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o PAIRWISE LINDELOF SPACES

by

Ali A. FORA and Hasan L HDEIB

A B ST RA CT. In this paper we define p:rirwiseLindelof

spaces and study their properties and their relations

with other topological spaces. We also study certain

conditions by which a bitopological space will reduce to

a single topology. Several examples are discussed and

many well known theorems are generalized concerning Lin-

delof spaces.

RESUMEN. En este articulo se definen espacios p-Lin-

delof y se estudian sus propiedades y relaciones con

otros tipos de espacios topologicos. Tambien se estudian

ciertas condiciones bajo las cuales un espacio bitopologi-

co (con dos topologias) se reduce a uno con una sola topo-

logla. Se discuten varios ejemplos y se generalizan va-

rios teoremas sobre espacios d~ Lindelof.

1. I n t roduce ion. Kelly [6] introduced the notion of a bito-

pological space, i.e. a triple (X,T
1
,T

2
) where X is a set and

T
1

, T
2

are two topologies on X, he also defined pairwise Haus-
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dorff, pairwise regular, pairwise normal spaces, and obtained

generalizations of several standard results such as Urysohn's

Lemma and the Tietze extension theorem. Several authors

have since considered the problem of defining compactness for

such spaces: see Kim [7], Fletcher, Hoyle and Patty [4], and Bir-

san [1]. Cooke and Reilly [2] have discussed the relations be-

tween these definitions.

In this paper we give a definition of pairwise Lindelof

bitopological spaces and derive some related results.

We will use p- , s- to denote p a in w ~ e and ~ em i- , respect-

ively, e.g. p- compact, s- compact stand for pairwise compact

and semi-compact respectively.

The L.-closure, L.-interior of a set A will be denoted by
l l

and IntiA respectively. The product topology of L
1

and L
2

be denoted by L1xT2.

Let R, I, N denote the set of all real numbers, the inter-

val [0,1], and the natural numbers respectively. Let L
d
, L , L ,

u c

Ll' L
r

denote the ~enete, U6ual, ~o~ountable, lent-~y and

kigth-~y topologies on R (or I).

Cl.A
l

will

,

2. Pairwise Linde15f Spaces. Let us recall known defini-

tions which are used in the sequel.

2.1 [4J. A cover ~of the bitopological space (X,L
1
,L

2
)

is called L1L2-0 p e n if 'U.. eLl U L2' If, in addition, u.. contains
at least one non-empty member of L

1
and at least one non-empty

member of L
2
, it is_called p-open.

2.2 [4]. A bitopological space lS called p-~ompa~ if

every p-open cover of the space has a finite subcover.
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2.3 [3]. A bitopological space is calle s-~ompact if eve-

ry T
1
T
2
-open cover of the space has a finite subcover.

2.4 [1]. A bitopological space (X.T
1
.T
2
) is called T

1
~om-

pact with nehpect ~o T
2

if for each T
1
-open cover of X there is

a finite T
2
-open subcover.

2.5 [1]. A bitopological space (X. T
1
.T
2
) is called

B-eompact if it is T
1

compact with respect to T
2

and T
2

compact

with respecto to T
1
.

If we replace the word "finite" by the word "countable" in

definitions 2.2, 2.3 and 2.4, then we obtain the definition of

p-Lindelofi, s-Lindelofi, and (X,T
1
,T

2
) ~ T

1
Lindelofi with ne-

~pect ~o T
2
, respectively.

2.6 A bitopological space (X,T
1
,T

2
) is called B-Lindelon

if it is T
1

Lindelof with respecto to T
2

and T
2

Lindeloff with

respecto to T
1
.

It lS clear that (X,T
1
,T

2
) is s-Lindelof if and only if

(X,T)is Lindelof where T is the least-upper-bound topology

of T
1

and T
2
. It is also clear that if (X,T

1
,T
2
) is B-Lindeloff

then each (X,T.) must be a Lindelof space for i = 1,2.
l

2.7 Wh~n we say that a bitopological space (X,T
1
,T
2
) has

a particular topological property, without referring specially

to T
1

or T
2
, we shall then mean that both T

1
and T

2
have the

property; for instance, (X,T
1
,T

2
) is said to be Hausdoff if

both (X,T
1
) and (X,T

2
) are Hausdorff.

THEOREM 2.8. T h e bdopofogiea1. !.lpaee r x, T l' T 2) i!.l e -L in -
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d e lC i6 -< -6 a n d only -< -6 d ~ L i. - n d e 1 .o 6 a n d p -L i. - n d e lC i6 ·

P~oo6. Necessity follows inmediately from the observation

that any p-open,L
l
-open or L

2
-open cover of (X,Ll,L2) is

pen. Conversely, if a L
1
L
2
-open cover of (X,Ll,L2) is

p-open, then it is L
l
-open or L

2
-open.

L L -0-
1 2

not

EXAMPLE 2.9. The bitopological space (IR,L
d
,Lc) is p-Lin-

delof but is not s-Lindelof.

EXAMPLE 2.10. Consider the two topologies Ll'L2 on R

defined by the basis

~l = {(-ro,a):a > O} U {{x}:x > O} , and

~2 = {(a, ro):a < O} U {{x}:x < O} .

Then (IR,L
l
,L

2
) is p-Lindelof but is not Lindelof. It is also

clear that (R,L
l
,L

2
) is not B-Lindelof, for the L

l
-open cover

.{(-ro,l)} U {{x}:x ~ l} of R has no countable L
2
-open subcover.

2.11 [8J. A bitopological space (X,L
l
,L

2
) is called

p-Qountably 'Qompact if every countably p-open cover of X pas a

finite subcover.

2.12 A bitopological space (X,L
l
,L

2
) is called S-Qount-

able Qompact if every countably L
1
L
2
-open cover of X has a fin-

ite subcover.

2.13 A bitopological space (X,L
l
,L

2
) is called L

l
-Qount-

ably Qompact with ~~pect to L
2

if for each countably Ll-open

cover of X there is a finite L
2
-open subcover.

2.14 A bitopological space (X,L
l
,L

2
) is called B-QOunt-

albtj Qompact if it is L
1

countably compact with respect to L2

and L
2

countably compact with respecto to Ll.

The following fact is obvious:
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THEOREM 2 .1 5 . (i) EvVty p(Jte-6p. s ,B ) - c o m p a c t -6pace J .A

p(Jte-6p. s B ) -c .o u n ta b ly c o m p a c t a n d p(Jte-6p. s B ) -L in d e lo n .

(ii) EveJty p(Jte-6p. s ,B ) -c o u n ta b ly c o m p a c t p(Jte-6p. s,B)-Linde-

lo n -6pace J .A p (Jte-6P . s, B ) - c o m p a c t .

EXAMPLE 2 .1 6 . The bitopological space (R,Ld,L
C

) is a

p-Lindelof space which is neither p-countably compact nor p-com-

pact.

EXAMPLE 2.17. Let Ls denotes the Sorgenfrey topology

on R. Then the bitopological space (R,L ,L ) is s-Lindelof
u s

but is not B-Lindelof, because the L -open cover {[-n,n):n E N }
s

of R has no L -open countable subcover. It is also clear that
u

the space (R,L ,L ) is neither s-countably compact nor s-compact.
u s

EXAMPLE 2 .1 8 . It is clear that the bitopological space

(N,Ld,L
d
) is B-Lindelof but is neither B-countably compact nor

B-compact.

THEOREM 2 .1 9 . In (x , L l' T 2) J .A a h V te c iU a J ty L in d e lo n

-6pace - th e n d i-6 s- L in d e lo n .

P f tO 0 6 . Let <e = {U
a
: a E i\} U {V S :S e; I"] be a L

1
L
2
-open

cover of X, where Ua e: L1 for each a e: I\. and VS e: L2 for each

BE f. Since U = U{U
a

a e: I\.} is L
1
-Lindelof, there exists a

countable set 1\.1c I\. such that U = U {ua :a e: 1 \ .1 } ' Similarly,

since V = U{VS:S E r} is L
2
-Lindelof, there exists a countable

set f
1

c f such that V = U{VS:S e: f
1
}.,It is clear that

{U :a € I\. } U {VS:S e: f } is a countable subcover of ~ for X.
a 1 1

COROLLARY 2.20. EvVty s e s io n d c o u n ta b le b d o p o lo g ic .a l

-6pace J .A s - U n d e lo 6 .
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E X A M P L E 2 .2 1 . Let X = RXI and < be the lexicographical

order on X. Let

~1 = {[x,y):x < y ; x,y E X} and ~2 = {(x,y]:x < y ; x,y EX}.

Let T
1
,T

2
be the topologies on X which generated by the basis ~1

and ~2' respectively. Then (X,T
1
,T

2
) is a Lindelof space which

is not p-Linde16f, because the p-open cover

{ [ ( a , x ) , (1 ,x )) , ( ( a , x ) , O,x)] :x E Id

of X has no countable subcover. It is clear that (X,T
1
,T2) is

neither s-Lindelof nor B-Lindelof.

E X A M P L E 2.22. Let X and T
1

be the same as in example

2.21. Then the bitopological space (X,T
1
,T
2
) is not hereditary

Lindelof but it is s-Lindelof.

E X A M P L E 2.23. Let X = R, '8
1

= {X,{x}:x E X-{O}} and

~2 = {X,{x}:x E X-{l}}. Let T
1
,T

2
be the topologies on X which are

generated by the bases ~1 and '8
2
' respectively. Then (X,T1,T2)

is B-Linde16f, for any T
1
-open cover of X or any T2-open.cover

of X must contain X as a member. However, (X,T
1
,T
2
) is not p-Lin-

de16f, for the p-open cover {{x}:x E X} of X has no countable

subcover ,

We may summarize some of the above examples and theorems

by the diagram on tre nextpage (T stands for theorem while E stands

for example).

2.24 [7J. If T is a topology on X and A is a non-empty

subset of X then the adjoint topology (denoted by T(A)) is the

topology on X defined by T(A) = {¢,X} U {AUB: BET}.
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NO E2.23

B-Lindelofs-Lindelof
o:;:----------------.~

YE

T 2 8 E

NO E2.17

I

p-Lindelof
----------------~

NO E2.10

o

2.21

Lindelof

2.25 A family 7of nonvoid subsets of X is T
1
T
2
-closed if

every member of Y is T
1
-closed or T

2
-closed.

2.26 [8]. A family 1of nonvoid T
1
- or T

2
-closed sets

in X is p-cto~ed if 1 contains members F
1

and F
2

such that F
1

is a T
1
-closed proper subset of X and F

2
is a T

2
-closed proper

subset of X.

2.27 [6]. A set U in a topological space (X,T) lS called

w e a k ly o p e ~ if for any p E U there exists an open set V contain-

ing p such that V~U is a countable set. A set F is called w e a k -

ly a ro s e d if X-F is weakly open. If A is a subset of X and p EX,

then p is called a w e a k -~ n te n io ~ p o ~ of A if there exists a

weakly open set V containing p such that V cA. The set of all

weak-interior points of a set A is denoted by WInt A.

It is clear that WInt A is the largest weakly open set

contained in A. It is also clear that WInt A = A if and only if

A is weakly open, and Int B cWInt B for any set B eX.

L E M M A 2 .2 8 . L e t (X, T
1
,T

2
) be a p -L ~ ~ d e 1 .o 6 -6 p a c .e . a ~ d c

be a w e a k ly c r o s e d p ~ o p ~ .6 u b ~ e t i~ r x, T 1)' T h e ~ c ~ T 2- L ~ ~ -

d e 1 .° n ·
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P ~ o 0 6 . Let C be a nonempty L
1
-weakly closed proper subset

of X and let ~ = {va:a E A } be a L
2
-open cover for C. For each

x E X-C there exists a L
1
-open set H(x) such that x e: H(x) and

H(x) n C is a countable set. Since C ~ ~ and C f . X, the n

{V :a EA} U {H(x):x E X-C} is a p-open cover for the p-Lindelof
a -

space X. Thus, there exists a countable set A
1

c A and a count-

able set {x
1
,x

2
, ...} c X-C such that {va:a E A1} U {H(x1),H(x2),··}

is a countable cover for X. Since H(x. )n C is countable for all
00 l 00

ie: lN , the set Cn(UH(x.)) is countable, say CO(UH(x.)) =
i=1 l i=1 l

{Y1'Y2, ...L Since Yi e: C, there exists ai e: A such that Yi e:

V
ai
' It is clear now that {va:a e: A

1
} U {Va.:i e: W} is a count-

l

able subcover for C. Hence C is L
2
-Lindelof.

COROLLARY 2.29.

d e lC i 6 -6pac.e £6 L j- L L n d e lC i 6

A L i - u o -6 e d p ~ o p ~ -6 u b -6 e X . 0 6 a p-L {.n -

(i f . j; i,j = 1,2).

Since every closed set is weakly closed, we have the fol-

lowing corollary to Lemma 2.28.

Using a similar technique as above, we obtain the following;;;

COROLLARY 2.30. A Li-uo-6ed p f tO P ~ -6 u b -6 e X . 06 a p -c .o m p a c t~ ~ ~

~pac.e i6 Lj-c.ompact (i f . j; i,j = 1,2).

It is important to note that the word "proper" in Lemma

2.28 can not be removed. For example, R is L -closed but R is
c

not Ld-Lindelof in example 2.16.

We now obtain four alternative characterizations of p-Lin-

delof spaces.
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O oU ow in g Me. e .q L U V a £ e .r u : .:

(a) (X,11,12) ~ p -L in d e l0 n .

(b) Ev~y p -c lo ~ e .d o a m ity w ith th e . c o u n ta b le . in t~ e e t io n p ~ o p ~ -

ty ha6 n o n em p ty ir u : .~ e e t io n ,

(c ) F o ~ e a c h n o n -em p ty ~et V in 1
1
, th e to p o lo g y T

2
(V) ~ L in -

d e la o , a n d o o ~ e a c h n o n -em p y ~et v in T
2
, th e to p o lo g y

11(V) ~ L in d e lo o ·

(e ) E a c h 1 1 -w e a k 1 .y c lo ~ e 'd p ~ o p ~ ~ u .b ~ e t 00 X c s T 2 -L in d e le in ,

a n d e a c h 1
2

-w e .a k 1 .y c lo ~ e d p ~ o p ~ .6 u .b ~e t : 0 -6 X ~ T1- L in d e lo -6.

P~006. The fact that (a) is equivalent to (b) is obvious.

The equivalence of (a), (c) and (d) can be obtained in an anal-

ogous way to the proof of [2,Theorem 2]. The fact that (a) im-

plies (e) is due to Lemma 2.28. The fact that (e) implies (e)

is obvious.

An easy characterization of s-Lindelof spaces can be

found in the following theorem.

THEOREM 2.32. A b i to p o lo g ie a £ ~ p a c e (X, 1 l' T2) ~ s- L in -

d e la n io a n d o n ly io e.v~y T11 2 -c lo ~ e d o am ity w ..{ ; th th e c o u n t-

a b le in teM e .e t io n pM p ~ y h iu . n o n em p ty ir u : .~ eetio n .

THEOREM

be B - L in d e la O.

, ,
2 .3 3 . L e t (X,T

1
,12) be B -c o m p a e t a n d (Y,T

1
,12)

T h e n (Xxy,11x1~,12X1;) ~ B -L in d e la 6 .

EXAMPLE 2.34. Let 1f denote the cofinite topology on

R. Then (R,lf'ld) is p-compact. Howeve·r, the space

(R
2
,lfX1f' ldX1d) is not even p-Lindelof, for the p-open cover

{R x(lR- {O})} U {( x, 0) :x e::: IR} of jR 2 has no countable subcover.

2.35 [9]. A space (X,11,12) is said to be p -H a ~ d o ~ o i
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if, for any distinct points x and y, there is a l1-neighbour-

hood U of x and a l2-neighbourhood V of y such that·U n V = ~ .

We observe that if (X,ll,l2) is p-Hausdorff, then both l1

and l2 are T
1
-topologies. The following theorem characterizes

p-Hausdorff spaces.

T H E O R E M 2.36 . The. ooUow-lng ptwpeJLtie.J.> aJte. e.qtU.val.e.n-t:

(a) The. b,[topofog-lQal. ~paQe. (X,l1,l2) ~ p-Ha~do~oO'

(b) Fo~ e.a~ x g X,

{x } = n {ci U : U
a. Et:. 1 a. a.

lS a l2 neighbourhood of x}

and

{x} = n {Cl U:U is a l1 neighbourhood of x}.
a. e z I : 2 a a

(c) The. diagonal. D = {(x,x):x g x} ~ a elo~e.d ~ub~e.t , [n e.ach On

the. ptwduct topofog-le.J.> (XXX,l1Xl2) and (XXX,l2Xl1)'

P~oo6. (a) implies (b). Let x E X and y E X such that y i- x ,

By (a) there exists a l1-open set V
1

and a l2-open set V
2

such

that y e: Vl' X E V2 and V1 n V2 = 4>. This implies that y e: C11 ~2'

This proves the first part of (b). The proof of the second part

of (b) is similar to the one we just proved.

(b) implies (c). Let (x,y) e: XXX-D. Then x,y e: X and x i-

y. By the second part of (b), there exists al
1
-open set U1

containing x such that y e: X-C1
2
U
1
· Let U

2
= X-C1

2
U
1
· Then U2

is a l2-open set and it is easy to check that (x,y) e: U1xU2 c

XXX-D. Hence D is a closed set in the topological space

(XxX, l1Xl2)' In a similar way we can prove that D is l2xl1-

closed subset of XxX.

(c) implies (a). Let x,y e: X such that x i- y. Then (x,y)

EXXX-D. Since D is a l{l2-closed set, there exists a l1-open

46



set U
1

and a T
2
-open set U

2
such that (x,y) E U

1
xU
2

e XXX-D. It

is clear now that x e :: U
1

, Y e::U
2

and U
1

n U
2

= <jJ •

Recall that a space (X,T) in which every countable inter-

section of open sets is open, is called a p -~ p a Q e .

T h e n ev~y T .-L in d e lo 6
l

P~006. Let A be a

Theorem 2.36 we have

.s u iis e t: M T. - e ro s e d (i ~ j; i , j = 1, 2 ) .
]

T.-Lindelof subset and x e::X-A. By
l

{x} = (\ {Cl.U:U is a T. neighbourhood of x}
o,e::I : : . l 0 , 0 , ]

(i ~ j; i,j = 1 ,2 ). Since A e X-{x}, therefore {X - Cl.U :0. e :: I : : . }
l 0 ,

T.-Lindelof set A. Thus there exists
l

set 1 : : .
1

el::.such that {X - CliUo,:a e :: 1 : : .
1

} is a cover

for A, i.e. A e U X-Cl.Uo," Let U = n U. Then U is a
ae::1::.1 l o,EI::.1a

T.-open set,contains x and U eX-A. Hence A is T.-closed.
] ]

lS a T.-open cover of the
l

a countable

Using the same technique as above we obtain the following.

COROLLARY 2.38. L e ; t (X,T
1
,T
2
) be p -H a .u 6 d o J z .6 6 . T h e n eve-

f1 .Y T. - Q o m p a c . t -6 u b ~ e ; t M T. - ctM e d (i ~ j; i, j = 1 ,2 ).
l ]

2.39 [6] . In a space (X,T
1
,T
2
), T

1
--L6 ~ c u : .d to be Jz.egui.M

w U h Jz.e-6p e a to T
2

if, for each point x in X and each T
1
-closed

set P such that xl- P, there are a T
1
-open set U and a T

2
-open

set V such that x e::U, P e V and U n V = <jJ

(X,T
1
,T
2
) is p-Jz.egui.a.Jz.if T

1
is regular with respect to

T
2

and vice versa.

2.40 [9J. In a bitopological space (X,T
1
,T
2
), we say that
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It is interesting to note that if L
1

is regular with re-

spect to L
2

and L
2

is coupled to L
1
, then L

1
CL2. Thus, if

(X,L
1
,L

2
) is p-regular and Li is coupled to L

j
(i I j, i,j =

1,2) then L
1

= L
2

and the resulting single topology is regular.
, r

It is also interesting to note that if L
1

is coupled to L
2

and
r r,

L
1

is regular with respect to L
2

then (X,L
1
) is regular.

2.41 [6] . A space (X,L
1
,L
2
) is said to be p-no!U11l:Lt if,

given a L
1
-closed set C and a L

2
-closed set F such that en F = ¢,

there are a L
1
-open set G and a L

2
-open set V such that F c G,

Cc V and V n G = <jJ.

positive integer n, let H
n

THEOREM 2.42. E veJty p-Jtegu1.aJt, p- L i .Y l .d e io 6 bdopologic.a1.

~pac.e (X, L
1
,L
2
) ~ p-no!U11l:Lt.

PJtoon. Let A be a nonempty L
1
-closed set and B be a non-

empty L
2
-closed set with An B = <jJ. Since (X,L

1
,L

2
) is p-regular

for each a E A, there exist a L
2
-open set G

a
and a L

1
-closed set

F with a L G c F c X-B. Also, for each b E B, there exist a
a a a

L
1
-open se t- eband a L

2
-closed set M

b
with b e: C

b
c M

b
eX-A.

Let e = {Cb:b E B} U {X-B} and ~ = {Ga:a EA} U {X-A}. Since e
and ~ are p-open covers for the p-e Li.ndeLof space X, there

exist countable subcollections {C
1
,C
2
, ...} of ~ and {G

1
,G
2
, ...}

00 00

of g such that A c; U G. and B c Ve .. Let V1 = C
1

and, for
i=1 l l=1 l n-1

each positive integer n > 1, let Vn = e - U F.. For each
n n i=1 l 00

U M .. Let V = U v
i=1 l n=1 n

Then VEL l' H liE L2 ' A cHand B c V. Furthermore,

= G
n

and
co

H = U H .
n=1 n

-

x E H n V, then x E H n Vn for some m and n, and so
m

m n-1
x e: (G - U M.) n (C - U F .). Considering separately the

m i=1 l n i=1 l

cases m > nand m ~ n yields a contradiction and so H n V = <jJ.

Thus (X,L
1
,L

2
) is p-normal. •
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Let X be a fixed non empty set, and

'B
X

= {( X,T ,T '):T and T I are topologies on X} .

Define the partial ordering ~ on 'B
X

by:

Then we have the following theorem.

THEOREM 2.43. L e t f = {( X,T ,T') E <EX:(X,T ,T ') b, a

p .L L n d e 1 .o n P - .6 p a c .e J a n d j f = {( X,T ,T') e: 'Ex: r x, T ,T') b, a p -H a lL 6 -

d o n 6 6 p-.6pac.e}. 16 (X,T
1
,T
2
) E in 1/, th e n (X,T

1
',T

2
) b, a r n i-

iU .m a 1 . e 1 .em e .n t 0 6 ! f a n d a m lx .U n a 1 . e 1 .em e r z ,t 06 i..

P n o o n . Suppose (X,T~,T~) Elf such that (X,T~,T~) ~ (X,T
1
,T
2
).

Therefore T~ c: T1 and T~ c: T2' Let G e: T1-H }. Then X·-G is a

T
1
-closed proper subset of X. Since (X,T

1
,T
2
) is p-Lindelof, by

.-.
Corollary 2.29, X-G is T

2
-Lindelof. But T; C:T2" Therefore X-G

is T~-Lindelof. Since (X,T~,T~) is p-Hausdorff P-space, by corol-

lary 2.37, X-G is T~-closed. Hence G e::T~. Consequently T
1

= T~.

In a similar way we can show that T
2

= T~.

Now, let (X,T~,T~) e::£ such that (X,T
1
,T
2
) ~ (X,T~,T;).

, , ,
Then TiC: T1 and T2 c: T2' Let U e :: Ti-a}. Then X-U is a Ti-closed

proper subset of X. Since (X,T~,T~) is p-Lindelof, by Corollary

2.29, X-U is T~-Lindelof. But T
2

c: T;. Therefore X-U is T
2
-Linde-

lof. Since (X,T
1
,T
2
) is p-Hausdorff P-space, by corollary 2.37,

,
X-U is T i-closed. Hence U E: Tl' Consequently T1 = T t ' In a simi-

I

lar way we can show that T
2

= T
2
.

Using the same technique as above we obtain the following

theorem.

, I

THEOREM 2.44. L e t .re = {(X,T,T ) E'13
X
:(X,T,T ) b, p-c.om-

p a d } , a n d Jf = {(X,T,T') E<EX:(X,T,T') J v 6 p -H a lL 6 d o n 6 6 } . 1 6

(X ,T1 'T2) E e n J f , th e n (X,T1 'T2) b, a m L vU m a l. e .1 em e r z ,t a 6 jf a n d

a m a x im a l . e1.emerz,ta n ~ .

2.45
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(p-op~n, p-cto~~d, p-hom~omo~phUm,respectively) iff f:(X,L
1
) +

(Y,0
1
) and f:(X,L

2
) + (Y,0

2
) are continuous(open, closed, homeo-

morphism, respectively).

THEOREM 2 .4 6 . Let f:(X,L
1
,L
2
) + (Y,0

1
,0
2
) be. a P-c.on..t.in-

u o lL6 0 VLtornp .

(a) Ifi (X,L
1
,L
2
) ~ p-Lindelofi (s-Lindelo6, B-Lindelo6, ~~p~c.-

tivefy), (Y,0
1
,0
2
) ~ p-Lindelo6 (s-Lindefo6, B-Lindelo6, ~~-

p~c.tivefy) .

(b) 16 (X,L
1
,L

2
) ~ p-c.ompact (s-c.ompac.t, B-c.ompac.t, ~~p~c.tiv~-

fy), then (Y,0
1
,0
2
) ~ p-c.ompac.t (s-c.ompac.t, B-c.ompac.t, ~~pec.-

tivefy) .

(c ) 16 f ~ one-to-one., (Y, 01'02) ~ p-HaU6do~fi6 P-~pac.e. and

(X,L
1
,L

2
) ~ p-Lindefo6, th e n . f u a home.omo~pYU~m.

(d) Ifi f ~ one.-to-one., (Y,0
1
,0
2
) ~ p-HalL6do~6fi and (X,L

1
,L
2
)

~ p-c.ompac.t, the.n f ~ a homeomo~p~m.

PMo6. (a)let e= {va :a e :: L l} U {ua :a e :: L l} be a p-open cover

of V such that " « e :: 01 and U
a

e :: 02 (a e ::L l). Then

-1 } {-1 }{f (V ):0'. e ::.6 . U f (U ):0'. e :: L l is a p-open cover of X because
a a

f is p-continuous and onto. Since (X,L
1
,L

2
) is p-Lindelof, there

exists a countable set L l
1
C L l such that

-1 } {-1 }
{f (V a ) :ae ::L l1 U f (U

a
) :ae ::L l1 is a cover for X. Thus

{va :a e: L l
1

} U {ua :a e :: L l
1

} is a countable subcover of <e for X.

The remaining parts of the statement (a) are similarly proved.

(b) The proof is similar to that in (a).

(c) It suffices to show that f is p-closed. Let A be aLl-closed

proper subset of X. Then, by Corollary 2.29, A is L
2
-Lindelof.

Hence f(A) is O
2
-Lindelof because f:(X,L

2
) + (Y,0

2
) is continuous.

By Corollary 2.37, f(A) is 0
1
-closed. Similarly, it can be shown

that the image of every L
2
-closed subset of X is a O

2
-closed

subset of Y. Hence f is p-closed.

(d) The proof is similar to that in (c).
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3. Conditions under which a bitopological space is

reduced to a single topdldgy.

T H E O R E M 3 .1 . L e t (X ,L
1
,T

2
) b e . a H a U 6 d o ! l.6 6 p -U n d e lo 6

p-~pace.. T h e .n T
1

= L
2
.

P ! l.o o f i . Let G E L1-{~}. Then X-G is a T
1
-closed proper sub-

set of X. By Corollary 2.29, X-G is T
2
-Lindelof. By Corollary

2.37 we have: "every Lindelof subset of a Hausdorff P-space

(X,T) is closed". Thus X-G is L
2
-closed, i.e. G E T

2
. Hence

L
1
C L

2
· Similarly we have T

2
CL
1
· Consequently T

1
= L

2
.

T H E O R E M 3 .2 . L e t (X,T
1
,T

2
) b e . a c o m p a c t p -H a U 6 d o ! l .6 6

~ p a c e . . T h e .n T
1

= T
2
.

P ! l.o o 6 . Let G E T
1
. Then X-G is a T

1
-closed subset of the

compact space (X,T
1
). Therefore X-G is T

1
-compact. By Corollary

2.38, X-G is L
2
-closed, i.e. G E T

2
. Hence T

1
C T

2
. Similarly

we have T
2
C T

1
· Thus T

1
= T

2
.

LE~1A 3. 3. L e t (X, L l' L 2) b e . a p- U n d e lo fi ~ p a c e . a n d . f . .e . : t

F b e . a T
1

-w e .a Q ty e io ~ e .d ~et ~ u c h th a t WInt
2
(X-F) 1 ~. T h e .n F ~

T 1- U n d e . . f . .o6 .

P ! l.o o 6 . Let q E WInt
2
(X-F). Then there exists a T

2
-open set

G containing q such that G n F is a countable set. Let ~ =

{Ca:a E 6} be a T
1
-open cover for F. For each x E X-F there

exists a T
1
-open set H(x) containi?g x such that H(x) n F is a

countable set. Since {Ca:a E 6} U {G} U {H(x):x E x-rI is p-open

cover for the p-Lindelof space X, there exist two countable sets

6
1
C 6 and {x

1
x
2
' ...} C X-F such that

{ca:a E6
1
} U {G} U {H(X

1
), H(x

2
), ...} is a cover for X.

00

Since H(x.) n F is countable, the set F n (U H( x ,» is countable,
l i=1 l
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say {Y1'Y2' ...}. Let ui

{Cu:u e:6
1
} U {CU{ie: N }

L
1
-Lindelof.

e 6 such that y. e::Cu. (i e:IN). Then
l l

is a countable subcover of e, i.e. F is

We can use the same technique as above to conclude the fol-

lowing theorem (We replace the word "countable" by the word

"empty" in the proof of Lemma 3.3).

THEOREM 3.4. L e t (X, L l' L2) be a p -e .o m p a c t .opae.ea n d le t

F b e a L
1
-c..fo.oed.oet .o u e .h th a t Int

2
(X-F) 1 ~. T h e n F ~ L

1
-e.om-

p a c t .

EXAMPLE 3 .5 . In the p-Lindelof space (IR,L
d
,L

c
)' 1R is a

Ld-closed set which is not Ld-Lindelof. This shows that

rrWInt2(X-F) 1 ~" is a necessary condition in Lemma 3.3.

THEOREM 3 .6 .

.opae.e, a n d le t u be a

p. T h e n

( a ) th v r .e .

th a t

L e t (X,L
1
,L
2
) b e . a p -H a u .o d o ~ 6 6 p -L ~ d e . fo 6

Li-weaU!! o p e n .0 e t: e.on . t .c U ru .n g a 6 - ix e d p o -< .n t

ewt
oo

L 1 -o p e n s e ts

p e::nc. e Fe U;
i=1 l

(b) e c th e » : p e::C1
2
(X-U), o n , th v r .e . e w t J,2-open.ow G

i
Ci e::lN)

a n d a L 1 -c . . fo .o e d s e t : F .o u e .h th a t p e::Q G
i

e FeU.

P ~ o o 6 . (a) Since p e: U and U is L
1
-weakly open set, there

exists a Li-open set A such that p e: A and A-U is a countable set.

For each x e: X-U there exist a L
1
-open set B(x) and a L

2
-open set

G(x) such that x e: G(x), p e: B(x) and B(x) n G(x) = ~. Let D(x) =

An B(x). Then Pe: D(x), D(x) e::Ll, D(x ) n G(x) = <f>, and

D(x)-U is a countable set. Since X-U is a L
1
-weakly closed proper

subset of the p-Lindelof space X, by Lemma 2.28, X-U is L
2
-Linde-

lof. Therefore the L
2
-open cover {G(x):x e: X-U} has a countable

subcover {G(x
1
),G(x

2
), ... } . Since D(xi)-U (i e: N) is a count-

Ci(i e: N ) a n d a Ll-c..fo.oed.oet F .o u e .h

a n d ;
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00

able set, the set U D( x .)-U lS countable, say {Yl ,Y
2
, ...}. Let

i=1 l

Ci = D(xi)-{yi} (i e: IN ). Then C
i

(ie:~) is a T
1
-open set

be~ause (X, T 1) is a T
1
-space. Let F = n X-G( x. ). Then

i=1 00 l 00

((1C .) n G(x .) = ¢ for all j e: IN . Hence ( n C .) n (U G(x . » = ¢
i=1 loo J i=1 l i=l J

i.e. (lC. e: F. Since {G(x.):j e: lfr} is a cover for X-U, then
i=1 l 00 J

F e: U. Hence p e: n C. e: F e: U .

i=l l

(b) If P e: C1
2
(X-U), then we are done. Suppose p ~ C1

2
(X-U).

Therefore p e: Int
2
U, i.e. Int

2
(U) ~ ¢. By Lemma 3.3, X-U lS

T1-Lindelof. For each x e: X-U there exist a T
1
-open set C(X)

and a T
2
-open set G(x) such that p e: G(x), x e: C(x) and

C(x) n G(x) = ~. The T
1
-open cover {C(x):x e: X-U} has a count-

able subcover {C(x
1
),C(X2), ...} . Let G. = G(x.) and F =

00 00 l l

(lx-C(x.). Then p e: (lG. e: Fe: U.
i=1 l i=1 l

Using the same technique as in the proof of Theorem 3.6,

we get the following theorem.

THEOREM 3.7. L e t (X,T
1
,T

2
) b e . a p -H a lL 6 d o J to o p -c .o m p a c t

~ p a c .e . a n d , le t U b e . a T
1
-o p e .n ~et c .o n ta in in g a o ix e .d p o in t p.

T h e .n

(a ) th e .J te . e .~ t a T
1
-ope.n s e : C a n d a T 2 -uM e .d s e : F s u c h . th a t

p e: C e: F e: u, a n d

(b) e i th e .J t p e: C1
2
(X-U) o n : th e .J te . e x is t : a T

2
-ope.n s e i: G a n d a

T 1 - U M e .d ~ e t: F /.)u c .h th a t p e: G e: F C:: u .

COROLLARY 3.8. A p -H a lL 6 d o J t6 o p -c .o m p a c .t ~ p a c .e . ~ p-Jte.-

g u ta J t (a n d h e .n c .e .~ b y T h e .o J te .m 2.42, ~ p -n o J tm a l) .

P J to o O ' Use Theorem 3.7 (a).

COROLLARY 3.9. A p -H a lL 6 d o J to o p -L in d e .io o p -~ p a c .e . ~

p -J te .g u ia J t (a n d h e .n c .e . , b y T h e .o J te .m 2.42~ ~ p -n o J tm a l) .
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P ~ o o 6 . Use Theorem 3.7 (a).

COROLLARY 3.10. L e t (x;r
1
,L

2
) b e . a p -H a £ L 6 d o ~ 6 6 p -c .o m p a e .t

~ p a c .e . . I6 Int
2
U 1 ¢ 6 o ~ a ll U E L

1
-{x}, th e n L

1
C L

2
.

P ~ o 6 . Let U E L
1
-{X}. Then X-U is a L

1
-closed set with

Int
2
U 1 ~ . By Theorem 3.4 X-U is L

1
-compact. Hence, by Corolla-

ry 2.38, X-U is L
2
-closed, i.e. U E L

2
.

COROLLARY 3.11. L e t (X, L l' L 2) b e . a p -H a £ L 6 d o ~ 6 6 p -c .o m p a e .t

~ p a c .e . . I6 Int
2
U 1 ¢ 6 o ~ a ll U EL1-{x}, a n d Int

1
V 1 ¢ 6 o ~ a ll

v « L
2
-{xL T h e .n . L

1
= L

2
.

P~oll' Use corollary 3.10.

It is interesting to note that Cooke and Reilly [2J obtain-

ed a theorem [2, Theorem 4J for B-compact, s-compact and bicompact

spaces but did not get any analogous result for p-compact spaces.

For this reason, Corollary 3.11 is an extension of the result [2,

Theorem 4] .

COROLLARY 3.12. L e t (X,L
1
,L

2
) b e . a p -H a £ L 6 d o ~ 6 6 p -U n d e .-

1 0 6 p -~ p a c .e . . I6 Int
2

U 1 ~ 6 o ~ a ll U e: L
1
-{x}, a n d Int

1
V 1- t .

6 o ~ a l l V E L
2
-{X}, th e .n . L

1
= L

2
.

P ~ o 6 . Let U EL
1

-{xL Then X-U is a L
1
-closed set with

Int
2
U 1~. By Lemma 3.3 X-U is Ll-Lindel~f. Hence by Corollary

2.37, X-U is a L
2
-closed set, i.e. U EL2. Thus L

1
C L

2
. Similar-

ly w e c a n p r o v e T
2

c T
1

· T h u s T
1

= T
2

.

THEOREM 3. 13. L e t (X, L l' L 2) b e . a p -H a £ L 6d o ~ 6 6 ~ p a c .e . a n .d

( X , L l )a U n d e .lo 6 ~ p a c .e . . L e t u b e . aL l -w e .a k £ y 0p e .n . ~ e t: a n d

p e:: u . T h e .n . th ~ e C U te L
2
-O P e .n . ~ W G

i
C i E IN ) a n d a T

1
-c .lM ed

- 00

~et F Midl th a t P E : (\ G. C FeU.
i=l l
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P n n o 6 . For each x E X-U there exist a T
2
-open set G(x)

and a T
1
-open set H(x) such that x E H(x). p E G(x) and

G(x) n H(x) = ~ . Since X-U is a 11-weakly closed set in the

Lindelof space (X,T
1
), therefore X-U is 11-Lindelof. Thus the

T
1
-open cover {H(x):x ~ X-U}oohas a countable subcover

{H(x
1
),H(x

2
), ... L Let F = (lX-H(x.). Then F is T

1
-closed and

l=l ool

FeU. Take G. = G( x . ). Then p E (1 G. c FeU.
l l i=l l

Using a similar technique as above we can prove the fol-

lowing theorem.

T H E O R E M 3 .1 4 . L e t (X,T
1
,T

2
) be a p -H a lL 6 d o f tn n .6 p a c .e a n d

(X,1
1

) a c .o m p a c t .6 p a c .e . L e t u be a T
1

- o p e n . s e i: a n d p E u . T h e n

tit eJte a.Jte a T 2 - a p e n .6e t: G a n .d a l l - c.1.0.6 e d .6e;t F .6u c .h th a t

pEG c FeU.

C O R O L L A R Y 3 . 1 5 . I n (x,« l' T 2) - i .J .> a L in .d e 1 . .o6 p -H a lL 6 d o f t6 n

p-.6pac.e, th e n 1
1

= T
2
.

P f to o 6 . Use Theorem 3.13.

Since every B-Lindelof (s-Lindel~f) space is Lindelof, we

have the following corollary.

C O R O L L A R Y 3 . 1 6 . 1 6 (X, 1
1
,1

2
) - i .J .> p -H a . lL 6 d o f t6 6 P-.6pac.e

a n d UtheJt B - L in d e lo 6 O ft s- U n d e 1 . .o 6, th e n . T1 = 1
2

,

As a corollary to Theorem 3.14 we have the following re-

sult (see [2, Theorem 4J).

C O R O L L A R Y 3. 17. 16 (x , T 1' T 2) - i .J .> p -H a lL 6 d o f t6 n a n d WheJt

B -c .o m p a c t O f t s - c .o m p a c t , th e n 1
1

= T
2
.
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4 • Con c 1 us ion. As we noted , our results in this paper are

generalizations of well-known classical theorems as well as ex-

tension of some theorems in the literature.

Naturally, any result stated in terms of T
1

and T
2

has a

'dual' in terms of T
2

and T
1
. The definitions of separation and

covering properties of two topologies T
1

and T
2
, such as p-Haus-

dorff and p-Lindelof, of course reduce to the usual separation

and covering properties of one topology T
1
, such as Hausdorff

when we take T
1

= T
2
; and the theorems quoted above then yield

as corollaries the classical results of which they are generali-

zations.

As an example of theorems which yield well known classical

results are theorems 2.15, 2.33, 2.36, 2.42, 2.43, 2.44 and 2.46.

Theorem 2.8 is an analogue to [2, Theorem 1J while Theorem

2.3 (a,c,d) is an analogue to [2, Theorem 2]. We notice also

that Corollary 3.11 is an extension of [2, Theorem 4J. Theorem

3.7 (a) implies the results in [4, Theorem 12 and 13J and [7,

Theorem 2.18J. It is also clear that Corollary 2.30 is an anal-

ogue to [7, Theorem 2.9J and Corollary 2.38 is an analogue to

[7, Lemma 2.11J. It is clear too that Theorems 2.8, 2.42 and

Corollary 2.20 imply the result in [6, Lemma 3.2].
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