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Abstract

We study the parameterized complexity of various path (gobeyproblems, the parameter being the length
of the path. For example, we show that the problem of the @x¢gt of a maximal path of lengthin a graph
g is fixed-parameter tractable, while its counting versiotiWg1]-complete. The corresponding problems for
chordless (or induced) paths arg2¥complete and #\[2]-complete respectively. With the tools developed
in this paper we derive the NP-completeness of a relategickproblem, thereby solving a problem due to
Hedetniemi [21].

1. Introduction

The problem of deciding whether a given gragph= (V, E) contains a path (or a cycle) of a given lengtlis
among the most natural and easily stated algorithmic graph problems. It i®otleanet surprising that its classical
and its parameterized complexity have been studied extensively (e.g. 22,38, 29]). For example, for every
fixed k, the problem can be solved in tind&(|V| - |E|) (cf. [25]). However if the path lengthk is part of the
input, then the problem is clearly NP-complete as it includes the Hamiltonian paittepr. Nevertheless it is
fixed-parameter tractable, even it is solvable in t2R&") . ||G|| (cf. [29, 2]). In particular, the problem whether
a graph has a path of length 10| is solvable in polynomial time. Furthermore, in [28] it is implicitly shown
that the problem whether a chordless (or, induced) path of lengttists is W1]-complete. This result has been
rediscovered in [20]. In [32] the computational complexity of determiningtirematic number of graphs without
long chordless paths is discussed. Recently, the search for algoritheasimng chordless cycles (of odd length
> 5) has received much attention due to its relationship to Berge graphs and3tvahg Perfect Graph Theorem
(cf. [6, 8, 10, 11, 26]).

Counting paths (or cycles) of lengthis #W[1]-complete [16], that is, most likely there is nf{k) - n°-
algorithm for counting paths of lengthin a graph of sizex for any computable functiofi : N — N and constant
¢ (even though there is 20(%) . 2376 algorithm for finding a cycle or a path of lengkh[3]). This was the first
natural parameterized counting problem proven to be harder than itsotlegéssion (assuming FPFE W(1]).

Recently, we studied the parameterized complexity of so-called maximality profd&ni®r example, given
a graphg and a natural numbét, the maximal independent set problem asks, if there is an independent se
maximal with respect to set inclusion and of skzdt turned out that one can obtain quite general results linking
the parameterized complexity of a problem and the parameterized complexity obttesponding maximality
problem. These results were obtained for the clas®@gin-definablgoroblems. For example, the independent set
problem is Fagin-definable, as there is a formp(&’) of first-order logic with the set variabl& expressing that
“X is an independent set,” e.qg.

o(X) :=VyVz((Xy A Xz) — —Eyz).

We address the problem of the Fagin-definability of the path problem atigt athordless path problem in Sec-
tion 7. However we already remark here that the general theory dexklofd5] does not yield a relevant upper



bound for the parameterized complexity of the maximal path problem and the naXiordless path problem,
because the logical complexity of the corresponding formulas is too high.

In our study of maximality problems we realized that even the classical compldxihe @roblem (stated
in [21]) of deciding whether a graph has a maximal chordless path of lehgtivas unknown.

In this paper we systematically analyze the parameterized complexity of theodeansl counting versions of
chordless paths problems and of maximal (chordless) path problems.yAgradiuct we solve the open question
of [21] just mentioned by showing the NP-completeness of the corresmpptbblem.

First we prove that the problem of the existence of a maximal path of lengtha given graph is fixed-
parameter tractable, while its counting versiogd/[1]-complete. Thus we add a further example—admittedly not
very different from the path problem—to the (short) list of nontrivialgmaeterized problems where the counting
version is probably harder than the decision version.

In Section 4 we present a construction on the class of graphs introbdydgapadimitriou and Yannakakis [28]
in order to reduce the independent set problem to the chordless phatamrahey even show that the (correspond-
ing “log-") problems are polynomially equivalent. In the terminology of pareaneed complexity this means that
the chordless path problem is[¥}-complete, a result reproven in [20]. We refine the construction ofdragii@iou
and Yannakakis in various ways thereby getting among others:

— the problem of counting chordless paths of lengik #W/[1]-complete under parsimonious reductions (in
[31] the #W[1]-completeness under Turing reductions was shown);

— the maximal chordless path problem (Is there a maximal chordless pathyt k&) is W[2]-complete.

We do not mention the construction and the listing version of the problems evedido far, as their complexity
is related to the complexity of the decision version in the usual way (cf. [}OV& summarize the results (the
already known and the new ones) in a table.

paths cycles chordless path% chordless cycles
plain FPT FPT WI[1]-complete | W[1]-complete
counting plain || #W[1]-complete| #W[1]-complete| #W/[1]-complete| #W[1]-complete
maximal FPT X X X WI2]-complete X X X
counting maximal|| #W/[1]-complete X X X #WI2]-complete X X X

If in this table the decision version of a problem is not fixed-parameter bigctdhen #W. . .]-completeness for
the counting version means #W.]-completeness under parsimonious reductions. Clearly, for fixednedea

tractable problems we only get #W.]-completeness under Turing reductions (otherwise EPW[1]). Further-

more, concerning the x x note that maximality problems make no sense for cycle problems.

In Section 6 we deal with the problem stated in [21] of the existence of a maximoatlless path of length
< k. Besides its NP-completeness we can show, by a further refinementadnbeuction of Papadimitriou and
Yannakakis, that the parameterized version {2 Méomplete.

Finally, in Section 7 we mention some open problems, particularly some congédwiies that is, chordless
cycles of length at least 4. Although we are not able to determine the exangtlexity of detecting a hole of
odd length< k, we derive some results for related problems. We thereby show thatish@ngolynomial time
algorithm that, given a grapfi outputs a hole irg; of minimum length (and rejects if there is no hole).



2. Preliminaries

The set of natural numbers (that is, nonnegative integers) is denptdd IFFor a natural number let [n] :=

{1,...,n}.

2.1. Parameterized complexity. We assume that the reader is familiar with the basic notions of parameterized
complexity theory (cf. [13, 17]). In particular, a parameterized prohired-parameter tractabléit is solvable
intime f (k) -p(n) for some computable functiohand some polynomial; heren is the length of the instance and
k denotes its parameter. We denote by FPT the class of all fixed-parametablieagroblems. Recently (see [18]),
special attention has received the subclass EPT of FPT consisting afothlems where the functiofi can be
chosen i),

For parameterized (decision) proble@sand Q' we write Q@ <P Q' if there is a (many-one) fpt reduction
from Q to Q'. We writeQ =Pt ¢’ if Q <t ¢’ andQ’ <Pt Q.

We also consider parameterized counting problems (cf. [16, 17] foile@efinitions). For such problems
F and F’ we write F <! F’ if there is an fpt parsimonious reduction frafito ' (that is, an fpt reduction
preserving the values) ael <P“T F' if there is an fpt Turing reduction fro¥ to F’. We write F =PtT 7 if
F <WtT 7 andF' <PtT F,

2.2. First-order logic. A vocabularyr is a finite set of relation symbols. Each relation symbol haarap. A 7-
structure.A consists of a setl called theuniverse which we assume to be finite, and an interpretaRghC A" of
eachr-ary relation symboR ¢ 7. For example, we view graphas a structurg = (G, EY), whereE is a binary
relation symbol andE? is an irreflexive and symmetric binary relation on the set of vertiéesNevertheless,
often we denote the vertex set of a graplby V and the edge set b (instead ofG' and £Y) and use the set
notation{v, w} for edges.

For ar-structureA we denote by|.A| its size, that is, the length of a string encodidgn a natural way. The
number||.A|| will be within a polynomial factor of the term

7|+ Al + ) [RA] - arity(R).

ReT
Let A and B be structures of the same vocabulary An embeddingrom A to B is a one-to-one mapping
h: A — B such thatfor allR € 7, say, of arityr, and for all(ay,...,a,) € A",

(a1,...,a,) € R* = (h(a1),...,h(a,)) € RE.

Formulas of first-order logic of vocabulary are built up from atomic formulas = y and Rz, ...z, where
x,y,r1,.-.,x, are variables an® € 7 is of arity r, using the boolean connectives and existential and universal
guantification. Fot > 0 letII; denote the class of all first-order formulas of the form

Vxn .. .V:clkl 31'21 . 3$2k2 N thl .. thkt "(p,

where@) = Jif tis even andy = V otherwise, and where is quantifier-free. In particulat] is the set QF
of quantifier-free formulas. Ifi > 1 we denote bylI? , the subclass ofl; consisting of those formulas where

ki,...,k < u (thatis,all quantifier blocks have lengtd ).
If ¢ is a first-order formula, we write(z1, . . ., z,,) to indicate that the free variablesgnarex, . .., x,,. If
A is ar-structure, ane(zy, . . ., x,,) is a formula of vocabulary, then we let

o(A) = {(a1,...,am) € A" | AEp(ar,...,am)}.

Thus|p(.A)| is the number of tuples satisfying
For a classp of first-order formulas we consider the decision versieMC(®) and the counting version
p-#MC(®) of theparameterized model-checking probléoy || we denote the length of the formulg:
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p-MC(2)
Instance: A structureA and a formulap(zy, ..., z,) € .
Parameter: |op|.
Problem: Is p(A) # (0?

p-#MC(®)
Instance: A structureA and a formulap(zy, ..., z,) € .
Parameter: |¢|.
Problem: Compute|p(A)|.

We introduce the classes of the W-hierarchy (in a way suitable for opogas):

Definition 1. Let¢ > 1.
— W[t] is the class of parameterized (decision) problems fpt reducibjeiC (117, ;).

— #W[t] is the class of parameterized counting problems fpt parsimoniously redtm:jng#MC(H?ﬁM).
We shall use the following well-known results (cf. [12] for (a), and][a6d [5] for (b)):

Theorem 2. (a) p-INDEPENDENTFSET is W]1]-complete angh-MAXIMAL -INDEPENDENTFSET is W[2]-com-
plete, both under fpt reductions.

(b) p-#INDEPENDENTFSET is #W[1]-complete andh-#MAXIMAL -INDEPENDENTFSET is #W/[2]-complete,
both under fpt parsimonious reductions.

Here, given a grapt andk € N (as parameter), the problemy-MAXIMAL )-INDEPENDENTFSET asks whether
there exists a (maximal with respect to set inclusion) independent sekdf siz;.

2.3. Path and CyclesLet k € N. Thegeneric pathof lengthk is the graph

Pii= (b +1), {{i,)

i,je[k+1]7j—i:1}).

A path of lengthk in a graphG = (V, E) is a subgraph of that is isomorphic t&®P. Thus, ifvy,..., v € V
with e; := {v;,v;41} € E foralli € [k], then({v1,...,vp+1}, {e1,...,ex}) is counted as one path (and not
as two, as the notations, vo, . .., v+ andvgi1, vg, . . ., v1 Might suggest). Nevertheless, in many contexts we
denote this path by’ = vy, ..., vr1 and say that the pattartsin v; andendsin v,1. The vertices;, vy11
are theendverticef this path. A pathvy, ..., vi41 is maximalif there is nov € V' such thaw, vy, ..., vg4q OF
vy, ..., Ukt1, v IS @ path. Achordless patifor, induced pathof length% in G is an induced subgraph gfthat is
isomorphic taP;. It should be clear how the notion ofaaximalchordless path is defined.

Sometimes we use formulations liké*is a maximal (chordless) path & = (V, E') with endvertices in
F C V." Here “maximal” (“maximal chordless”) refers to all (chordless) pathg/iand not to all (chordless)
paths with endvertices if' C V.

Let £ > 3. A (chordless) cycle of length in a graphG = (V, E) is an (induced) subgraph ¢f that is
isomorphic to theyeneric cycleof lengthk

C 1= ([K], {{i,5} | irj € K], j =i =1mod k}).
Part (a) of the following theorem has been shown in [29] and part (H)Gh

Theorem 3. (a) p-PATH andp-CvycCLE are fixed-parameter tractable, they are evertinT.
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(b) p-#PaTH andp-#CvyCLE are #W/[1]-complete under fpt Turing reductions.

Here, for example,

p-PATH
Instance: A graphG andk € N.
Parameter: k.
Problem: Is there a path iy of lengthk?

and

p-#PATH
Instance: A graphg andk € N.
Parameter: k.
Problem: Count the number of paths fof lengthk.

3. Maximal Paths

This section is devoted to a proof of the following two results.

Theorem 4. The problem

p-MAXIMAL -PATH
Instance: A graphg andk € N.
Parameter: k.
Problem: Is there a maximal path i@ of lengthk?

is fixed-parameter tractable, it is evenEPT.

Theorem 5. The problem

p-#MAXIMAL -PATH
Instance: A graphg andk € N.
Parameter: k.
Problem: Count the number of maximal paths @ of
lengthk.

is #W([1]-complete under fpt Turing reductions.

LetG = (V,E) be a graph and,v € V. Consider a pattP in G from the vertexu to the vertexv. Let
NY(u,v) be the set of neighbors afor v, more precisely:

NY (u,v) = {weV|{uw}eEor{v,w} € E}.
The following simple observation will be crucial.
Lemma 6. Let P be a path fromutov in G. Then
P is a maximal path<= P contains all vertices inV¥ (u, v).

The fixed-parameter tractability @f MAXIMAL -PATH is obtained by a reduction to the embedding problem
for a class of structures of bounded treewidth. The latter problem teasdbewn to be fixed-parameter tractable
in [29] (cf. [2], too):



Theorem 7. Let C be a decidable class of structures of bounded tree-width. Then

p-EmB(C)
Instance: A structureA € C and a structuré.
Parameter: ||A]l.
Problem: Does there exist an embedding frofrto B?

isin EPT.

Proof of Theorem 4lt suffices to show the following problem is in EPT:

p-POINT-MAXIMAL -PATH
Instance: AgraphG = (V,E), u,v € V,andk € N.
Parameter: k.
Problem: Isthere a maximal path ié from « to v of length
k?

Let C be the class of all generic paths (see Preliminaries) with three addlitizary relations. Then all structures
in C have treewidth< 1 (recall that unary relations do not change the treewidth). So, by €hedr it suffices to
give an fpt algorithm with an oracle @ EMB(C) solvingp-POINT-MAXIMAL -PATH.

We denote the three unary relation symbolsityy(“first element relation”) 2, (“last element relation”), and
R (“neighbor relation”). Consider an instancePoINT-MAXIMAL -PATH consisting of a graply = (V, E),
u,v € V,andk € N. By Lemma 6, iff N9(u,v)| > k + 1, then(G,u, v, k) is a no instance. So we may assume
that| N9 (u, v)| = m for somem < k + 1. We setG, , := (G, R, RY, RY), where

R]gc = {u}, Rg = {v}, RY:=NYu,v).

Recall that the generic path; of lengthk has vertex sefk + 1]. Again by Lemma 6, we see that there is a
maximal path ing from u to v of lengthk if and only if for some unary relatioR”* of cardinalitym < [k + 1]
there exists an embedding fraf®y, {1}, {k + 1}, R7*) to G, ,,.. Since there are at ma®t*! many such subsets,
we get our claim. O

A direct consequence of Theorem 4 is:

Corollary 8. log n-MAXIMAL -PATH is in PTIME, where

log n-MAXIMAL -PATH
Instance: A graphGg = (V, E).
Problem: Is there a maximal path ig of length log|V'|?

However it is impossible to improve the 19| bound in Corollary 8 as exemplified by the following result.

Theorem 9. The problem

log? n-MAXIMAL -PATH
Instance: A graphG = (V, E).
Problem: Is there a maximal path i@ of length log |V'|?

is not INPTIME unless the exponential time hypothd&3H) fails.



In the proof we will use the following path extension construction: &et (V, E') be a graph and, ¢ € N.
We obtain the graply,, = (Vae, Eqe¢) from G by addingd many isolated vertices;, . . ., aq and furthermore
verticesby, bs, . . ., by constituting a path and whebg is adjacent to all vertices ifi. More precisely:

Vae:=V U{a; |ield}U{b|iecll};
Eir:=EU{{v,b1} |veV}
U {{bi,bis1} | i € [( —1]}.
One easily verifies fok > 1 and/ > k + 1,
G has apathoflength <= G, has a path of length + /.

Moreover we need the following fact (by g we mean|log? m |):

Lemma 10. GivenN > 64 andk € N with k < log? N we can compute in time polynomial Ma number’ € N
with ¢ < N such that
kE+¢=log (N +0).

Proof: The claim easily follows from the following two facts holding fof > 64:
— log? (N +m +1) —log? (N +m) < 1 forallm > 0;
— N > lo@ (N + N). i
First we show:

Theorem 11. If the problemog? n-MAXIMAL -PATH is in PTIME, thenHAMILTONIAN -PATH is solvable in time
20(v1) wheren is the number of vertices of the given graph.

Proof: We assume that there is a polynomial time algorithtimat decides logn-MAXIMAL -PATH in polynomial
time. Let(G, k) be an instance of KMILTONIAN -PATH with G = (V, E'). Without loss of generality we assume
n := V| > 64. We show how to usé to solve HAMILTONIAN -PATH in time 20(v7),

We letN > n be the smallest natural number satisfying?1dg > 2n+1 > n. Clearly N = 20V With the
algorithm of Lemma 10 we compute &< N such thai+¢ = log? (N +¢). Note than+1 < ¢ < N = 20(Vn),
For the graplgy_, ¢ we have:G has a Hamiltonian path, i.e., a path of lengtif and only if G _,, , has a path
P of lengthn + ¢ (= log? (N + £)) = log? |Vy_n¢|. Clearly such a patt must be a maximal path. So we
simulateA onGy_,, ¢, which takes time

Hngn,EHO(l) _ (N +£)O(1) _ 20(\/5)' 0O

Proof of Theorem 9Assume that logn-PATH € PTIME. Then by Theorem 11 AMILTONIAN -PATH is solvable
in time 2°(") | wheren is the number of vertices of the given graph. Then&-8% solvable in time2°(™) where
m is the number of clauses of the given propositional formula (this is segnbgahe reduction of [27] from
3-SAT to HAMILTONIAN -PATH). Therefore, by the Sparsification Lemma [22], the problema3-iS solvable in
time 2°(") wheren is the number of variables of the given propositional formula. But this justts¢hat ETH
fails. O

A similar proof yields:



Theorem 12. The problem

log? n-PATH
Instance: A graphg = (V, E).
Problem: Doesg contain a path of length 18V |?

is not inPTIME unlessETH fails. !

The next two propositions will give a proof of Theorem 5. The followiegult also relies on Lemma 6.

Proposition 13. p-#MAXIMAL -PATH <™t p-#MC(QF).

Proof: Let (G, k) with G = (V, E') be an instance gi-#MAXIMAL -PATH. For paths of lengtlk we express the
right hand side of the equivalence in Lemma 6 by the formldelow thus gettingu,, . . . , ux+1 IS @ maximal
path inG ifand only if G = g (u1, ..., ugst1), where

ok(z1,. .. Tpyr) = /\ (mx; = x5 AN Exiwigr) A Vy((E:cly V Exipp1y) — \/ x; = y)
i€ kH1]i<y i€[k+1]

To get the desired reduction #MC(QF), we have, among others, to get rid of the universal quantifier. For
fixed x1, zr.1 the universal quantifier essentially ranges over the neighbors of tiweselements; since in the
relevant cases there will be at mast 1 many we can replace the quantification by an iterated conjunction, more
precisely:
We let< be a binary and?, .. ., Ty ternary relation symbols, where, without loss of generality, we assume
k > 1. We expandj to a structure
A= (V,E,<ATA, . T )

with the properties:
— <“is an ordering o¥;
- T{',..., T are ternary relations oW such that for, v € V:

— if N9 (u,v)| > k+10r|NY(u,v)| = 0, thenforall i € [k+1]there isnow € V with (u, v, w) € TA;

— if 1 < |NY(u,v)| =m < k + 1, then there are, . ..., wy, such thatV9 (u,v) = {w, ..., wn,}, for
all i € [m]
{w|weVand(u,v,w) € TzA} = {w;}

and fori withm <1< k+1

{w|weVand(u,v,w) € TiA} = {wm}.

Thenu,...,uxy1 IS @ maximal path irg if and only if there arevy, ..., vpq With A = Yr(uq,. .., ugy1,
Uiy ..y Ukt1), Whereyy(zq, ..., Tpy1, Y1, - - -, Yp+1) 1S the formula
/\ (—mi =x; A Exixiﬂ) A /\ Tix1xp11Yyi N /\ \/ Yi = xj.
1,j€[k+1], i<j t€lk+1] i€lk+1] je[k+1]

1This problem was raised in [2], and Alon informed us that he was alraagye of Theorem 12 before we got the result.



Moreover, in the positive case, the, . . ., v;1 are uniquely determined hyi, ..., ux1. In order to count a path
u1, .. .,ur+1 Only once (and not twice as the notations. . ., ug+1 andugy1, . .., u; might suggest) we consider
the formulaxg(z1, ..., Tk+1, Y1, -« -y Ypt1) = Y A 21 < Tp41. Then

9

‘{P | Pis a maximal path i of Iengthkz}‘ = ’{(ul, U1, V1, - Vpt1) | A xe(T,0) )

thatis,|xx(A)| is the number of maximal paths ¢hof lengthk. This gives the desired reduction frgm#MAXI -
MAL -PATH to p-#MC(QF). O

Proposition 14. p-#PaTH <™t p-#MAXIMAL -PATH.

Proof: This is quite straightforward. L€iG, k) with G = (V, E) andk > 1 be an instance of-#PaTH. Let
V*:={v* | v € V'} be adisjoint copy of/. We setG’ = (V', E’) with

V:=VuV* and E :=EU{{v,v*}|veV}.
Then:
(a) Every maximal path ig’ of length> 2 starts and ends ili*.
(b) LetP =wuq,...,up Withuy,...,ux € V. Then

Pisapathing < uj, P,u} is a maximal path iy’
Hence,(G, k) — (G', k + 2) is an fpt parsimonious reduction fropa#PATH to p-#MAXIMAL -PATH. 0

Proof of Theorem 5 By Proposition 13 we have-#MAXIMAL -PATH € #W][1] and by Proposition 14 and
Theorem 3 (b) the problem#MAXIMAL -PATH is #W][1]|-hard under fpt Turing reductions. O

4. Chordless Paths and Chordless Cycles

In this section we introduce an operation on graphs relating the indepeseterof a graply with the chordless
paths of the image df under the operation. This operation is due to Papadimitriou and YannaR&kidNe will
use it and refinements of it to derive essentially all hardness results iloi&ed—6. In this section we apply it
to get the Wi]-hardness of the chordless path problem and the chordless cyclemr(ihese results are already
implicit in [28]); moreover, we use it to show that the corresponding cogrgioblems are #\\{|-hard under fpt
parsimonious reductions (this improves [31] where these problems ama shde #W1]-hard under fpt Turing
reductions).

More precisely, the operation of [28] acts on graphs and positivealatumbers: Let; = (V, E) be a graph
andk > 1. The vertex set of the gragh(k) = (V (k), E(k)) essentially consists df copies ofl”. Each copy will
be a clique inG (k). Two distinct copies are linked accordinggo Finally there are thréeadditional vertices for

%For the purpose of the proofs in this section two additional elements woffldesbut we want to use the same construction for the
proof of Theorem 18.



— 3]
(a,1) (b,1) (c,1)

Figure 1.

eachi € [k], which fori > 2 allow a further transition from th@ — 1)th copy to theth copy (cf. Figure 1). More
precisely:

V (k) :=(V U{a,b,c}) x [k;

E(k) == |J {{(u.1),(v,9)} | u,v € V andu # v}

i€[k]

U U {{(u,7),(v,5)} | u,v € V and @ = v or {u,v} € E)}

1<i<j<k

U U ({f@), 0k 16 0), (e )} U {{(e i), (i)} [u e VY)

i€[k]

u J {@i)(ai+1)}ueV}.

1<i<k—1

For each € [k], we call
S; = (VU{a,b,c}) x {i}

theith slice ofG (k). Clearly S; \ {(a, 1), (b,7)} is a clique.

The crucial observation of [28] relating the independent sefswith chordless paths iéi(k) reads as follows:

Lemma 15. LetG = (V, E) be a graph and:c > 1. Furthermore letG(k) be the graph just constructed. For
ug, ..., ur € V we set

P(uq,...,ug) :== (a,1),(b,1),(c,1), (u1,1),(a,2),(b,2), (c,2), (u2,2), (a,3) ...,
cooy (up—1,k — 1), (a, k), (b, k), (c, k), (ug, k).

Then:
(@) P(ui,...,u)is apath of lengthtk — 1in G(k).
(b) P(u,...,u)is achordless path ig (k) if and only if{u,,...,u;} is an independent set gfof sizek.

10



(c) Every chordless path of lengtft — 1 in G(k) has the formP(u1, . . ., uy) for suitableus, ..., u; € V.2

Proof: Part (a) is clear. Part (b) is easy: By constructio;6f) the pathP(u4, ..., ux) is not a chordless one if
and if only if for somei, j € [k] with ¢ # j the verticequ;,7) and(u;, j) are adjacent igj(k). But this means
thatu; = u; or {u;, u;} € E. In the first case the s¢t., ..., u;} has size less thanand in second one it is not
an independent set.

We turn to part (c) and assume tHais an arbitrary chordless path of length — 1 in G(k). We show that it
must have the forn®(uy, ..., ux) for someuy, ..., u € V.

Claim 1.For: € [k]
|PNS;|=4, (a,i),(byi) e P and |PN(V x{i})]>1.

In fact, sincesS; \ {(a,1), (b,7)} is a clique, it contains at most 2 vertices frdm ThereforeS; containsat most
4 vertices fromP. As P contain4k vertices, it must contain exactly four vertices from each sficand hence at
least one froml” x {i}. .

Claim 2.(¢,1) € P.

By Claim 1, we havéa, 1), (b,1) € P. But(a, 1) is only adjacent tg¢b, 1) and hence must be an endvertextof
The point(c, 1) is the only further neighbor db, 1), hence(c, 1) € P. -

As just remarkeda, 1) is an endvertex of, so we may assume th&tstarts in(a, 1).

Claim 3.There areuy,...,u; € V such thatP = P(uq,. .., ug).

Let P = vy,...,v4,. By Claim 1 and Claim 2 we already know that = (a,1), vo = (b,1), v3 = (¢, 1), and
vg = (u1,1) for someu; € V.
Now we show fori € [k — 1], if

Va(i—1) 41> Va(i—1)42> Va(i—1)+3, V4 = (a,4), (b, 1), (¢, 1), (ui, 7)
for someu; € V, then
Vdi1, Vai42, V4043, Va(ig1) = (@, 0+ 1), (b0 + 1), (¢,i + 1), (wiy1,i+ 1)
for someu; 1 € V. Clearly, this yields the claim. =
By Claim 1,(a,i + 1), (b,i+ 1) € P, and sincda,i + 1) is adjacent tqu;, i) = v4;, we have
v4ir1 = (a,i+1).

Similarly, as(a,i 4+ 1) and(b, i + 1) are adjacent, we get; o = (b,i + 1). Hencepy; 13 = (c,i + 1). Finally,
by Claim 1, there exits somg, € V with (u;+1,i+1) € P. As(u;41,i+ 1) isadjacenttdc, i+ 1) (= vgi+3)
in G(k), we conclude thaty; +4 = (u;y1,7+ 1). O

As already mentioned the following result is implicit in [28] and explicit in [20].

Theorem 16. The problems

®Recall that the pattP(u1, ..., ux) is the same as the corresponding path startin@ink) and ending in(a, 1).
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p-CHORDLESSPATH
Instance: A graphg andk € N.
Parameter: k.
Problem: DoesgG have a chordless path of lengti

and

p-CHORDLESSCYCLE
Instance: A graphg andk € N.
Parameter: k.
Problem: DoesG have a chordless cycle of lengti?

are W[1]-complete under fpt reductions.

Proof: We show the Wl]-hardness op-CHORDLESSPATH by an fpt reduction from the \W|-hard problem
p-INDEPENDENTFSET (cf. Theorem 2 (a)). Le§ = (V, E) be a graph anéd € N. We assumé& > 1. By the
previous lemma we see that

G has an independent set of size <= G(k) has a chordless path of length — 1.

This gives the desired reduction.

The W[1]-hardness 0f-CHORDLESSCYCLE is again shown by an fpt reduction frgpal NDEPENDENTFSET.
LetG = (V, E) be a graph and € N. We assumé& > 2. The graphG(k)’ is obtained from the grapfi(k) by
adding an edge frorfu, 1) to every vertex oV x {k}. ThenP(uy,...,u;)isacycleing(k) foruy,...,ux € V.
As in the previous proof one shows:

G has an independent set of ske <= G(k)' has a chordless cycle of length.

Membership ofp-CHORDLESSPATH in W[1] is witnessed by the fpt reduction @ MC(QF) given by

Or(T1, .o, Ty1) 1= ( /\ Ezixiiq N /\ T = A /\ ﬂExixjH).
i€ (k] i,j€[k+1],i#j 1<i<j<k

It should be obvious how the formulg, has to be modified fop-CHORDLESSCYCLE. )

In addition, we show for the counting versions.

Theorem 17. p-#CHORDLESSPATH andp-#CHORDLESS CYCLE are #W[1]-complete under fpt parsimonious
reductions.

Proof: Membership in#W[1] is shown by straightforward fpt parsimonious reductiong-#MC(QF) (as it is
done forp-#PaTH andp-#CvyCLE in Lemma 14.31 of [17]).

For the#W([1]-hardness we reduce the #\¢hard problenp-#INDEPENDENTFSET (cf. Theorem 2 (b)) to our
problems. Essentially we use the reductions for the decision problemsfmése the previous proofs, but now
we have to make sure that the reductions preserve the number of solthianis, are parsimonious. Note that,
by Lemma 15, every independent get= {u1,...,u;} oOf sizek gives rise tok! many chordless paths %(k),
namely for each ordering], ..., v} of the elements of to the pathP(uj,..., ;). We illustrate the necessary
changes fop-#CHORDLESSPATH. The proof forp-#CHORDLESS CYCLE is similar.
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LetG = (V, E) be a graph anél > 1. We fix an ordering<" of V. We add to the grapéi(k) for all u,v € V
with v <" u, which are not adjacent i, and alli, j € [k] with i < j an edge between the vertéx, i) (of the
ith copy) and the vertefw, 5) (of the jth copy), thereby obtaining the gragli<"', k). Then it is easy to see that
foruy,...,u, €V

P(uy,...,u;)is achordless path ii(<", k) <= {uy,...,us} is an independent set ;and

14

up < ...<Vuk.

From this equivalence one gets that the number of independent sgtsfcdize k£ and the number of chordless
paths ofG(<", k) of length4k — 1 coincide. O

5. Maximal Chordless Paths

While in Section 3 we have seen thaMAXIMAL -PATH is fixed-parameter tractable, we now show:
Theorem 18. p-MAXIMAL -CHORDLESSPATH is W[2]-complete under fpt reductions.

Before giving the proof, we introduce an auxiliary construction, whitsuees that maximal (chordless) paths
of length < k have endvertices in a given sét LetG = (V, E) be a graphF' C V, andk € N. We obtain
the graphGr;, from G by adding to every vertex not iR" a path of lengthk + 1 of new vertices, €.9.r ), =
(VF’]@, EF,k) with

VFJf =V U ((V\F) X [k—i—l]);
Er :zEU{{v,(v,l)} lve V\F}U{{(v,z’),(v,i+1)} |i e [k]andv € V\F}.

Then one easily verifies:

Lemma 19. (a) Let P be a maximal chordless path % with endvertices inF. ThenP is also a maximal
chordless path ig g .

(b) Let P be a maximal chordless path @, of length< k. ThenP is a maximal chordless path i@ with
endvertices irF’ (in particular, all vertices ofP are inV).

Proof of Theorem 18The membership gf-MAXIMAL -CHORDLESSPATH is shown by a straightforward reduc-

tion top-MC(I19 ,): For eachk € N there is all{ -formulayy(z1, . .., zx11) expressing thati, ..., 241 is @
maximal chordless path of length for example:

Vp(T1, ..oy Tp1) = < /\ Erixiiq A /\ T = xj A /\ ﬁExixjH) A

ick] ijelk+1]ij 1<i<j<k
Vy((Emly — \/ (x; =yV Eajzy)> A (E:Ek+1y — \/ (xi=yV Exw)))
2<i<k+1 1<i<k

To show the W2]-hardness of)-MAXIMAL -CHORDLESSPATH we present an fpt reduction from the[¥)+
complete problemp-MAXIMAL -INDEPENDENTFSET (cf. Theorem 2 (a)).

So let(G, k) with G = (V| F) be an instance gi-MAXIMAL -INDEPENDENTFSET and assumé > 1. Recall
the definition ofG(k + 1). LetI = {uy,...,u;} be an independent set of sikén G. Then:

P(uy, ... ug), (a,k+1),(b,k+1),(c,k+ 1) is a maximal chordless path 1k + 1)
< [ is a maximal independent set @f
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(a,1) (b,1) (c,1)

A path of lengthdk + 2 (for & = 2), the grey edges
witness the maximality at the endvertg@x2).

Figure 2.

In fact, if I U {u} is an independent set i, then, by Lemma 15 (b)P(u1, . . ., ux,u) is a chordless path in
G(k+1) extendingP(uy,...,ux), (a,k+1), (b, k+1), (¢, k+1). Conversely, itP(uy, ..., ux), (a,k+1), (b, k+
1), (¢, k + 1),v for some vertex in G(k + 1) is a chordless path, then the verteis adjacent tqc, & + 1) and
thus must have the form = (u, k + 1) with « € V. But then, again by Lemma 15 (b)}u1, ..., u, u} is an
independent set extendirg

Furthermore, one easily verifies:

— Every chordless path of lengttk: + 2 starting in(a, 1) and ending in(c,k + 1) must have the form
P(uy,...,ug), (a,k+1),(b,k+1),(c,k + 1), where{us, ..., u;} is an independent set 6f

In general, there might be (and in general will be) maximal chordless pathagth4k + 2 of a different form
in G(k + 1) (cf. Figure 2). To get rid of them instead G{k + 1) we consider the graptG(k + 1)) p a2 for
F ={(a,1),(c,k + 1)}. Putting all together we see:

g has a maximal independent set of size
<= (G(k + 1)) par+2 has a maximal chordless path of length+ 2. O

For the counting version we get:

Theorem 20. p-#MAXIMAL -CHORDLESSPATH is #W/|2]-complete under fpt parsimonious reductions.

Proof: Membership in#W|2] is shown by a parsimonious fpt reductiont@MC(II! , ): Given an instancgg, k)

of p-#MAXIMAL -CHORDLESSPATH, we add an ordering:¥ of the set of vertices of and assign t¢G, k) the
instance((G, <9), xx) of p-#MC(H?’l) with xx (21, ..., Tky1) == Yr(x1, ..., Thy1) Az1 < Tgy1, Whereyy, is

as in the preceding proof. As in the proof of Proposition 13, the conjunet =, ensures that the sequences
Z1,...,Zp+1 aNdzgyq, ..., 21 are not counted as two paths.

We know thap-#MAXIMAL -INDEPENDENFSET is #W/2]-hard under fpt parsimonious reductions (cf. The-
orem 2(b)). The reduction from-MAXIMAL -INDEPENDENTFSET to p-MAXIMAL -CHORDLESSPATH of the
preceding proof does not preserve the number of solutions, as onmal&dependent set of siZeyields various
maximal chordless path of lengilt 2. Nevertheless adding an ordering and edges as in the proof of Thégre
one gets an fpt parsimonious reduction frprEMAXIMAL -INDEPENDENTFSET to p-#MAXIMAL -CHORDLESS
PATH; hence, the latter problem #W/[2]-hard under fpt parsimonious reductions. O
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6. The inflationary version

Let Q be any of the parameterized path or cycle (decision) problems consideria. Then we define the
parameterized proble@<, the inflationary version o, by

(G, k) € Q< <= forsomek’ < k: (G,k') € Q.
As an immediate consequence of the definition we get:
(i) If Q € FPT, thenQ< € FPT.

As
k

#Q<(G,k) =) #Q(G,i) and #Q(G,k) = #Q<(G, k) — #Q<(G,k - 1),
=0
we have:

(i) #Q< =T #Q.

Theorem 21. (a) p-PATH<, p-CYCLE<, p-MAXIMAL -PATH<, p-CHORDLESSPATH<, and p-CHORDLESS
CycCLE< are fixed-parameter tractable and the corresponding counting prabim#N [1]-complete under
fpt Turing reductions.

(b) p-#MAXIMAL -CHORDLESSPATH< is #W[2]-complete under fpt Turing reductions.

Proof: The claims for the first three decision problems in part (a) follow from @y.FCHORDLESSPATH< note
that(G, k) is a positive instance for every graph with nonempty vertex set. Finally-foHORDLESSCYCLE<
the claim follows from the equivalence:

(G, k) € p-CHORDLESSCYCLE< <= (G, k) € p-CYCLE<.

For the direction from right to left note that by drawing a chord in a cycleotsain two new cycles. If none of
them is chordless, we proceed till we get a chordless one.

By previous results the #\¥]-hardness and the #]-hardness under fpt Turing reductions of the counting
problems in (a) and (b), respectively, follow from (ii); membership in[#Vvdnd #W2], respectively, is shown by
adapting the proofs for the non-inflationary versions. We do this for tblelem in (b).

We showp-#MAXIMAL -CHORDLESSPATH< € #W/[2] by an fpt parsimonious reduction to the problem
p-#MC(II{ ). A first choice would consist in using the formula

\ (e, 2e01) Amy < 341), 1)
<k

where
wg(xl, c. ,.I'g+1) = ( /\ FExixiv1 A /\ Ty = x5 A /\ —|E$Z‘1‘j+1> VAN
i€[(] 1,JE[L+1],i#] 1<i<j<t

Vy((Exly — \/ (r;=yV Exzy)> A (Exg_Hy — \/ (x; =yV Eam;)))
2<i<l41 1<i<t

(The formulay, was used in the proof of Theorem 18 and expressesithat ., z,,; iS a maximal chordless
path of length? and the formulg v, A x1 < x441) was used in the proof of Theorem 20 to count the maximal
chordless paths of length) There are two problems: First, we have to findlaformula equivalent to (1),
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where the length of the universal block is independerit @fe even claimed that we can get a block of length 1).
Moreover, we have to fix the value of, -, . . ., x in paths of lengttf. In fact, we can take the following formula
pr(x1, ..., zK1) (NOte that for vertices, . . ., x4 there is at most oné< k such that all iterated conjunctions
in the first line are satisfied):

Yy \/ ( /\ Exiziig A /\ Ly = X5 N /\ ﬁEﬂZﬂJj.,.l AN /\ Ti = To4+1 N
<k iell] i jeler1] i 1<i<j<t (41<i<kt1

<(Eac1y — \/ (ri=yV Ezvly)) A (Eamrly — \/ (r;=yV Emzy))> ANxy < :L‘g_H).
2<i<l+1 1<i<t

Now it is easy to verify thatox(G)| is the number of maximal chordless paths of lengthk of a given graplg.
O

But what is the complexity of-MAXIMAL -CHORDLESSPATH<? Since the fpt parsimonious reduction from
p-#MAXIMAL -CHORDLESSPATH< to p-#MC(H(l)J) of the preceding proof induces an fpt reduction of the cor-
responding decision problems, we know tha¥l AXIMAL -CHORDLESSPATH< € W/[2]. We even show:

Theorem 22. p-MAXIMAL -CHORDLESSPATH< is W[2]-complete under fpt reductions.

Remark 23. The proof of Theorem 22 will yield the NP-completeness of the classicél@m

MAXIMAL -CHORDLESSPATH<
Instance: A graphG andk € N.
Problem: Is there a maximal chordless pathgrof length< £?

This answers an open problem of S.M. Hedetniemi [21].

In view of Theorem 2 (a) to get Theorem 22 it suffices to show:

Proposition 24. p-MAXIMAL -INDEPENDENTFSET <! p-MAXIMAL -CHORDLESSPATH<.

Proof: Let (G,k) with G = (V, E) be an instance op-MAXIMAL -INDEPENDENFSET. From the proof of
Theorem 18 we know that the graplik + 1) has the following properties:

(@) Letl ={uy,...,ux} be amaximal independent set of sizen G. ThenP(uy,...,ux), (a,k + 1), (b, k +
1), (¢, k + 1) is a maximal chordless path §ik + 1) of length4k + 2.

(b) Every maximal chordless path of length + 2 in G(k + 1) starting in(a, 1) and ending inc, & + 1) must
have the formP (uy, ..., ux), (a,k+1),(b,k+1),(c,k+1), where{uy, ..., u} is a maximal independent
set of sizek in G.

In order to give a reduction gf-MAXIMAL -INDEPENDENFSET t0 p-MAXIMAL -CHORDLESSPATH<, we will
extendG(k+1) to a graphg [k +1] by adding vertices (calleg below) in such a way that every maximal chordless
path betweelfa, 1) and(c, & + 1) will have the form mentioned in (b).

We setF := {(a,1), (c,k + 1)}. We letG[k + 1] = (V[k + 1], E[k + 1]) be the graph with

Vik+1]:= V(k+1)U{e |t € [Kort e ({a,b,c} x [k+1]) \ F},

Ek+1]:= E(k+1) U {{(a,1),e} | er € V[k+ 1]}
U {{ewt} |t € ({a,b,e} x [k+1]) \ F}
U {{es, (u,t)} | t € [k] andu € V' }.

SinceG(k + 1) is an induced subgraph gk + 1], we have:
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(i) If by,...,bm € V(E+1)andif every vertex i/ [k + 1] \ V(k + 1), that is, every; has a neighbor among
bi,...,bm InG[k + 1], then

(a1,1),b1,...,bm, (¢, k 4+ 1) is a maximal chordless path §(k + 1)
<= (a1,1),b1,...,bm, (¢, k + 1) is amaximal chordless path gk + 1].

Furthermore we show:

(i) Every maximal chordless patk of G[k + 1] starting in(a,1) and ending in(c,k + 1) is contained in
G(k + 1). Moreover, all vertices ifa, b, c} x [k + 1] occur inP.

(iii) Every maximal chordless patk of G(k + 1) starting in(a, 1) and ending in(c, k£ + 1) and containing all
vertices of{a, b, c} x [k + 1] has lengthtk + 2.

For (ii) let P be a maximal chordless path Gfk + 1] starting in(a, 1) and ending inc, k + 1). First we show
that everyt € ({a,b,c} x [k +1])\ Fisin P. Assumet ¢ P. Thene; € P, since otherwise;, P would be a
chordless path extending, a contradiction. Then; has two neighbors i#, which must be the two neighbors of
e; in G[k + 1], namely(a, 1) and¢; hencet € P.

Now assume that some vertexifik + 1] \ V(k + 1), that is, some:; occurs inP. ThenP must start by
(a,1),e;.. As (b, 1) is a neighbor ofa, 1), this shows thatb, 1) ¢ P, a contradiction by what we have already
shown.

We turn to a proof of (iii). So le? be a maximal chordless path Gfk + 1) starting in(a, 1) and ending in
(¢, k + 1) and containing all vertices dla, b, ¢} x [k + 1]. ThusP ends with(b, k + 1), (c,k+1). As (¢, k+ 1)
is a neighbor ofu, k + 1) for all u € V, we therefore getV x {k +1}) N P = 0. On the other hand, fare [k]
the vertex(c, i) is a vertex ofP with two neighbors inP, one beingb, 7). Therefore (V' x {i}) N P| = 1.

Thus P containsik + 3 vertices and hence has length -+ 2. This finishes the proof of (jii).

Now we claim:

G has a maximal independent set of size—>-
Glk + 1] has a maximal chordless path of lengthtk + 2 with endverticega, 1) and(c, k + 1).

In fact, assume first thai has a maximal independent Set;, ..., ux} of sizek. Then, by (a), the sequence
P(uy,...,ug), (a,k 4+ 1),(b,k + 1), (c,k + 1) is a maximal chordless path of length + 2 in G(k + 1), and
hence, by (i), inG[k + 1].

Conversely, let? be a maximal chordless pathdik + 1] of length< 4k + 2 starting in(a, 1) and ending in
(c,k+1). By (ii), Pis apathing(k + 1) and hence, a maximal chordless patigi: + 1); furthermore, by (ii)
and (iii), it has lengthtk 4 2. Now the claim follows from (b).

From the previous equivalence we get by Lemma 19,

g has a maximal independent set of size
<= (G[k + 1]) par+2 has a maximal chordless path of lengthtk + 2,

which yields the desired reduction. O

Arguing as in the proof of Theorem 17, one obtains the correspondahgtion for the counting versions:
Proposition 25. p-#MAXIMAL -INDEPENDENTFSET <P p-#MAXIMAL -CHORDLESSPATH<.

By Theorem 21 (b) we know that-#MAXIMAL -CHORDLESSPATH< is #W[2]-complete under fpt Turing
reductions. Now we get:
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Theorem 26. p-#MAXIMAL -CHORDLESSPATH< is #W([2]-complete under fpt parsimonious reductions.

Proof: Proposition 25 together with Theorem 2 (b) yields the[#Whardness under fpt parsimonious reductions.
O

7. Further Questions and Fagin-Definability

We have seen that-#PaTH <P' p-#MAXIMAL -PATH and that both problems are #W-complete under fpt
Turing reductions. 19-#MAXIMAL -PaTH <! ;-#PATH? If not (say, under the assumption FEETW(1]), then
this would reflect that also for the path problem the transition to the comelspp maximality version increases
the complexity, a phenomenon we have seen for various other problenjsaimdt this paper.

A strong embeddinfrom a graphg = (V, F) to a graphg’ = (V’, E’) is an embedding from G to G’ with
the additional property:

for all u,v € V: ({h(u), h(v)} € B = {u,v} € E)

Clearly, G contains a chordless path of lendihif and only if the generic patt®, is strongly embeddable iG;
and it contains a chordless cycle if and only if the generic cgglis strongly embeddable.

Let C be an infinite decidable class of graphs. What are necessasyfiitient conditions on C such that the
parameterized strong embedding problem@or

p-STRONG-EMB(C)
Instance: A graphgG € C and a graplg/’.
Parameter: ||G||.
Problem: Does there exist a strong embedding frgnto
g'?

is not fixed-parameter tractable?

7.1. Holes.A holein a graph is a chordless cycle of length at least 4. A hokven(odd) if it has even (odd)
length. In the last time problems concerning holes have received much attasttbey are related to the Strong
Perfect Graph Theorem (“A graph is perfect if it contains neitherdthfmle nor the complement of an odd hole”),
which has been proven recently [6, 8]. We mention some results and opaems: It is not known whether there
is a polynomial time algorithm deciding if a graph has an odd hole, while the questibether a graph contains
a hole and whether it contains an even hole are solvable in polynomial timR4¢f, 7]). Nevertheless, the
complexity of finding an even hole of minimum length in a graph is still open assfaresknow.

Clearly, asp-CHORDLESSCYCLE is W[1]-complete, so i9-HOLE (defined in the obvious way). But the
open problem just mentioned leads to the question: What are the complexified ®fE<, p-EVEN-HOLE<,
andp-ODD-HOLE<, where for example

p-ODD-HOLE<
Instance: A graphg andk € N.
Parameter: k.
Problem: Doesg contain a hole of odd lengthd £?

It is easy to show thgi-HOLE< € FPT by reducing it tgp-EMB(C) for a suitable class C of bounded treewidth.
But even the corresponding classical problem is polynomial time solvalelénglude a proof as we did not find
this result in the literature). Our statement is an immediate consequence of:
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Theorem 27. There is a polynomial time algorithm that, given a graploutputs a hole iry of minimum length
(and rejects, if there is no hole). In fact, there is an algorithm that takes tumaemtic in||G||.

Proof: Our proof uses ideas from [26]. A cycle,...,vx_1 in a graphg is 2-chordlessf £ > 4 and {v;,
V(i+2) mod k) ¢ E for0 <i <k — 1. Clearly, any hole is 2-chordless and any 2-chordless cycle of minimum
length is a hole. Hence:

Claim 1: Let C be a cycle inG. ThenC'is a hole of minimum length if and only ' is a 2-chordless cycle of
minimum length.

For a graptg = (V, E) we define alirectedgraphgd" = (V4 gdr) py
yar.— {(w,v) | {u,v} € E}; JORLEES {((u,v), (v,w)) | u,v,wis a chordless path i }.
The following is immediate:
Claim 2:If vy, v9, ..., v is a 2-chordless cycle if, then
(v1,v2), (v2,v3), ..., (Vg—1, V%), (U, V1)
is a directed cycle igd".
Moreover, we show:

Claim 3: If D = (vy,v2), (v2,v3), ..., (vk_1, k), (vx, v1) is a directed cycle iIG9" of minimum length, then
vy, ..., v iS @ 2-chordless cycle ig.

Proof: As {v1,v3} ¢ E, we see that > 4. Thus it suffices to show;,.. ., v; are pairwise distinct. Assume
there arel < i < j < k with v; = v;. We choose such, j with minimum j — 7. Thenwv;, vi41,...,v-1
are pairwise distinct ang > i + 2. Evenj > i+ 3, otherwise,j — 1 = ¢ + 2 and thus{v;yo,v;} € F
(as{vj_1,v;} € E), a contradiction. A9 has minimum length(v;, vi11), (Vit1,vit2), - .., (vj—1,v;) IS not a
directed cycle irgd". Therefore{v;_1,v;+1} € E. We choosé’, j' withi +1 <’ < +1 < j' < j — 1 and
minimum j' — i’ such thaf{v;,v; } € E. Thenj’ > ¢ + 2 and thusv;/, vir41, ..., vy is a 2-chordless cycle. By
Claim 2, (vyr, virs1), (Virg1, virta) - - -, (Vj_1,v;), (v, vy) is a directed cycle iIG4", which is shorter thab, a
contradiction. o

Claim 2 and Claim 3 yield:
Claim4: Letvq,...,v, € V. Then

v1, V2, .. ., U IS @ 2-chordless cycle i@ of minimum length <—-
(v1,v2), (v2,v3), ..., (Ve—1, Vi), (v, v1) is a directed cycle ig4" of minimum length

Note that any directed cycle %" must be of the fornfvy, vs), (v2,v3), . . ., (vk_1, k), (v, v1) for suitable
k > 4 andvy,...,v; € V. Therefore, by Claim 1 and Claim 4, to prove our theorem, it suffices @ ghat
there is a polynomial time algorithm that computes in a given directed grapHeafyminimum length. But the
existence of such an algorithm is well-known. (In fact, for this purpose#&ch pair of distinct verticasandwv of
a directed grapit = (V, E) with (v, u) € E we compute the length of a path frairto v of minimum length.)3

We do not know what the complexities of the problemEVEN-HOLE< andp-ODD-HOLE< are. We call
a cycle in a graply triangle-freeif the graph induced by on each three distinct vertices of the cycle is not a
clique. As any chord of a triangle-free cycle of odd length divides thisecyto two new triangle-free cycles, one
of them being of odd length, too, we get:

p-ODD-HOLE< =fpt p-TRIANGLE-FREE-ODD-CYCLEC,

where the latter problem is defined in the obvious way. We are able to detetineireomplexity of a related
problem:
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Theorem 28. The problem

p-TRIANGLE-FREE-CYCLE
Instance: A graphg andk > 1.
Parameter: k.
Problem: Doesg contain a triangle-free cycle of lengit?

is W[1]-complete under fpt reductions.

Proof: The membership of the problem in[¥} is shown by a straightforward reductiongeMC(QF). We turn
to a proof of its W1]-hardness. Again, we show it by a reduction from the independemireblem. We shall
need the following consequence of Ramsey’s Theorem.

There is a computable function : N — N such that for allk € N every graphg = (V, E) with
|V| > h(k) contains a clique or an independent set of ¢izén particular, fork > 3 every triangle-
free cycle contains an independent set of giZe

The following construction is inspired by [23]. L& = (V, E) be a graph an&,? > 1. We define a graph
G(k,t) = (V(k,0),E(k,)). BasicallyG(k, ¢) consists of three layers. The lowest layer is the original g@ph

The second layer consists 2% verticess; 1, s12, ..., Sk,1, Sk,2, all adjacent to every vertex i. Finally the top
layer, for eachi € [k], contains vertices; 1, b; 2, .. ., b; ¢ such that
Pii=8;2,bi1,bi2,...,big, Sit11 >

is a path of lengtlf + 1 connectings; » ands; 1. More precisely:

V(kt) == V U {s;;|ielklandje 2]} U {b;;|i¢c [k],andj € [(]},
E(k,t) = E U {{sij,v}|i€lk],je[2]andveV}
U {{sizbia} [i€ K]} U {{bie,sivin} |4 € [k]}
U {{bij, bij+1} | i € [k]andj € [¢ —1]}.
Then
V(k,0)| = |V| + 2k + (- . 2)
The proof of the following claim is immediate.
Claim 1:If {vy1,..., vt} is an independent set of sizen G, then
vy, P1,vo, Po, ... v, P

is a triangle-free cycle of lengtf8 + ¢) - kin G(k, ¢).
We prove the following converse of Claim 1:

Claim 2: Letk > 2 and
l .= max{l, FZ(kk)—‘ — 3} .

If G(k, ¢) contains a triangle-free cycle of length+ ¢) - k, thengG contains an independent set of size
Proof: Let C be a triangle-free cycle of lengt + ¢) - k in G(k, ¢). By (2) we know that

cnv| > k.

We distinguish two cases.

4For example a& one can take the functidn— 22*. Better bounds are known (see [4]).
SHere and in the following fof = k we reads; 1, ass.
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C ¢ V. SinceC is a cycle, it must contain a vertex,;. ThereforeC'NV must be an independent set, otherwise,
C'is not triangle-free.

C C V: ThenC'is atriangle-free cycle ig. Sincel = max{1, {@1 — 3}, we have

O] = (3+6) -k > h(k).

By the consequence of Ramsey’s Theorem quoted above, we sé€edhiatains an independent set of size
k. 4

By Claim 1 and Claim 2 we see that fér= max{1, [@] -3}

(G, k) — (G(k,0),(3+¢) - k)

is an fpt reduction op-INDEPENDENTFSET t0 p-TRIANGLE-FREE-CYCLE. O

7.2. Fagin-definability. We close by taking up the question of the Fagin-definability of paths and pyaldems
mentioned in the Introduction.

Let p(Z) be a first-order formula of vocabularywith a relation variableX, say, of arityr. Furthermore, let
C be a class of-structures. On C the formula= ¢(Z) Fagin-defineshe problem:

p-WD,(C)
Instance: A structureA € C andk € N.
Parameter: k.
Problem: Is there a subsef C A" with |S| = k such thatd =

©(S)?

Let GRAPH be the class of graphs. Letamered graph(G, <9) consist of a grapg = (V, E) and an ordering
<9 of V and let GRAPH be the class of ordered graphs. If we consider the path propiBaTH as a problem
on ordered graphs we denote it WPATH .. The following proposition contains three non-definability results for
the path problem, which are immediate consequences of known (nontresallts, and one definability result.
Similar results hold for the chordless path problem and for the (chordigsle) problem.

Proposition 29. (a) There is no first-order formula(Z) with a set variableZ (that is, with unaryZ) such that
p-PATH = p-WD,(GRAPH).
(b) There is ndI;-formulay(X) with a relation variableX of arbitrary arity » such thatp-PATH = p-WD,,
(GRAPH).

(c) There is no first-order formula(Z) with a set variableZ such thaip-PATH. = p-WD,(GRAPH.).
(d) There is a first-order formula(Z), even al,-formula, with a binaryZ such that

p-PATH_ = p-WD,,(GRAPH. ).

Proof: (a) Assume thap-PATH = p-WD,(GRAPH) for somey(Z) with a set variableZ. Then the sentence of
monadic second-order logic
AZ(p(Z) NVzZx)

would axiomatize the class of graphs with a hamiltonian path. This contradictsilaoé[14].
Part (b) is easily shown by using the well-known fact tHatformulas are preserved under substructures. Part
(c) follows as (a) but now using the corresponding result from [30].

(d) Let (G, <9) be an ordered graph with = (V, E). We can assume that = [n] and that<? is the natural
order of V. We show that there isHz-formulay(Z) with binary Z such that
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(i) If k € Nandvy, ..., v, is apathing, then(G, <9) = ¢(S) for
S = {(1,1}1), (2,v9),...,(k,vk), (k+ 1,vk+1)}.

(i) If (G,<9) = ¢(9), then there is & € N such thatS| = k + 1 and there is an € [n] with i + £ < n and a
pathvy, ..., vy 1 In G such that

S ={(,v),(i+1v9),...,( +k—1,08), (i + k,vps1) }-
Then, clearlyp-PATH. = p-WD_(GRAPH.). As ¢(Z) we can take dl,-formula equivalent to
dxIyZzxy A func(Z) A dom-segrf?) A rg-path(Z).

Herefunct 7) is all;-formula expressing th& is (the graph of) a functiordom-in{ Z) all,-formula expressing
that the domain of is a segment (ifn]) andrg-path(Z) aIl,-formula expressing that the range 4fis a path.
For example, we can set

funct(2) := VaVuvo((Zzu A Zzv) — u = v)

and
dom-segr?) := VaVyVzVuVvIw((Zou A Zyv A (z < 2 < y)) — Zzw).

We leave it to the reader to write dowrdk-formularg-path( 7). O
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