
SIGMOD’98 1

On Parallel Processing of Aggregate and Scalar Functions
in Object-Relational DBMS

Michael Jaedicke, Bernhard Mitschang

ACM SIGMOD 1998, 06/04/1998

Overview:

❐ Introduction to user-defined functions

❐ Parallel processing of UDFs

• a parallel processing scheme for user-defined aggregate functions

• a classification of user-defined data partitioning functions

• parallel sorting as preprocessing step for aggregate functions

SIGMOD’98 2

User-Defined Functions (UDFs) in ORDBMS

❐ User-defined scalar functions (UDSFs):

• f: data items ➡ data item

• examples: concat, +, ceiling, hex, rand, dayofyear, ...

❐ User-defined aggregate functions (UDAFs):

• f: set of data items ➡ data item

• examples: avg, sum, count, max, min, variance, ...

❐ Not covered here:

• user-defined table functions

• user-defined support functions (for internal purposes)

SIGMOD’98 3

Registration of UDFs

❐ Registration: define a new UDF and provide metadata for it

❐ Example (DB2 UDB):

CREATE FUNCTION distance (point, point)

RETURNS double

EXTERNAL NAME ‘point!distance’

LANGUAGE C

PARAMETER STYLE DB2SQL

NOT VARIANT

NOT FENCED

NOT NULL CALL

NO SQL

NO EXTERNAL ACTION

NO SCRATCHPAD

NO FINAL CALL;

no input context

no external context

SIGMOD’98 4

Sequential Processing of UDAFs

❐ UDAFs processed by means of iterator concept (one tuple at a time)

☞ Aggregation needs temporary storage for intermediate results
(of sum, count, avg, ...)

❐ Example (Illustra):
Initialize and terminate aggregation by means of functions
that are provided with the registration: Init, Iter and Final

☞ All functions that compute aggregate functions have an input context

pointer = Init ()

Iter (pointer , value)

value = Final (pointer)

SIGMOD’98 5

Parallel Processing of Built-in Functions

❐ Goal: partitioned parallelism

❐ Data partitioning and parallel processing schemes

☞ Fixed, built-in parallel processing schemes

data

Function FunctionFunction Local Agg. Local Agg.Local Agg.

Global Aggregation

PARTITIONING
data

MERGE

1-step scheme for scalar functions 2-step scheme for aggregate functions

DATA
PARTITIONING
DATA

.

. . .

SIGMOD’98 6

2-Step Parallel Aggregation for UDAFs

❐ Goal: enable parallel processing of user-defined aggregate functions

❐ Idea: make traditional 2-step processing scheme available for UDAFs

❐ Difference between built-in and user-defined aggregate functions:
Developer has to define local and global aggregate functions

☞ Extend the CREATE AGGREGATE statement:

☞ Straightforward extension of current ORDBMS

CREATE AGGREGATE <function-name>
(
LOCAL <Init, Iter, and Final function definition>
GLOBAL <Init, Iter, and Final function definition>
)

SIGMOD’98 7

Extension of the 2-Step Processing Scheme

user-defined aggregate functions

Local Agg. Local Agg.Local Agg.

Global Aggregation

data

MERGE

PARTITIONING
DATA

. . .

built-in aggregate functions

Local UDAF Local UDAFLocal UDAF

Global UDAF

data

MERGE

PARTITIONING
DATA

. . .

SIGMOD’98 8

Data Partitioning: A Limit of the 2-Step Scheme for UDAFs

❐ Example: compute the most frequent value of a set

❐ Approach: implement Most_Frequent with the 2-step processing scheme

• local aggregation: compute number of the most frequent value
for each partition

• global aggregation: select the value with the highest local
frequency

✖ Problem: if the same value occurs in several partitions,
the result is not correct

☞ For some UDFs it is not correct to use an arbitrary partitioning of the data

☞ Developer has to tell the DBMS, how the data partitioning has to be done
for a given UDF

SIGMOD’98 9

Data Partitioning and UDFs

❐ Goal: extensibility of parallel processing schemes with respect to
data partitioning

❐ Data partitioning can be described by means of partitioning functions

❐ Idea: allow user-defined partitioning functions

❐ First approach:
developer specifies only a single specific data partitioning function
for each UDF

❐ Problem: if several UDFs have to be computed
data repartitioning is necessary

➠ not the best solution

SIGMOD’98 10

Classes of Data Partitioning Functions

❐ Goal: avoid data repartitioning

❐ Idea: classification of partitioning functions;
developer specifies a class of applicable partitioning functions

❐ Classes of data partitioning functions:

• ANY round robin, random

• EQUAL hash

• RANGE range partitioning

➠ ANY ⊃ EQUAL ⊃ RANGE

❐ If no class can be applied for a UDF, try

• a single, specific user-defined data partitioning function
for example a spatial data partitioning function

SIGMOD’98 11

Example: Registration of the Function Most_Frequent

❐ Registration of the (local) Iter function with partitioning class EQUAL
for the UDAF Most_Frequent:

CREATE FUNCTION Most_Frequent_ITER_LOCAL(POINTER, INTEGER)

RETURNS POINTER

EXTERNAL NAME ‘libfuncs!mf_iter_local’

ALLOW PARALLEL WITH PARTITIONING CLASS EQUAL $2

LANGUAGE C ...;

SIGMOD’98 12

Avoiding Data Repartitioning

❐ Example: use partitioning classes to avoid data repartitioning

SELECT Count(*), Most_Frequent(Job)
FROM Staff

Count(*): ANY
Most_Frequent: EQUAL

☞ Query optimizer:

ANY ∩ EQUAL = EQUAL

SIGMOD’98 13

Partitionable UDFs

❐ Goal: describe which UDFs can be processed in parallel

❐ A UDSF is partitionable for class C , iff the function

• can be processed in parallel
using any partitioning function of class C

❐ A UDAF is partitionable for class C , iff the function

• can be processed using the 2-step processing scheme
(local and global aggregation)
and

• the local aggregate function can be processed in parallel
using any partitioning function of class C

SIGMOD’98 14

Parallel Processing Schemes for Partitionable UDFs

☞ Parallel processing schemes can be made extensible
by means of user-defined partitioning functions

data

UDSF UDSFUDSF

Local UDAF Local UDAFLocal UDAF

Global UDAF

data

MERGE

1-step scheme for UDSFs 2-step scheme for UDAFs

USER-DEFINED
PARTITIONING USER-DEFINED

PARTITIONING

.
. . .

SIGMOD’98 15

Limited Applicability of the 2-Step Scheme

❐ How to compute the median of a set in parallel with the 2-step scheme ?

SELECT Median (P.Age, COUNT(*))
FROM Pers AS P

☞ New approach based on parallel
sorting:

• sort the input set in parallel

• scan the sorted input until
the position of the median
is reached

• return the median

3 4 1 5 2

1 2 3 4 5

1 2 3 4 5

sort

scan

3 result

No suitable local
aggregate function ?!?

SIGMOD’98 16

Parallel Sorting as a Preprocessing Step

❐ Goal: support limited “parallel” processing, if the 2-step scheme fails

❐ Idea: allow UDFs that operate on a sorted input;
DBMS can sort in parallel as a preprocessing step

❐ An aggregate function f that requires a sorted input can be evaluated
using the following scheme given an input set S:

• sort the input set S; this can be done in parallel

• compute f without parallelism on the sorted input

❐ Registration of the local Iter function for the UDAF Median :

CREATE FUNCTION MEDIAN_ITER_LOCAL(POINTER, INTEGER)

RETURNS POINTER

EXTERNAL NAME ‘libfuncs!median_iter_local’

ORDER BY $2

LANGUAGE C ...;

SIGMOD’98 17

Related Work

❐ Goal: efficient computation of Data Cubes (Jim Gray et al)

❐ 3 disjoint classes of aggregate functions:

☞ Distributive aggregate functions:
sub-aggregates can be computed on arbitrary sub-sets with the aggregate
function itself

➠ partitionable for class ANY

☞ Algebraic aggregate functions:
sub-aggregates with fixed size can be computed on arbitrary sub-sets

➠ partitionable for class ANY

☞ Holistic aggregate functions
sub-aggregates with fixed size cannot be computed on arbitrary sub-sets

➠ partitionable for some data partitioning function (not ANY)
or
not partitionable, but parallel sorting might help

SIGMOD’98 18

Summary

❐ User-defined functions: context and parallel processing

no context

external

input

Scalar Functions Aggregate Functions

partitionable for class ANY -

partitionable
for some class

not partitionable

not treated here

not partitionable

partitionable for some class

parallel sorting

with local and global aggregationcontext

context

