ooé. Let U e:Ti—{X}. Then X-U is a Ti—clcsed set with
Int,U # ¢ . By Theorem 3.4 X-U is T

ry 2.38, X-U is T

l—compact. Hence, by Corolla-

-closed, i.e. U e1,.

2 2

COROLLARY 3.11. Let (X,7,,T,) be a p-Hausdonrd§ p-compact
space. 1§ Int,U # ¢ gor all U eri—{x}, and Int,V # $ gor all

Ve 12—{x}. Then Ty = Ty

Proog. Use corollary 3.10.

It is interesting to note that Cooke and Reilly [2] obtain-
ed a theorem [2, Theorem N] for B-compact, s-compact and bicompact
spaces but did not get any analogous result for p-compact spaces.
For this reason, Corollary 3.11 is an extension of the result [2,

Theorem 4] i

COROLLARY 3.12. lLet (X,74 ,T2) be a p-Hausdorndf p-Linde-
L6§ P-space. If Int,U # ¢ for all U e T,-{x}, and Int Vv # b

for all v « 1,-{x}, Zhen T, = 1,.

Proog. Let U E:Tl-{X}. Then X-U is a Tl—closed set with
Int,U # $. By Lemma 3.3 X-U is Ti—Lindele. Hence by Corollary

2.37, X-U is a T,-closed set, i.e. U €1 Thus Tlc: T,. Similar-

2 2 2

ly we can prove T, = T4. Thus Ty = Tpe

THEOREM 3.13. Llet (X,T,,T,) be a p-Hausdorf4 space and
(X,7,) a Lindeldf space. Let U be a t, -weakly open set and
p « U. Then there Wsz"’T’e” sets G, (i=NN) and a 1,-closed
set F such that p e QGi o F <'1.
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Proof. For each x € X-U there exist a T, -open set G(x)

2

and a T,-open set H(x) such that x e« H(x), pe G(x) and

G(x) n H(x) =9 . Since X-U is a T,-weakly closed set in the

Lindelof space (X’Tl)' therefore X-U is T,-Lindelof. Thus the

1
T,-open cover {H(x) :x « x-U} has a countable subcover
{H(x ), H(x i het' F = (ﬁlx H(X ). Then F is T,-closed and
Ft:U. Take Gl. = G(x;). Then peﬂe cF cU.

i=1

Using a similar technique as above we can prove the fol-

lowing theorem.

THEOREM 3.14. Let (X,7,,T,) be a p-Hausdorff space and
(x,T,) a compact space. Let U be a T,-0pen set and p e U. Then
there are a t,-open set G and a T,-closed set F such that
peGecF cl.

COROLLARY 3.15. If (X,7,,T,) 46 a Lindelof p-Hausdorfg
P-4pace, then T 2
Proof. Use Theorem 3.13.

=T
Since every B-Lindeldf (s-Lindel®f) space is Lindeldf, we
have the following corollary.

COROLLARY 3.16. If (X,Tl,t2) 5 p-Hausdonf4 P-space
and either B-Lindelig on s-Lindeldf, then t, = T,.

As a corollary to Theorem 3.14 we have the following re-

sult (see [2, Theorem 4]).

COROLLARY 3.17. If (X,7,,T,) 45 p-Hausdorf§ and eithen

B-compact orn s-compact, then Ty % oy
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4., Conclusion. As we noted , our results in this paper are

generalizations of well-known classical theorems as well as ex-
tension of some theorems in the literature.

Naturally, any result stated in terms of Ty and T, has a
'dual' in terms of T, and Ty The definitions of separation and
covering properties of two topologies Ty and Tys such as p-Haus-
dorff and p—Lindelaf, of course reduce to the usual separation
and covering properties of one topology Tys such as Hausdorff

when we take T, = T,3 and the theorems quoted above then yield

as corollarieslthe classical results of which they are generali-
zations.

As an example of theorems which yield well known classical
results are theorems 2.15, 2.33, 2.36, 2.42, 2.43, 2.44 and 2.u46.

Theorem 2.8 is an analogue to [2, Theorem 1] while Theorem
2.3 (a,c,d) is an analogue to [2, Theorem 2]. We notice also
that Corollary 3.11 is an extension of [2, Theorem 4]. Theorem
3.7 (a) implies the results in [4, Theorem 12 and 13] and [7,
Theorem 2.18]. It is also clear that Corollary 2.30 is an anal-
ogue to [7, Theorem 2.9] and Corollary 2.38 is an analogue to
[7, Lemma 2.11]. It is clear too that Theorems 2.8, 2.42 and

Corollary 2.20 imply the result in [6, Lemma 3.2].
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