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Abstract

We study the parameterized complexity of various path (and cycle) problems, the parameter being the length
of the path. For example, we show that the problem of the existence of a maximal path of lengthk in a graph
G is fixed-parameter tractable, while its counting version is#W[1]-complete. The corresponding problems for
chordless (or induced) paths are W[2]-complete and #W[2]-complete respectively. With the tools developed
in this paper we derive the NP-completeness of a related classical problem, thereby solving a problem due to
Hedetniemi [21].

1. Introduction

The problem of deciding whether a given graphG = (V,E) contains a path (or a cycle) of a given lengthk is
among the most natural and easily stated algorithmic graph problems. It is therefore not surprising that its classical
and its parameterized complexity have been studied extensively (e.g. in [2, 3, 25, 28, 29]). For example, for every
fixed k, the problem can be solved in timeO(|V | · |E|) (cf. [25]). However if the path lengthk is part of the
input, then the problem is clearly NP-complete as it includes the Hamiltonian path problem. Nevertheless it is
fixed-parameter tractable, even it is solvable in time2O(k) · ‖G‖ (cf. [29, 2]). In particular, the problem whether
a graph has a path of length log|V | is solvable in polynomial time. Furthermore, in [28] it is implicitly shown
that the problem whether a chordless (or, induced) path of lengthk exists is W[1]-complete. This result has been
rediscovered in [20]. In [32] the computational complexity of determining thechromatic number of graphs without
long chordless paths is discussed. Recently, the search for algorithms detecting chordless cycles (of odd length
≥ 5) has received much attention due to its relationship to Berge graphs and to theStrong Perfect Graph Theorem
(cf. [6, 8, 10, 11, 26]).

Counting paths (or cycles) of lengthk is #W[1]-complete [16], that is, most likely there is nof(k) · nc-
algorithm for counting paths of lengthk in a graph of sizen for any computable functionf : N → N and constant
c (even though there is a2O(k) · n2.376 algorithm for finding a cycle or a path of lengthk [3]). This was the first
natural parameterized counting problem proven to be harder than its decision version (assuming FPT6= W[1]).

Recently, we studied the parameterized complexity of so-called maximality problems[5]. For example, given
a graphG and a natural numberk, the maximal independent set problem asks, if there is an independent set
maximal with respect to set inclusion and of sizek. It turned out that one can obtain quite general results linking
the parameterized complexity of a problem and the parameterized complexity of the corresponding maximality
problem. These results were obtained for the class ofFagin-definableproblems. For example, the independent set
problem is Fagin-definable, as there is a formulaϕ(X) of first-order logic with the set variableX expressing that
“X is an independent set,” e.g.

ϕ(X) := ∀y∀z
(

(Xy ∧Xz) → ¬Eyz
)

.

We address the problem of the Fagin-definability of the path problem and ofthe chordless path problem in Sec-
tion 7. However we already remark here that the general theory developed in [5] does not yield a relevant upper



bound for the parameterized complexity of the maximal path problem and the maximal chordless path problem,
because the logical complexity of the corresponding formulas is too high.

In our study of maximality problems we realized that even the classical complexity of the problem (stated
in [21]) of deciding whether a graph has a maximal chordless path of length≤ k was unknown.

In this paper we systematically analyze the parameterized complexity of the decision and counting versions of
chordless paths problems and of maximal (chordless) path problems. As a by-product we solve the open question
of [21] just mentioned by showing the NP-completeness of the corresponding problem.

First we prove that the problem of the existence of a maximal path of lengthk in a given graph is fixed-
parameter tractable, while its counting version is#W[1]-complete. Thus we add a further example–admittedly not
very different from the path problem–to the (short) list of nontrivial parameterized problems where the counting
version is probably harder than the decision version.

In Section 4 we present a construction on the class of graphs introducedby Papadimitriou and Yannakakis [28]
in order to reduce the independent set problem to the chordless path problem; they even show that the (correspond-
ing “log-”) problems are polynomially equivalent. In the terminology of parameterized complexity this means that
the chordless path problem is W[1]-complete, a result reproven in [20]. We refine the construction of Papadimitriou
and Yannakakis in various ways thereby getting among others:

– the problem of counting chordless paths of lengthk is #W[1]-complete under parsimonious reductions (in
[31] the #W[1]-completeness under Turing reductions was shown);

– the maximal chordless path problem (Is there a maximal chordless path of lengthk?) is W[2]-complete.

We do not mention the construction and the listing version of the problems considered so far, as their complexity
is related to the complexity of the decision version in the usual way (cf. [19, 5]). We summarize the results (the
already known and the new ones) in a table.

paths cycles chordless paths chordless cycles

plain FPT FPT W[1]-complete W[1]-complete

counting plain #W[1]-complete #W[1]-complete #W[1]-complete #W[1]-complete

maximal FPT ××× W[2]-complete ×××

counting maximal #W[1]-complete ××× #W[2]-complete ×××

If in this table the decision version of a problem is not fixed-parameter tractable, then #W[. . .]-completeness for
the counting version means #W[. . .]-completeness under parsimonious reductions. Clearly, for fixed-parameter
tractable problems we only get #W[. . .]-completeness under Turing reductions (otherwise FPT= W[1]). Further-
more, concerning the××× note that maximality problems make no sense for cycle problems.

In Section 6 we deal with the problem stated in [21] of the existence of a maximalchordless path of length
≤ k. Besides its NP-completeness we can show, by a further refinement of theconstruction of Papadimitriou and
Yannakakis, that the parameterized version is W[2]-complete.

Finally, in Section 7 we mention some open problems, particularly some concerning holes, that is, chordless
cycles of length at least 4. Although we are not able to determine the exact complexity of detecting a hole of
odd length≤ k, we derive some results for related problems. We thereby show that thereis a polynomial time
algorithm that, given a graphG outputs a hole inG of minimum length (and rejects if there is no hole).
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2. Preliminaries

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a natural numbern let [n] :=
{1, . . . , n}.

2.1. Parameterized complexity. We assume that the reader is familiar with the basic notions of parameterized
complexity theory (cf. [13, 17]). In particular, a parameterized problemis fixed-parameter tractableif it is solvable
in timef(k) ·p(n) for some computable functionf and some polynomialp; heren is the length of the instance and
k denotes its parameter. We denote by FPT the class of all fixed-parameter tractable problems. Recently (see [18]),
special attention has received the subclass EPT of FPT consisting of the problems where the functionf can be
chosen in2O(k).

For parameterized (decision) problemsQ andQ′ we writeQ ≤fpt Q′ if there is a (many-one) fpt reduction
fromQ toQ′. We writeQ ≡fpt Q′ if Q ≤fpt Q′ andQ′ ≤fpt Q.

We also consider parameterized counting problems (cf. [16, 17] for detailed definitions). For such problems
F andF ′ we writeF ≤fpt F ′ if there is an fpt parsimonious reduction fromF to F ′ (that is, an fpt reduction
preserving the values) andF ≤fpt-T F ′ if there is an fpt Turing reduction fromF to F ′. We writeF ≡fpt-T F ′ if
F ≤fpt-T F ′ andF ′ ≤fpt-T F .

2.2. First-order logic. A vocabularyτ is a finite set of relation symbols. Each relation symbol has anarity. A τ -
structureA consists of a setA called theuniverse, which we assume to be finite, and an interpretationRA ⊆ Ar of
eachr-ary relation symbolR ∈ τ . For example, we view agraphas a structureG = (G,EG), whereE is a binary
relation symbol andEG is an irreflexive and symmetric binary relation on the set of verticesG. Nevertheless,
often we denote the vertex set of a graphG by V and the edge set byE (instead ofG andEG) and use the set
notation{v, w} for edges.

For aτ -structureA we denote by‖A‖ its size, that is, the length of a string encodingA in a natural way. The
number‖A‖ will be within a polynomial factor of the term

|τ | + |A| +
∑

R∈τ

|RA| · arity(R).

Let A andB be structures of the same vocabularyτ . An embeddingfrom A to B is a one-to-one mapping
h : A→ B such that for allR ∈ τ , say, of arityr, and for all(a1, . . . , ar) ∈ Ar,

(a1, . . . , ar) ∈ RA =⇒ (h(a1), . . . , h(ar)) ∈ RB.

Formulas of first-order logic of vocabularyτ are built up from atomic formulasx = y andRx1 . . . xr where
x, y, x1, . . . , xr are variables andR ∈ τ is of arity r, using the boolean connectives and existential and universal
quantification. Fort ≥ 0 let Πt denote the class of all first-order formulas of the form

∀x11 . . .∀x1k1
∃x21 . . .∃x2k2

. . . Qxt1 . . . Qxtkt
ψ,

whereQ = ∃ if t is even andQ = ∀ otherwise, and whereψ is quantifier-free. In particular,Π0 is the set QF
of quantifier-free formulas. Ifu ≥ 1 we denote byΠ0

t,u the subclass ofΠt consisting of those formulas where
k1, . . . , kt ≤ u (that is,all quantifier blocks have length≤ u).

If ϕ is a first-order formula, we writeϕ(x1, . . . , xm) to indicate that the free variables inϕ arex1, . . . , xm. If
A is aτ -structure, andϕ(x1, . . . , xm) is a formula of vocabularyτ , then we let

ϕ(A) :=
{

(a1, . . . , am) ∈ Am | A |= ϕ(a1, . . . , am)
}

.

Thus|ϕ(A)| is the number of tuples satisfyingϕ.
For a classΦ of first-order formulas we consider the decision versionp-MC(Φ) and the counting version

p-#MC(Φ) of theparameterized model-checking problem(by |ϕ| we denote the length of the formulaϕ):
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p-MC(Φ)
Instance: A structureA and a formulaϕ(x1, . . . , xm) ∈ Φ.

Parameter: |ϕ|.
Problem: Isϕ(A) 6= ∅?

p-#MC(Φ)
Instance: A structureA and a formulaϕ(x1, . . . , xm) ∈ Φ.

Parameter: |ϕ|.
Problem: Compute|ϕ(A)|.

We introduce the classes of the W-hierarchy (in a way suitable for our purposes):

Definition 1. Let t ≥ 1.

– W[t] is the class of parameterized (decision) problems fpt reducible top-MC(Π0
t−1,1).

– #W[t] is the class of parameterized counting problems fpt parsimoniously reducibleto p-#MC(Π0
t−1,1).

We shall use the following well-known results (cf. [12] for (a), and [16] and [5] for (b)):

Theorem 2. (a) p-INDEPENDENT-SET is W[1]-complete andp-MAXIMAL -INDEPENDENT-SET is W[2]-com-
plete, both under fpt reductions.

(b) p-#INDEPENDENT-SET is #W[1]-complete andp-#MAXIMAL -INDEPENDENT-SET is #W[2]-complete,
both under fpt parsimonious reductions.

Here, given a graphG andk ∈ N (as parameter), the problemp(-MAXIMAL )-INDEPENDENT-SET asks whether
there exists a (maximal with respect to set inclusion) independent set of sizek in G.

2.3. Path and Cycles.Let k ∈ N. Thegeneric pathof lengthk is the graph

Pk :=
(

[k + 1],
{

{i, j}
∣

∣ i, j ∈ [k + 1], j − i = 1
}

)

.

A path of lengthk in a graphG = (V,E) is a subgraph ofG that is isomorphic toPk. Thus, ifv1, . . . , vk+1 ∈ V
with ei := {vi, vi+1} ∈ E for all i ∈ [k], then

(

{v1, . . . , vk+1}, {e1, . . . , ek}
)

is counted as one path (and not
as two, as the notationsv1, v2, . . . , vk+1 andvk+1, vk, . . . , v1 might suggest). Nevertheless, in many contexts we
denote this path byP = v1, . . . , vk+1 and say that the pathstarts in v1 andendsin vk+1. The verticesv1, vk+1

are theendverticesof this path. A pathv1, . . . , vk+1 is maximalif there is nov ∈ V such thatv, v1, . . . , vk+1 or
v1, . . . , vk+1, v is a path. Achordless path(or, induced path) of lengthk in G is an induced subgraph ofG that is
isomorphic toPk. It should be clear how the notion of amaximalchordless path is defined.

Sometimes we use formulations like “P is a maximal (chordless) path inG = (V,E) with endvertices in
F ⊆ V .” Here “maximal” (“maximal chordless”) refers to all (chordless) paths inG and not to all (chordless)
paths with endvertices inF ⊆ V .

Let k ≥ 3. A (chordless) cycle of lengthk in a graphG = (V,E) is an (induced) subgraph ofG that is
isomorphic to thegeneric cycleof lengthk

Ck :=
(

[k],
{

{i, j}
∣

∣ i, j ∈ [k], j − i ≡ 1 mod k
}

)

.

Part (a) of the following theorem has been shown in [29] and part (b) in[16]:

Theorem 3. (a) p-PATH andp-CYCLE are fixed-parameter tractable, they are even inEPT.
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(b) p-#PATH andp-#CYCLE are #W[1]-complete under fpt Turing reductions.

Here, for example,

p-PATH

Instance: A graphG andk ∈ N.
Parameter: k.

Problem: Is there a path inG of lengthk?

and

p-#PATH

Instance: A graphG andk ∈ N.
Parameter: k.

Problem: Count the number of paths inG of lengthk.

3. Maximal Paths

This section is devoted to a proof of the following two results.

Theorem 4. The problem

p-MAXIMAL -PATH

Instance: A graphG andk ∈ N.
Parameter: k.

Problem: Is there a maximal path inG of lengthk?

is fixed-parameter tractable, it is even inEPT.

Theorem 5. The problem

p-#MAXIMAL -PATH

Instance: A graphG andk ∈ N.
Parameter: k.

Problem: Count the number of maximal paths inG of
lengthk.

is #W[1]-complete under fpt Turing reductions.

Let G = (V,E) be a graph andu, v ∈ V . Consider a pathP in G from the vertexu to the vertexv. Let
NG(u, v) be the set of neighbors ofu or v, more precisely:

NG(u, v) :=
{

w ∈ V | {u,w} ∈ E or {v, w} ∈ E
}

.

The following simple observation will be crucial.

Lemma 6. LetP be a path fromu to v in G. Then

P is a maximal path⇐⇒ P contains all vertices inNG(u, v).

The fixed-parameter tractability ofp-MAXIMAL -PATH is obtained by a reduction to the embedding problem
for a class of structures of bounded treewidth. The latter problem has been shown to be fixed-parameter tractable
in [29] (cf. [2], too):
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Theorem 7. Let C be a decidable class of structures of bounded tree-width. Then

p-EMB(C)
Instance: A structureA ∈ C and a structureB.

Parameter: ‖A‖.
Problem: Does there exist an embedding fromA toB?

is in EPT.

Proof of Theorem 4:It suffices to show the following problem is in EPT:

p-POINT-MAXIMAL -PATH

Instance: A graphG = (V,E), u, v ∈ V , andk ∈ N.
Parameter: k.

Problem: Is there a maximal path inG fromu to v of length
k?

Let C be the class of all generic paths (see Preliminaries) with three additional unary relations. Then all structures
in C have treewidth≤ 1 (recall that unary relations do not change the treewidth). So, by Theorem 7, it suffices to
give an fpt algorithm with an oracle top-EMB(C) solvingp-POINT-MAXIMAL -PATH.

We denote the three unary relation symbols byRf (“first element relation”),R` (“last element relation”), and
R (“neighbor relation”). Consider an instance ofp-POINT-MAXIMAL -PATH consisting of a graphG = (V,E),
u, v ∈ V , andk ∈ N. By Lemma 6, if|NG(u, v)| > k + 1, then(G, u, v, k) is a no instance. So we may assume
that|NG(u, v)| = m for somem ≤ k + 1. We setGu,v := (G, RG

f , R
G
` , R

G), where

RG
f := {u}, RG

` := {v}, RG := NG(u, v).

Recall that the generic pathPk of lengthk has vertex set[k + 1]. Again by Lemma 6, we see that there is a
maximal path inG from u to v of lengthk if and only if for some unary relationRPk of cardinalitym ∈ [k + 1]
there exists an embedding from(Pk, {1}, {k + 1}, RPk) to Gu,v. Since there are at most2k+1 many such subsets,
we get our claim. 2

A direct consequence of Theorem 4 is:

Corollary 8. log n-MAXIMAL -PATH is in PTIME, where

log n-MAXIMAL -PATH

Instance: A graphG = (V,E).
Problem: Is there a maximal path inG of length log|V |?

However it is impossible to improve the log|V | bound in Corollary 8 as exemplified by the following result.

Theorem 9. The problem

log2 n-MAXIMAL -PATH

Instance: A graphG = (V,E).
Problem: Is there a maximal path inG of length log2 |V |?

is not inPTIME unless the exponential time hypothesis(ETH) fails.
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In the proof we will use the following path extension construction: LetG = (V,E) be a graph andd, ` ∈ N.
We obtain the graphGd,` = (Vd,`, Ed,`) from G by addingd many isolated verticesa1, . . . , ad and furthermore
verticesb1, b2, . . . , b` constituting a path and whereb1 is adjacent to all vertices inG. More precisely:

Vd,` := V ∪̇
{

ai | i ∈ [d]
}

∪̇
{

bi | i ∈ [`]
}

;

Ed,` := E ∪
{

{v, b1} | v ∈ V
}

∪
{

{bi, bi+1} | i ∈ [`− 1]
}

.

One easily verifies fork ≥ 1 and` ≥ k + 1,

G has a path of lengthk ⇐⇒ Gd,` has a path of lengthk + `.

Moreover we need the following fact (by log2m we meanblog2mc):

Lemma 10. GivenN ≥ 64 andk ∈ N with k ≤ log2N we can compute in time polynomial inN a number̀ ∈ N

with ` ≤ N such that
k + ` = log2 (N + `).

Proof: The claim easily follows from the following two facts holding forN ≥ 64:

– log2 (N +m+ 1) − log2 (N +m) ≤ 1 for all m ≥ 0;

– N > log2 (N +N). 2

First we show:

Theorem 11. If the problemlog2 n-MAXIMAL -PATH is in PTIME, thenHAMILTONIAN -PATH is solvable in time
2O(

√
n), wheren is the number of vertices of the given graph.

Proof: We assume that there is a polynomial time algorithmA that decides log2 n-MAXIMAL -PATH in polynomial
time. Let(G, k) be an instance of HAMILTONIAN -PATH with G = (V,E). Without loss of generality we assume
n := |V | ≥ 64. We show how to useA to solve HAMILTONIAN -PATH in time2O(

√
n).

We letN > n be the smallest natural number satisfying log2N ≥ 2n+1 > n. ClearlyN = 2O(
√

n). With the
algorithm of Lemma 10 we compute an` ≤ N such thatn+` = log2 (N+`). Note thatn+1 ≤ ` ≤ N = 2O(

√
n).

For the graphGN−n,` we have:G has a Hamiltonian path, i.e., a path of lengthn if and only if GN−n,` has a path
P of lengthn + ` (= log2 (N + `)) = log2 |VN−n,`|. Clearly such a pathP must be a maximal path. So we
simulateA onGN−n,`, which takes time

‖GN−n,`‖
O(1) =

(

N + `
)O(1)

= 2O(
√

n). 2

Proof of Theorem 9:Assume that log2 n-PATH ∈ PTIME. Then by Theorem 11 HAMILTONIAN -PATH is solvable
in time 2o(n), wheren is the number of vertices of the given graph. Then 3-SAT is solvable in time2o(m), where
m is the number of clauses of the given propositional formula (this is seen, say, by the reduction of [27] from
3-SAT to HAMILTONIAN -PATH). Therefore, by the Sparsification Lemma [22], the problem 3-SAT is solvable in
time 2o(n), wheren is the number of variables of the given propositional formula. But this just means that ETH
fails. 2

A similar proof yields:
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Theorem 12. The problem

log2 n-PATH

Instance: A graphG = (V,E).
Problem: DoesG contain a path of length log2 |V |?

is not inPTIME unlessETH fails. 1

The next two propositions will give a proof of Theorem 5. The following result also relies on Lemma 6.

Proposition 13. p-#MAXIMAL -PATH ≤fpt p-#MC(QF).

Proof: Let (G, k) with G = (V,E) be an instance ofp-#MAXIMAL -PATH. For paths of lengthk we express the
right hand side of the equivalence in Lemma 6 by the formulaϕk below thus getting:u1, . . . , uk+1 is a maximal
path inG if and only if G |= ϕk(u1, . . . , uk+1), where

ϕk(x1, . . . , xk+1) :=
∧

i,j∈[k+1],i<j

(¬xi = xj ∧ Exixi+1) ∧ ∀y
(

(Ex1y ∨ Exk+1y) →
∨

i∈[k+1]

xi = y
)

.

To get the desired reduction top-#MC(QF), we have, among others, to get rid of the universal quantifier. For
fixed x1, xk+1 the universal quantifier essentially ranges over the neighbors of thesetwo elements; since in the
relevant cases there will be at mostk+ 1 many we can replace the quantification by an iterated conjunction, more
precisely:

We let< be a binary andT1, . . . , Tk+1 ternary relation symbols, where, without loss of generality, we assume
k ≥ 1. We expandG to a structure

A :=
(

V,E,<A, TA
1 , . . . , T

A
k+1

)

with the properties:

– <A is an ordering ofV ;

– TA
1 , . . . , T

A
k+1 are ternary relations onV such that foru, v ∈ V :

– if |NG(u, v)| > k+1 or |NG(u, v)| = 0, then forall i ∈ [k+1] there isnow ∈ V with (u, v, w) ∈ TA
i ;

– if 1 ≤ |NG(u, v)| = m ≤ k + 1, then there arew1, . . . , wm such thatNG(u, v) =
{

w1, . . . , wm

}

, for
all i ∈ [m]

{

w | w ∈ V and(u, v, w) ∈ TA
i

}

= {wi}

and fori with m < i ≤ k + 1

{

w | w ∈ V and(u, v, w) ∈ TA
i

}

= {wm}.

Thenu1, . . . , uk+1 is a maximal path inG if and only if there arev1, . . . , vk+1 with A |= ψk(u1, . . . , uk+1,
v1, . . . , vk+1), whereψk(x1, . . . , xk+1, y1, . . . , yk+1) is the formula

∧

i,j∈[k+1], i<j

(¬xi = xj ∧ Exixi+1) ∧
∧

i∈[k+1]

Tix1xk+1yi ∧
∧

i∈[k+1]

∨

j∈[k+1]

yi = xj .

1This problem was raised in [2], and Alon informed us that he was alreadyaware of Theorem 12 before we got the result.
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Moreover, in the positive case, thev1, . . . , vk+1 are uniquely determined byu1, . . . ,uk+1. In order to count a path
u1, . . . ,uk+1 only once (and not twice as the notationsu1, . . . , uk+1 anduk+1, . . . , u1 might suggest) we consider
the formulaχk(x1, . . . , xk+1, y1, . . . , yk+1) := ψk ∧ x1 < xk+1. Then

∣

∣

∣

{

P | P is a maximal path inG of lengthk
}

∣

∣

∣
=

∣

∣

∣

{

(u1, . . . , uk+1, v1, . . . , vk+1) | A |= χk(ū, v̄)
}

∣

∣

∣
,

that is,|χk(A)| is the number of maximal paths inG of lengthk. This gives the desired reduction fromp-#MAXI -
MAL -PATH to p-#MC(QF). 2

Proposition 14. p-#PATH ≤fpt p-#MAXIMAL -PATH.

Proof: This is quite straightforward. Let(G, k) with G = (V,E) andk ≥ 1 be an instance ofp-#PATH. Let
V ∗ := {v∗ | v ∈ V } be a disjoint copy ofV . We setG′ = (V ′, E′) with

V ′ := V ∪ V ∗ and E′ := E ∪
{

{v, v∗} | v ∈ V
}

.

Then:

(a) Every maximal path inG′ of length≥ 2 starts and ends inV ∗.

(b) LetP = u1, . . . , uk with u1, . . . , uk ∈ V . Then

P is a path inG ⇐⇒ u∗1, P, u
∗
k is a maximal path inG′.

Hence,(G, k) → (G′, k + 2) is an fpt parsimonious reduction fromp-#PATH to p-#MAXIMAL -PATH. 2

Proof of Theorem 5: By Proposition 13 we havep-#MAXIMAL -PATH ∈ #W[1] and by Proposition 14 and
Theorem 3 (b) the problemp-#MAXIMAL -PATH is #W[1]-hard under fpt Turing reductions. 2

4. Chordless Paths and Chordless Cycles

In this section we introduce an operation on graphs relating the independent sets of a graphG with the chordless
paths of the image ofG under the operation. This operation is due to Papadimitriou and Yannakakis [28]. We will
use it and refinements of it to derive essentially all hardness results in Sections 4–6. In this section we apply it
to get the W[1]-hardness of the chordless path problem and the chordless cycle problem (these results are already
implicit in [28]); moreover, we use it to show that the corresponding counting problems are #W[1]-hard under fpt
parsimonious reductions (this improves [31] where these problems are shown to be #W[1]-hard under fpt Turing
reductions).

More precisely, the operation of [28] acts on graphs and positive natural numbers: LetG = (V,E) be a graph
andk ≥ 1. The vertex set of the graphG(k) = (V (k), E(k)) essentially consists ofk copies ofV . Each copy will
be a clique inG(k). Two distinct copies are linked according toG. Finally there are three2 additional vertices for

2For the purpose of the proofs in this section two additional elements would suffice but we want to use the same construction for the
proof of Theorem 18.
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(a, 1) (b, 1) (c, 1)

���

V × {1}

(a, 2) (b, 2) (c, 2)
���

V × {2}

(a, k) (b, k) (c, k)
���

V × {k}

Figure 1.

eachi ∈ [k], which fori ≥ 2 allow a further transition from the(i− 1)th copy to theith copy (cf. Figure 1). More
precisely:

V (k) :=
(

V ∪̇ {a, b, c}
)

× [k];

E(k) :=
⋃

i∈[k]

{

{(u, i), (v, i)} | u, v ∈ V andu 6= v
}

∪
⋃

1≤i<j≤k

{

{(u, i), (v, j)} | u, v ∈ V and (u = v or {u, v} ∈ E)
}

∪
⋃

i∈[k]

(

{

{(a, i), (b, i)}, {(b, i), (c, i)}
}

∪
{

{(c, i), (u, i)} | u ∈ V
}

)

∪
⋃

1≤i≤k−1

{

{(u, i), (a, i+ 1)} | u ∈ V
}

.

For eachi ∈ [k], we call
Si :=

(

V ∪ {a, b, c}
)

× {i}

theith slice ofG(k). ClearlySi \ {(a, i), (b, i)} is a clique.

The crucial observation of [28] relating the independent sets ofG with chordless paths inG(k) reads as follows:

Lemma 15. Let G = (V,E) be a graph andk ≥ 1. Furthermore letG(k) be the graph just constructed. For
u1, . . . , uk ∈ V we set

P (u1, . . . , uk) := (a, 1), (b, 1), (c, 1), (u1, 1),(a, 2), (b, 2), (c, 2), (u2, 2), (a, 3) . . . ,

. . . , (uk−1, k − 1), (a, k), (b, k), (c, k), (uk, k).

Then:

(a) P (u1, . . . , uk) is a path of length4k − 1 in G(k).

(b) P (u1, . . . , uk) is a chordless path inG(k) if and only if{u1, . . . , uk} is an independent set ofG of sizek.
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(c) Every chordless path of length4k − 1 in G(k) has the formP (u1, . . . , uk) for suitableu1, . . . , uk ∈ V .3

Proof: Part (a) is clear. Part (b) is easy: By construction ofG(k) the pathP (u1, . . . , uk) is not a chordless one if
and if only if for somei, j ∈ [k] with i 6= j the vertices(ui, i) and(uj , j) are adjacent inG(k). But this means
thatui = uj or {ui, uj} ∈ E. In the first case the set{u1, . . . , uk} has size less thank and in second one it is not
an independent set.

We turn to part (c) and assume thatP is an arbitrary chordless path of length4k − 1 in G(k). We show that it
must have the formP (u1, . . . , uk) for someu1, . . . , uk ∈ V .

Claim 1.For i ∈ [k]

|P ∩ Si| = 4, (a, i), (b, i) ∈ P and |P ∩ (V × {i})| ≥ 1.

In fact, sinceSi \ {(a, i), (b, i)} is a clique, it contains at most 2 vertices fromP . ThereforeSi containsat most
4 vertices fromP . AsP contain4k vertices, it must contain exactly four vertices from each sliceSi and hence at
least one fromV × {i}. a

Claim 2.(c, 1) ∈ P .

By Claim 1, we have(a, 1), (b, 1) ∈ P . But (a, 1) is only adjacent to(b, 1) and hence must be an endvertex ofP .
The point(c, 1) is the only further neighbor of(b, 1), hence(c, 1) ∈ P . a

As just remarked(a, 1) is an endvertex ofP , so we may assume thatP starts in(a, 1).

Claim 3.There areu1, . . . , uk ∈ V such thatP = P (u1, . . . , uk).

Let P = v1, . . . , v4k. By Claim 1 and Claim 2 we already know thatv1 = (a, 1), v2 = (b, 1), v3 = (c, 1), and
v4 = (u1, 1) for someu1 ∈ V .

Now we show fori ∈ [k − 1], if

v4(i−1)+1, v4(i−1)+2, v4(i−1)+3, v4i = (a, i), (b, i), (c, i), (ui, i)

for someui ∈ V , then

v4i+1, v4i+2, v4i+3, v4(i+1) = (a, i+ 1), (b, i+ 1), (c, i+ 1), (ui+1, i+ 1)

for someui+1 ∈ V . Clearly, this yields the claim. a

By Claim 1,(a, i+ 1), (b, i+ 1) ∈ P , and since(a, i+ 1) is adjacent to(ui, i) = v4i, we have

v4i+1 = (a, i+ 1).

Similarly, as(a, i + 1) and(b, i + 1) are adjacent, we getv4i+2 = (b, i + 1). Hence,v4i+3 = (c, i + 1). Finally,
by Claim 1, there exits someui+1 ∈ V with (ui+1, i+ 1) ∈ P . As (ui+1, i+ 1) is adjacent to(c, i+ 1) (= v4i+3)
in G(k), we conclude thatv4i+4 = (ui+1, i+ 1). 2

As already mentioned the following result is implicit in [28] and explicit in [20].

Theorem 16. The problems

3Recall that the pathP (u1, . . . , uk) is the same as the corresponding path starting in(vk, k) and ending in(a, 1).
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p-CHORDLESS-PATH

Instance: A graphG andk ∈ N.
Parameter: k.

Problem: DoesG have a chordless path of lengthk?

and

p-CHORDLESS-CYCLE

Instance: A graphG andk ∈ N.
Parameter: k.

Problem: DoesG have a chordless cycle of lengthk?

areW[1]-complete under fpt reductions.

Proof: We show the W[1]-hardness ofp-CHORDLESS-PATH by an fpt reduction from the W[1]-hard problem
p-INDEPENDENT-SET (cf. Theorem 2 (a)). LetG = (V,E) be a graph andk ∈ N. We assumek ≥ 1. By the
previous lemma we see that

G has an independent set of sizek ⇐⇒ G(k) has a chordless path of length4k − 1.

This gives the desired reduction.
The W[1]-hardness ofp-CHORDLESS-CYCLE is again shown by an fpt reduction fromp-INDEPENDENT-SET.

Let G = (V,E) be a graph andk ∈ N. We assumek ≥ 2. The graphG(k)′ is obtained from the graphG(k) by
adding an edge from(a, 1) to every vertex ofV ×{k}. ThenP (u1, . . . , uk) is a cycle inG(k)′ for u1, . . . , uk ∈ V .
As in the previous proof one shows:

G has an independent set of sizek ⇐⇒ G(k)′ has a chordless cycle of length4k.

Membership ofp-CHORDLESS-PATH in W[1] is witnessed by the fpt reduction top-MC(QF) given by
(G, k) 7→ (G, ϕk) with

ϕk(x1, . . . , xk+1) :=
(

∧

i∈[k]

Exixi+1 ∧
∧

i,j∈[k+1],i6=j

¬xi = xj ∧
∧

1≤i<j≤k

¬Exixj+1

)

.

It should be obvious how the formulaϕk has to be modified forp-CHORDLESS-CYCLE. 2

In addition, we show for the counting versions.

Theorem 17. p-#CHORDLESS-PATH andp-#CHORDLESS-CYCLE are#W[1]-complete under fpt parsimonious
reductions.

Proof: Membership in#W[1] is shown by straightforward fpt parsimonious reductions top-#MC(QF) (as it is
done forp-#PATH andp-#CYCLE in Lemma 14.31 of [17]).

For the#W[1]-hardness we reduce the #W[1]-hard problemp-#INDEPENDENT-SET (cf. Theorem 2 (b)) to our
problems. Essentially we use the reductions for the decision problems presented in the previous proofs, but now
we have to make sure that the reductions preserve the number of solutions,that is, are parsimonious. Note that,
by Lemma 15, every independent setI := {u1, . . . , uk} of sizek gives rise tok! many chordless paths inG(k),
namely for each orderingu′1, . . . , u

′
k of the elements ofI to the pathP (u′1, . . . , u

′
k). We illustrate the necessary

changes forp-#CHORDLESS-PATH. The proof forp-#CHORDLESS-CYCLE is similar.
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LetG = (V,E) be a graph andk ≥ 1. We fix an ordering<V of V . We add to the graphG(k) for all u, v ∈ V
with v <V u, which are not adjacent inG, and alli, j ∈ [k] with i < j an edge between the vertex(u, i) (of the
ith copy) and the vertex(v, j) (of thejth copy), thereby obtaining the graphG(<V , k). Then it is easy to see that
for u1, . . . , uk ∈ V

P (u1, . . . , uk) is a chordless path inG(<V , k) ⇐⇒ {u1, . . . , uk} is an independent set inG and

u1 <
V . . . <V uk.

From this equivalence one gets that the number of independent sets ofG of sizek and the number of chordless
paths ofG(<V , k) of length4k − 1 coincide. 2

5. Maximal Chordless Paths

While in Section 3 we have seen thatp-MAXIMAL -PATH is fixed-parameter tractable, we now show:

Theorem 18. p-MAXIMAL -CHORDLESS-PATH is W[2]-complete under fpt reductions.

Before giving the proof, we introduce an auxiliary construction, which ensures that maximal (chordless) paths
of length≤ k have endvertices in a given setF : Let G = (V,E) be a graph,F ⊆ V , andk ∈ N. We obtain
the graphGF,k from G by adding to every vertex not inF a path of lengthk + 1 of new vertices, e.g.:GF,k =
(VF,k, EF,k) with

VF,k := V ∪̇
(

(V \ F ) × [k + 1]
)

;

EF,k := E ∪
{

{

v, (v, 1)
}

| v ∈ V \ F
}

∪
{

{

(v, i), (v, i+ 1)
}

| i ∈ [k] andv ∈ V \ F
}

.

Then one easily verifies:

Lemma 19. (a) Let P be a maximal chordless path inG with endvertices inF . ThenP is also a maximal
chordless path inGF,k.

(b) LetP be a maximal chordless path inGF,k of length≤ k. ThenP is a maximal chordless path inG with
endvertices inF (in particular, all vertices ofP are inV ).

Proof of Theorem 18: The membership ofp-MAXIMAL -CHORDLESS-PATH is shown by a straightforward reduc-
tion to p-MC(Π0

1,1): For eachk ∈ N there is aΠ0
1,1-formulaψk(x1, . . . , xk+1) expressing thatx1, . . . , xk+1 is a

maximal chordless path of lengthk, for example:

ψk(x1, . . . , xk+1) :=
(

∧

i∈[k]

Exixi+1 ∧
∧

i,j∈[k+1],i6=j

¬xi = xj ∧
∧

1≤i<j≤k

¬Exixj+1

)

∧

∀y
((

Ex1y →
∨

2≤i≤k+1

(xi = y ∨ Exiy)
)

∧
(

Exk+1y →
∨

1≤i≤k

(xi = y ∨ Exiy)
))

.

To show the W[2]-hardness ofp-MAXIMAL -CHORDLESS-PATH we present an fpt reduction from the W[2]-
complete problemp-MAXIMAL -INDEPENDENT-SET (cf. Theorem 2 (a)).

So let(G, k) with G = (V,E) be an instance ofp-MAXIMAL -INDEPENDENT-SET and assumek ≥ 1. Recall
the definition ofG(k + 1). Let I = {u1, . . . , uk} be an independent set of sizek in G. Then:

P (u1, . . . , uk), (a, k + 1), (b, k + 1), (c, k + 1) is a maximal chordless path inG(k + 1)

⇐⇒ I is a maximal independent set ofG.
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(a, 1) (b, 1) (c, 1)
u1

����

(a, 2) (b, 2)

(c, 2)

u2
����

(a, 3) (b, 3) (c, 3)
u3

�	
�

A path of length4k + 2 (for k = 2), the grey edges
witness the maximality at the endvertex(b, 2).

Figure 2.

In fact, if I ∪̇ {u} is an independent set inG, then, by Lemma 15 (b),P (u1, . . . , uk, u) is a chordless path in
G(k+1) extendingP (u1, . . . , uk), (a, k+1), (b, k+1), (c, k+1). Conversely, ifP (u1, . . . , uk), (a, k+1), (b, k+
1), (c, k + 1), v for some vertexv in G(k + 1) is a chordless path, then the vertexv is adjacent to(c, k + 1) and
thus must have the formv = (u, k + 1) with u ∈ V . But then, again by Lemma 15 (b),{u1, . . . , uk, u} is an
independent set extendingI.

Furthermore, one easily verifies:

– Every chordless path of length4k + 2 starting in (a, 1) and ending in(c, k + 1) must have the form
P (u1, . . . , uk), (a, k + 1), (b, k + 1), (c, k + 1), where{u1, . . . , uk} is an independent set ofG.

In general, there might be (and in general will be) maximal chordless pathsof length4k + 2 of a different form
in G(k + 1) (cf. Figure 2). To get rid of them instead ofG(k + 1) we consider the graph(G(k + 1))F,4k+2 for
F = {(a, 1), (c, k + 1)}. Putting all together we see:

G has a maximal independent set of sizek

⇐⇒ (G(k + 1))F,4k+2 has a maximal chordless path of length4k + 2. 2

For the counting version we get:

Theorem 20. p-#MAXIMAL -CHORDLESS-PATH is #W[2]-complete under fpt parsimonious reductions.

Proof: Membership in#W[2] is shown by a parsimonious fpt reduction top-#MC(Π0
1,1): Given an instance(G, k)

of p-#MAXIMAL -CHORDLESS-PATH, we add an ordering<G of the set of vertices ofG and assign to(G, k) the
instance((G, <G), χk) of p-#MC(Π0

1,1) with χk(x1, . . . , xk+1) := ψk(x1, . . . , xk+1) ∧x1 < xk+1, whereψk is
as in the preceding proof. As in the proof of Proposition 13, the conjunctx1 < xk+1 ensures that the sequences
x1, . . . , xk+1 andxk+1, . . . , x1 are not counted as two paths.

We know thatp-#MAXIMAL -INDEPENDENT-SET is #W[2]-hard under fpt parsimonious reductions (cf. The-
orem 2 (b)). The reduction fromp-MAXIMAL -INDEPENDENT-SET to p-MAXIMAL -CHORDLESS-PATH of the
preceding proof does not preserve the number of solutions, as one maximal independent set of sizek yields various
maximal chordless path of length4k+2. Nevertheless adding an ordering and edges as in the proof of Theorem 17
one gets an fpt parsimonious reduction fromp-#MAXIMAL -INDEPENDENT-SET to p-#MAXIMAL -CHORDLESS-
PATH; hence, the latter problem is#W[2]-hard under fpt parsimonious reductions. 2
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6. The inflationary version

Let Q be any of the parameterized path or cycle (decision) problems consideredso far. Then we define the
parameterized problemQ≤, the inflationary version ofQ, by

(G, k) ∈ Q≤ ⇐⇒ for somek′ ≤ k: (G, k′) ∈ Q.

As an immediate consequence of the definition we get:

(i) If Q ∈ FPT, thenQ≤ ∈ FPT.

As

#Q≤(G, k) =
k

∑

i=0

#Q(G, i) and #Q(G, k) = #Q≤(G, k) − #Q≤(G, k − 1),

we have:

(ii) #Q≤ ≡fpt-T #Q.

Theorem 21. (a) p-PATH≤, p-CYCLE≤, p-MAXIMAL -PATH≤, p-CHORDLESS-PATH≤, and p-CHORDLESS-
CYCLE≤ are fixed-parameter tractable and the corresponding counting problems are #W[1]-complete under
fpt Turing reductions.

(b) p-#MAXIMAL -CHORDLESS-PATH≤ is #W[2]-complete under fpt Turing reductions.

Proof: The claims for the first three decision problems in part (a) follow from (i). For p-CHORDLESS-PATH≤ note
that(G, k) is a positive instance for every graph with nonempty vertex set. Finally, forp-CHORDLESS-CYCLE≤
the claim follows from the equivalence:

(G, k) ∈ p-CHORDLESS-CYCLE≤ ⇐⇒ (G, k) ∈ p-CYCLE≤.

For the direction from right to left note that by drawing a chord in a cycle weobtain two new cycles. If none of
them is chordless, we proceed till we get a chordless one.

By previous results the #W[1]-hardness and the #W[2]-hardness under fpt Turing reductions of the counting
problems in (a) and (b), respectively, follow from (ii); membership in #W[1] and #W[2], respectively, is shown by
adapting the proofs for the non-inflationary versions. We do this for the problem in (b).

We showp-#MAXIMAL -CHORDLESS-PATH≤ ∈ #W[2] by an fpt parsimonious reduction to the problem
p-#MC(Π0

1,1). A first choice would consist in using the formula

∨

`≤k

(

ψ`(x1, . . . , x`+1) ∧ x1 < x`+1

)

, (1)

where

ψ`(x1, . . . ,x`+1) :=
(

∧

i∈[`]

Exixi+1 ∧
∧

i,j∈[`+1],i6=j

¬xi = xj ∧
∧

1≤i<j≤`

¬Exixj+1

)

∧

∀y
((

Ex1y →
∨

2≤i≤`+1

(xi = y ∨ Exiy)
)

∧
(

Ex`+1y →
∨

1≤i≤`

(xi = y ∨ Exiy)
))

.

(The formulaψ` was used in the proof of Theorem 18 and expresses thatx1, . . . , x`+1 is a maximal chordless
path of length̀ and the formula(ψ` ∧ x1 < x`+1) was used in the proof of Theorem 20 to count the maximal
chordless paths of length̀.) There are two problems: First, we have to find aΠ1-formula equivalent to (1),
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where the length of the universal block is independent ofk (we even claimed that we can get a block of length 1).
Moreover, we have to fix the value ofx`+2, . . . , xk in paths of length̀ . In fact, we can take the following formula
ρk(x1, . . . , xk+1) (note that for verticesx1, . . . , xk+1 there is at most onè≤ k such that all iterated conjunctions
in the first line are satisfied):

∀y
∨

`≤k

(

∧

i∈[`]

Exixi+1 ∧
∧

i,j∈[`+1],i6=j

¬xi = xj ∧
∧

1≤i<j≤`

¬Exixj+1 ∧
∧

`+1<i≤k+1

xi = x`+1 ∧

((

Ex1y →
∨

2≤i≤`+1

(xi = y ∨ Exiy)
)

∧
(

Ex`+1y →
∨

1≤i≤`

(xi = y ∨ Exiy)
))

∧ x1 < x`+1

)

.

Now it is easy to verify that|ρk(G)| is the number of maximal chordless paths of lengths≤ k of a given graphG.
2

But what is the complexity ofp-MAXIMAL -CHORDLESS-PATH≤? Since the fpt parsimonious reduction from
p-#MAXIMAL -CHORDLESS-PATH≤ to p-#MC(Π0

1,1) of the preceding proof induces an fpt reduction of the cor-
responding decision problems, we know thatp-MAXIMAL -CHORDLESS-PATH≤ ∈ W[2]. We even show:

Theorem 22. p-MAXIMAL -CHORDLESS-PATH≤ is W[2]-complete under fpt reductions.

Remark 23. The proof of Theorem 22 will yield the NP-completeness of the classical problem

MAXIMAL -CHORDLESS-PATH≤
Instance: A graphG andk ∈ N.
Problem: Is there a maximal chordless path inG of length≤ k?

This answers an open problem of S.M. Hedetniemi [21].

In view of Theorem 2 (a) to get Theorem 22 it suffices to show:

Proposition 24. p-MAXIMAL -INDEPENDENT-SET ≤fpt p-MAXIMAL -CHORDLESS-PATH≤.

Proof: Let (G, k) with G = (V,E) be an instance ofp-MAXIMAL -INDEPENDENT-SET. From the proof of
Theorem 18 we know that the graphG(k + 1) has the following properties:

(a) LetI = {u1, . . . , uk} be a maximal independent set of sizek in G. ThenP (u1, . . . , uk), (a, k + 1), (b, k +
1), (c, k + 1) is a maximal chordless path inG(k + 1) of length4k + 2.

(b) Every maximal chordless path of length4k + 2 in G(k + 1) starting in(a, 1) and ending in(c, k + 1) must
have the formP (u1, . . . , uk), (a, k+1), (b, k+1), (c, k+1), where{u1, . . . , uk} is a maximal independent
set of sizek in G.

In order to give a reduction ofp-MAXIMAL -INDEPENDENT-SET to p-MAXIMAL -CHORDLESS-PATH≤, we will
extendG(k+1) to a graphG[k+1] by adding vertices (calledet below) in such a way that every maximal chordless
path between(a, 1) and(c, k + 1) will have the form mentioned in (b).

We setF :=
{

(a, 1), (c, k + 1)
}

. We letG[k + 1] = (V [k + 1], E[k + 1]) be the graph with

V [k + 1] := V (k + 1) ∪̇
{

et
∣

∣ t ∈ [k] or t ∈
(

{a, b, c} × [k + 1]
)

\ F
}

,

E[k + 1] := E(k + 1) ∪
{

{(a, 1), et} | et ∈ V [k + 1]
}

∪
{

{et, t} | t ∈
(

{a, b, c} × [k + 1]
)

\ F
}

∪
{

{et, (u, t)} | t ∈ [k] andu ∈ V
}

.

SinceG(k + 1) is an induced subgraph ofG[k + 1], we have:
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(i) If b1, . . . , bm ∈ V (k+ 1) and if every vertex inV [k+ 1] \ V (k+ 1), that is, everyet has a neighbor among
b1, . . . , bm in G[k + 1], then

(a1, 1), b1, . . . ,bm, (c, k + 1) is a maximal chordless path inG(k + 1)

⇐⇒ (a1, 1), b1, . . . , bm, (c, k + 1) is a maximal chordless path inG[k + 1].

Furthermore we show:

(ii) Every maximal chordless pathP of G[k + 1] starting in(a, 1) and ending in(c, k + 1) is contained in
G(k + 1). Moreover, all vertices in{a, b, c} × [k + 1] occur inP .

(iii) Every maximal chordless pathP of G(k + 1) starting in(a, 1) and ending in(c, k + 1) and containing all
vertices of{a, b, c} × [k + 1] has length4k + 2.

For (ii) let P be a maximal chordless path ofG[k + 1] starting in(a, 1) and ending in(c, k + 1). First we show
that everyt ∈ ({a, b, c} × [k + 1]) \ F is in P . Assumet /∈ P . Thenet ∈ P , since otherwiseet, P would be a
chordless path extendingP , a contradiction. Thenet has two neighbors inP , which must be the two neighbors of
et in G[k + 1], namely(a, 1) andt; hencet ∈ P .

Now assume that some vertex inV [k + 1] \ V (k + 1), that is, someet occurs inP . ThenP must start by
(a, 1), et. As (b, 1) is a neighbor of(a, 1), this shows that(b, 1) /∈ P , a contradiction by what we have already
shown.

We turn to a proof of (iii). So letP be a maximal chordless path ofG(k + 1) starting in(a, 1) and ending in
(c, k + 1) and containing all vertices of{a, b, c} × [k + 1]. ThusP ends with(b, k + 1), (c, k + 1). As (c, k + 1)
is a neighbor of(u, k+ 1) for all u ∈ V , we therefore get

(

V × {k+ 1}
)

∩ P = ∅. On the other hand, fori ∈ [k]
the vertex(c, i) is a vertex ofP with two neighbors inP , one being(b, i). Therefore|

(

V × {i}
)

∩ P | = 1.
ThusP contains4k + 3 vertices and hence has length4k + 2. This finishes the proof of (iii).

Now we claim:

G has a maximal independent set of sizek ⇐⇒

G[k + 1] has a maximal chordless path of length≤ 4k + 2 with endvertices(a, 1) and(c, k + 1).

In fact, assume first thatG has a maximal independent set{u1, . . . , uk} of sizek. Then, by (a), the sequence
P (u1, . . . , uk), (a, k + 1), (b, k + 1), (c, k + 1) is a maximal chordless path of length4k + 2 in G(k + 1), and
hence, by (i), inG[k + 1].

Conversely, letP be a maximal chordless path inG[k + 1] of length≤ 4k + 2 starting in(a, 1) and ending in
(c, k + 1). By (ii), P is a path inG(k + 1) and hence, a maximal chordless path inG(k + 1); furthermore, by (ii)
and (iii), it has length4k + 2. Now the claim follows from (b).

From the previous equivalence we get by Lemma 19,

G has a maximal independent set of sizek

⇐⇒ (G[k + 1])F,4k+2 has a maximal chordless path of length≤ 4k + 2,

which yields the desired reduction. 2

Arguing as in the proof of Theorem 17, one obtains the corresponding reduction for the counting versions:

Proposition 25. p-#MAXIMAL -INDEPENDENT-SET ≤fpt p-#MAXIMAL -CHORDLESS-PATH≤.

By Theorem 21 (b) we know thatp-#MAXIMAL -CHORDLESS-PATH≤ is #W[2]-complete under fpt Turing
reductions. Now we get:
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Theorem 26. p-#MAXIMAL -CHORDLESS-PATH≤ is #W[2]-complete under fpt parsimonious reductions.

Proof: Proposition 25 together with Theorem 2 (b) yields the #W[2]-hardness under fpt parsimonious reductions.
2

7. Further Questions and Fagin-Definability

We have seen thatp-#PATH ≤fpt p-#MAXIMAL -PATH and that both problems are #W[1]-complete under fpt
Turing reductions. Isp-#MAXIMAL -PATH ≤fpt p-#PATH? If not (say, under the assumption FPT6= W[1]), then
this would reflect that also for the path problem the transition to the corresponding maximality version increases
the complexity, a phenomenon we have seen for various other problems in [5] and in this paper.

A strong embeddingfrom a graphG = (V,E) to a graphG′ = (V ′, E′) is an embeddingh from G to G′ with
the additional property:

for all u, v ∈ V :
(

{h(u), h(v)} ∈ E′ ⇒ {u, v} ∈ E
)

.

Clearly,G contains a chordless path of lengthk if and only if the generic pathPk is strongly embeddable inG;
and it contains a chordless cycle if and only if the generic cycleCk is strongly embeddable.

Let C be an infinite decidable class of graphs. What are necessary andsufficient conditions on C such that the
parameterized strong embedding problem forC

p-STRONG-EMB(C)
Instance: A graphG ∈ C and a graphG′.

Parameter: ‖G‖.
Problem: Does there exist a strong embedding fromG to

G′?

is not fixed-parameter tractable?

7.1. Holes.A hole in a graph is a chordless cycle of length at least 4. A hole iseven(odd) if it has even (odd)
length. In the last time problems concerning holes have received much attention as they are related to the Strong
Perfect Graph Theorem (“A graph is perfect if it contains neither an odd hole nor the complement of an odd hole”),
which has been proven recently [6, 8]. We mention some results and open problems: It is not known whether there
is a polynomial time algorithm deciding if a graph has an odd hole, while the questions whether a graph contains
a hole and whether it contains an even hole are solvable in polynomial time (cf.[24, 9, 7]). Nevertheless, the
complexity of finding an even hole of minimum length in a graph is still open as far as we know.

Clearly, asp-CHORDLESS-CYCLE is W[1]-complete, so isp-HOLE (defined in the obvious way). But the
open problem just mentioned leads to the question: What are the complexities ofp-HOLE≤, p-EVEN-HOLE≤,
andp-ODD-HOLE≤, where for example

p-ODD-HOLE≤
Instance: A graphG andk ∈ N.

Parameter: k.
Problem: DoesG contain a hole of odd length≤ k?

It is easy to show thatp-HOLE≤ ∈ FPT by reducing it top-EMB(C) for a suitable class C of bounded treewidth.
But even the corresponding classical problem is polynomial time solvable (we include a proof as we did not find
this result in the literature). Our statement is an immediate consequence of:
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Theorem 27. There is a polynomial time algorithm that, given a graphG outputs a hole inG of minimum length
(and rejects, if there is no hole). In fact, there is an algorithm that takes time quadratic in‖G‖.

Proof: Our proof uses ideas from [26]. A cyclev0, . . . , vk−1 in a graphG is 2-chordlessif k ≥ 4 and {vi,
v(i+2) mod k} /∈ E for 0 ≤ i ≤ k − 1. Clearly, any hole is 2-chordless and any 2-chordless cycle of minimum
length is a hole. Hence:

Claim 1: Let C be a cycle inG. ThenC is a hole of minimum length if and only ifC is a 2-chordless cycle of
minimum length.

For a graphG = (V,E) we define adirectedgraphGdir = (V dir, Edir) by

V dir :=
{

(u, v) | {u, v} ∈ E
}

; Edir :=
{

((u, v), (v, w)) | u, v, w is a chordless path inG
}

.

The following is immediate:

Claim 2: If v1, v2, . . . , vk is a 2-chordless cycle inG, then

(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1)

is a directed cycle inGdir.

Moreover, we show:

Claim 3: If D = (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) is a directed cycle inGdir of minimum length, then
v1, . . . , vk is a 2-chordless cycle inG.

Proof: As {v1, v3} /∈ E, we see thatk ≥ 4. Thus it suffices to showv1, . . . , vk are pairwise distinct. Assume
there are1 ≤ i < j ≤ k with vi = vj . We choose suchi, j with minimum j − i. Thenvi, vi+1, . . . , vj−1

are pairwise distinct andj > i + 2. Even j > i + 3, otherwise,j − 1 = i + 2 and thus{vi+2, vi} ∈ E
(as{vj−1, vj} ∈ E), a contradiction. AsD has minimum length,(vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vi) is not a
directed cycle inGdir. Therefore{vj−1, vi+1} ∈ E. We choosei′, j′ with i + 1 ≤ i′ < i′ + 1 < j′ ≤ j − 1 and
minimumj′ − i′ such that{vi′ , vj′} ∈ E. Thenj′ > i′ + 2 and thusvi′ , vi′+1, . . . , vj′ is a 2-chordless cycle. By
Claim 2,(vi′ , vi′+1), (vi′+1, vi′+2) . . . , (vj′−1, vj′), (vj′ , vi′) is a directed cycle inGdir, which is shorter thanD, a
contradiction. a

Claim 2 and Claim 3 yield:

Claim 4: Let v1, . . . , vk ∈ V . Then

v1, v2, . . . , vk is a 2-chordless cycle inG of minimum length⇐⇒

(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) is a directed cycle inGdir of minimum length.

Note that any directed cycle inGdir must be of the form(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) for suitable
k ≥ 4 andv1, . . . , vk ∈ V . Therefore, by Claim 1 and Claim 4, to prove our theorem, it suffices to show that
there is a polynomial time algorithm that computes in a given directed graph a cycle of minimum length. But the
existence of such an algorithm is well-known. (In fact, for this purpose for each pair of distinct verticesu andv of
a directed graphH = (V,E) with (v, u) ∈ E we compute the length of a path fromu to v of minimum length.)2

We do not know what the complexities of the problemsp-EVEN-HOLE≤ andp-ODD-HOLE≤ are. We call
a cycle in a graphG triangle-freeif the graph induced byG on each three distinct vertices of the cycle is not a
clique. As any chord of a triangle-free cycle of odd length divides this cycle into two new triangle-free cycles, one
of them being of odd length, too, we get:

p-ODD-HOLE≤ ≡fpt p-TRIANGLE-FREE-ODD-CYCLE≤,

where the latter problem is defined in the obvious way. We are able to determinethe complexity of a related
problem:
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Theorem 28. The problem

p-TRIANGLE-FREE-CYCLE

Instance: A graphG andk ≥ 1.
Parameter: k.

Problem: DoesG contain a triangle-free cycle of lengthk?

is W[1]-complete under fpt reductions.

Proof: The membership of the problem in W[1] is shown by a straightforward reduction top-MC(QF). We turn
to a proof of its W[1]-hardness. Again, we show it by a reduction from the independent setproblem. We shall
need the following consequence of Ramsey’s Theorem.

There is a computable functionh : N → N such that for allk ∈ N every graphG = (V,E) with
|V | ≥ h(k) contains a clique or an independent set of sizek. In particular, fork ≥ 3 every triangle-
free cycle contains an independent set of sizek.4

The following construction is inspired by [23]. LetG = (V,E) be a graph andk, ` ≥ 1. We define a graph
G(k, `) = (V (k, `), E(k, `)). BasicallyG(k, `) consists of three layers. The lowest layer is the original graphG.
The second layer consists of2k verticess1,1, s1,2, . . . , sk,1, sk,2, all adjacent to every vertex inG. Finally the top
layer, for eachi ∈ [k], contains verticesbi,1, bi,2, . . . , bi,` such that

Pi := si,2, bi,1, bi,2, . . . , bi,`, si+1,1
5

is a path of length̀ + 1 connectingsi,2 andsi+1,1. More precisely:

V (k, `) := V ∪̇
{

si,j | i ∈ [k] andj ∈ [2]
}

∪̇
{

bi,j | i ∈ [k], andj ∈ [`]
}

,

E(k, `) := E ∪
{

{si,j , v} | i ∈ [k], j ∈ [2] andv ∈ V
}

∪
{

{si,2, bi,1} | i ∈ [k]
}

∪
{

{bi,`, si+1,1} | i ∈ [k]
}

∪
{

{bi,j , bi,j+1} | i ∈ [k] andj ∈ [`− 1]
}

.

Then
|V (k, `)| = |V | + 2k + ` · k. (2)

The proof of the following claim is immediate.

Claim 1: If {v1, . . . , vk} is an independent set of sizek in G, then

v1, P1, v2, P2, . . . , vk, Pk

is a triangle-free cycle of length(3 + `) · k in G(k, `).

We prove the following converse of Claim 1:

Claim 2: Let k ≥ 2 and

` := max

{

1,

⌈

h(k)

k

⌉

− 3

}

.

If G(k, `) contains a triangle-free cycle of length(3 + `) · k, thenG contains an independent set of sizek.

Proof: LetC be a triangle-free cycle of length(3 + `) · k in G(k, `). By (2) we know that

|C ∩ V | ≥ k.

We distinguish two cases.
4For example ash one can take the functionk 7→ 22k. Better bounds are known (see [4]).
5Here and in the following fori = k we readsi+1 ass1.
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C 6⊆ V : SinceC is a cycle, it must contain a vertexsi,j . Therefore,C ∩V must be an independent set, otherwise,
C is not triangle-free.

C ⊆ V : ThenC is a triangle-free cycle inG. Since` = max{1,
⌈

h(k)
k

⌉

− 3}, we have

|C| = (3 + `) · k ≥ h(k).

By the consequence of Ramsey’s Theorem quoted above, we see thatG contains an independent set of size
k. a

By Claim 1 and Claim 2 we see that for` := max{1,
⌈

h(k)
k

⌉

− 3}

(G, k) 7→
(

G(k, `), (3 + `) · k
)

is an fpt reduction ofp-INDEPENDENT-SET to p-TRIANGLE-FREE-CYCLE. 2

7.2. Fagin-definability. We close by taking up the question of the Fagin-definability of paths and cycleproblems
mentioned in the Introduction.

Let ϕ(Z) be a first-order formula of vocabularyτ with a relation variableX, say, of arityr. Furthermore, let
C be a class ofτ -structures. On C the formulaϕ = ϕ(Z) Fagin-definesthe problem:

p-WDϕ(C)
Instance: A structureA ∈ C andk ∈ N.

Parameter: k.
Problem: Is there a subsetS ⊆ Ar with |S| = k such thatA |=

ϕ(S)?

Let GRAPH be the class of graphs. Let anordered graph(G, <G) consist of a graphG = (V,E) and an ordering
<G of V and let GRAPH< be the class of ordered graphs. If we consider the path problemp-PATH as a problem
on ordered graphs we denote it byp-PATH<. The following proposition contains three non-definability results for
the path problem, which are immediate consequences of known (nontrivial) results, and one definability result.
Similar results hold for the chordless path problem and for the (chordless)cycle problem.

Proposition 29. (a) There is no first-order formulaϕ(Z) with a set variableZ (that is, with unaryZ) such that
p-PATH = p-WDϕ(GRAPH).

(b) There is noΠ1-formulaϕ(X) with a relation variableX of arbitrary arity r such thatp-PATH = p-WDϕ

(GRAPH).

(c) There is no first-order formulaϕ(Z) with a set variableZ such thatp-PATH< = p-WDϕ(GRAPH<).

(d) There is a first-order formulaϕ(Z), even aΠ2-formula, with a binaryZ such that

p-PATH< = p-WDϕ(GRAPH<).

Proof: (a) Assume thatp-PATH = p-WDϕ(GRAPH) for someϕ(Z) with a set variableZ. Then the sentence of
monadic second-order logic

∃Z(ϕ(Z) ∧ ∀xZx)

would axiomatize the class of graphs with a hamiltonian path. This contradicts a result of [14].
Part (b) is easily shown by using the well-known fact thatΠ1-formulas are preserved under substructures. Part

(c) follows as (a) but now using the corresponding result from [30].

(d) Let (G, <G) be an ordered graph withG = (V,E). We can assume thatV = [n] and that<G is the natural
order ofV . We show that there is aΠ2-formulaϕ(Z) with binaryZ such that
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(i) If k ∈ N andv1, . . . , vk+1 is a path inG, then(G, <G) |= ϕ(S) for

S :=
{

(1, v1), (2, v2), . . . , (k, vk), (k + 1, vk+1)
}

.

(ii) If (G, <G) |= ϕ(S), then there is ak ∈ N such that|S| = k+ 1 and there is ani ∈ [n] with i+ k ≤ n and a
pathv1, . . . , vk+1 in G such that

S =
{

(i, v1), (i+ 1, v2), . . . , (i+ k − 1, vk), (i+ k, vk+1)
}

.

Then, clearlyp-PATH< = p-WDϕ(GRAPH<). Asϕ(Z) we can take aΠ2-formula equivalent to

∃x∃yZxy ∧ funct(Z) ∧ dom-segm(Z) ∧ rg-path(Z).

Herefunct(Z) is aΠ1-formula expressing thatZ is (the graph of) a function,dom-int(Z) aΠ2-formula expressing
that the domain ofZ is a segment (in[n]) andrg-path(Z) a Π2-formula expressing that the range ofZ is a path.
For example, we can set

funct(Z) := ∀x∀u∀v
(

(Zxu ∧ Zxv) → u = v
)

and
dom-segm(Z) := ∀x∀y∀z∀u∀v∃w

(

(Zxu ∧ Zyv ∧ (x < z < y)) → Zzw
)

.

We leave it to the reader to write down aΠ2-formularg-path(Z). 2
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[9] M. Conforti, G. Cornúejols, A.Kapoor, K., and Vuskovic. Even-hole free graphs Part II: recognition algo-
rithm. Journal of Graph Theory, 40: 238–266, 2002
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Universiẗat zu Berlin, 2006.

[32] G. Woeginger and J. Sgall. The complexity of coloring graphs withoutlong induced paths.Acta Cybernetica.
15:107–117, 2001.

24


