TI.ITI I

On Parallel Processing of Aggregate and Scalar Functions
In Object-Relational DBMS

Michael Jaedicke, Bernhard Mitschang

ACM SIGMOD 1998, 06/04/1998

Overview:
(1 Introduction to user-defined functions
[1 Parallel processing of UDFs
« a parallel processing scheme for user-defined aggregate functions
« a classification of user-defined data partitioning functions

« parallel sorting as preprocessing step for aggregate functions

SIGMOD’98

— TUN
User-Defined Functions (UDFs) in ORDBMS
[1 User-defined scalar functions (UDSFs):
- f:dataitems 0O data item
e examples: concat, +, ceiling, hex, rand, dayofyear, ...
[1 User-defined aggregate functions (UDAFs):
« f:setof dataitems 0O dataitem

« examples: avg, sum, count, max, min, variance, ...

[1 Not covered here:
 user-defined table functions

« user-defined support functions (for internal purposes)

SIGMOD’98

Registration of UDFs

[1 Registration: define a new UDF and provide metadata for it

[1 Example (DB2 UDB):

CREATE FUNCTION distance (point, point)

RETURNS double

EXTERNAL NAME ‘point!distance’

LANGUAGE C

PARAMETER STYLE DB2SQL

NOT VARIANT

NOT FENCED » NO external context
NOT NULL CALL

NO SQL

NO EXTERNAL ACTION

NO SCRATCHPAD » NO Input context
NO FINAL CALL;

SIGMOD’98

T

Seqguential Processing of UDAFs

[1 UDAFs processed by means of iterator concept (one tuple at a time)

[1 Aggregation needs temporary storage for intermediate results
(of sum, count, avg, ...)

[1 Example (lllustra):
Initialize and terminate aggregation by means of functions
that are provided with the registration: Init, Iter and Final

—| pointer = Init ()

v

lter (pointer ,value)

Y

|<«— Value = Final (pointer)

-

[1 All functions that compute aggregate functions have an input context

SIGMOD’98

TI.ITI I

Parallel Processing of Built-in Functions

[1 Goal: partitioned parallelism

[1 Data partitioning and parallel processing schemes

1-step scheme for scalar functions 2-step scheme for aggregate functions
U N C e
SN 4

~
~ -

-

-
-

(Global Aggregation)

. . e VERGE
(Local Agg.) (LocalAgg.) (Local Agg.)
P — | S— S — P — D — — —
DATA \ T / DATA \ T
PARTITIONING PARTITIONING
< data > —_ = daa =

[1 Fixed, built-in parallel processing schemes

SIGMOD’98 S

T

2-Step Parallel Aggregation for UDAFs

[1 Goal: enable parallel processing of user-defined aggregate functions
[1 Idea: make traditional 2-step processing scheme available for UDAFs

[1 Difference between built-in and user-defined aggregate functions:
Developer has to define local and global aggregate functions

[1 Extend the CREATE AGGREGATE statement:

CREATE AGGREGATE <function-name>
(

LOCAL <Init, Iter, and Final function definition>
GLOBAL <Init, Iter, and Final function definition>

)

[1 Straightforward extension of current ORDBMS

SIGMOD’98

T

Extension of the 2-Step Processing Scheme

built-in aggregate functions

CGIobaI Aggregation)

MERGE/VT\

(LocalAgg.) (localAgg.) (Local Agg.)

DATA \ T
PARTITIONING

< data

user-defined aggregate functions

(" Global UDAF)

MERGE/VT \

(Local UDAF) (Local UDAF) (Local UDAF)
_ e @

DATA \ T
PARTITIONING

< data >

SIGMOD’98 7

TI.ITI I

Data Partitioning: A Limit of the 2-Step Scheme for UDAFs

[Example: compute the most frequent value of a set
[1 Approach: implement Most_Frequent with the 2-step processing scheme

e local aggregation: compute number of the most frequent value
for each partition

« global aggregation: select the value with the highest local
frequency

[1 Problem: if the same value occurs in several partitions,
the result is not correct

[1 For some UDFs itis not correctto use an arbitrary partitioning of the data

[1 Developer has to tell the DBMS, how the data partitioning has to be done
for a given UDF

SIGMOD’98 8

T

Data Partitioning and UDFs

[1 Goal: extensibility of parallel processing schemes with respect to
data partitioning

[1 Data partitioning can be described by means of partitioning functions

[1 ldea: allow user-defined partitioning functions

[First approach:
developer specifies only a single specific data partitioning function
for each UDF

[1 Problem: if several UDFs have to be computed
data repartitioning IS necessary

[1 not the best solution

SIGMOD’98

T

Classes of Data Partitioning Functions

[1 Goal: avoid data repartitioning

[1 Idea: classification of partitioning functions;
developer specifies a class of applicable partitioning functions

[1 Classes of data partitioning functions:

« ANY round robin, random
« EQUAL hash
e RANGE range partitioning

0 ANY [EQUAL [l RANGE

[If no class can be applied for a UDF, try

e asingle, specific user-defined data partitioning function
for example a spatial data partitioning function

SIGMOD’98

10

TI.ITI I

Example: Registration of the Function Most_Frequent

[1 Registration of the (local) Iter function with partitioning class EQUAL
for the UDAF Most_Frequent:

CREATE FUNCTION Most_Frequent_ITER_LOCAL(POINTER, INTEGER)

RETURNS POINTER
EXTERNAL NAME ‘libfuncs!mf_iter_local’
ALLOW PARALLEL WITH PARTITIONING CLASS EQUAL $2

LANGUAGE C ...;

SIGMOD’98 11

Avoiding Data Repartitioning

[1 Example: use partitioning classes to avoid data repartitioning

SELECT Count(*), Most_Frequent(Job)

FROM Staff
Count(*): ANY
Most Frequent: EQUAL

[1 Query optimizer:

ANY n EQUAL EQUAL

SIGMOD’98

12

Partitionable UDFs
[1 Goal: describe which UDFs can be processed in parallel

[1 A UDSF is partitionable for class C , iff the function

e can be processed in parallel
using any partitioning function of class C

[0 A UDAF is partitionable for class C , iff the function

e can be processed using the 2-step processing scheme
(local and global aggregation)
and

* the local aggregate function can be processed in parallel
using any partitioning function of class C

SIGMOD’98

TI.ITI I

Parallel Processing Schemes for Partitionable UDFs

1-step scheme for UDSFs 2-step scheme for UDAFs
- A %
|

-

- -

~
~
~

TR SR I}
- - - MERGE (_ Global UDAF)

-
— b T~
< >

- - B B

(Local UDAF) (Local UDAF) (Local UDAF)
S — - S —

USER-DEFINE
PARTITIONING USER-DEFINED
PARTITIONING
< data > (data)

[1 Parallel processing schemes can be made extensible
by means of user-defined partitioning functions

SIGMOD’98 14

T

[How to compute the median of a set in parallel

Limited Applicability of the 2-Step Scheme

SELECT Median (P.Age, COUNT(*))
FROM Pers AS P

[1 New approach based on parallel
sorting:

sort the input set in parallel

scan the sorted input until
the position of the median
IS reached

return the median

No suitable local

with the 2-step scheme ?

aggregate function ?!?

3 4 1 5 2
‘ sort
1 2 3 4 5
—
scan
1 2 @ S Aw==zh”
3 result

SIGMOD’98

15

TI.ITI I

[]
[]

Parallel Sorting as a Preprocessing Step

Goal: support limited “parallel” processing, if the 2-step scheme fails

ldea: allow UDFs that operate on a sorted input;
DBMS can sort in parallel as a preprocessing step

An aggregate function f that requires a sorted input can be evaluated
using the following scheme given an input set S:

e sort the input set S; this can be done in parallel

« compute f without parallelism on the sorted input
Registration of the local Iter function for the UDAF Median :
CREATE FUNCTION MEDIAN_ITER_LOCAL(POINTER, INTEGER)
RETURNS POINTER
EXTERNAL NAME ‘libfuncs!median_iter local’

ORDER BY $2
LANGUAGE C ..,;

SIGMOD’98 16

TI.ITI I

Related Work

[1 Goal: efficient computation of Data Cubes (Jim Gray et al)

[1 3 disjoint classes of aggregate functions:

[1 Distributive aggregate functions:
sub-aggregates can be computed on arbitrary sub-sets with the aggregate
function itself

[1 partitionable for class ANY

[1 Algebraic aggregate functions:
sub-aggregates with fixed size can be computed on arbitrary sub-sets

[1 partitionable for class ANY

[1 Holistic aggregate functions
sub-aggregates with fixed size cannot be computed on arbitrary sub-sets

[1 partitionable for some data partitioning function (not ANY)
or
not partitionable, but parallel sorting might help

SIGMOD’98 17

TI.ITI I

Summary

[1 User-defined functions: context and parallel processing

- Scalar Functions Aggregate Functions
partitionable for class ANY

Input partitionable for some class

context partitionable with local and global aggregation
for some class

parallel sorting

not partitionable not partitionable

external
not treated here

SIGMOD’98 18

