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SUMMARY

DNA microarrays provide for unprecedented large-scale views of gene expression and, as a result, have
emerged as a fundamental measurement tool in the study of diverse biological systems. Statistical ques-
tions abound, but many traditional data analytic approaches do not apply, in large part because thousands
of individual genes are measured with relatively little replication. Empirical Bayes methods provide a
natural approach to microarray data analysis because they can signi�cantly reduce the dimensionality
of an inference problem while compensating for relatively few replicates by using information across
the array. We propose a general empirical Bayes modelling approach which allows for replicate ex-
pression pro�les in multiple conditions. The hierarchical mixture model accounts for di�erences among
genes in their average expression levels, di�erential expression for a given gene among cell types, and
measurement �uctuations. Two distinct parameterizations are considered: a model based on Gamma
distributed measurements and one based on log-normally distributed measurements. False discovery rate
and related operating characteristics of the methodology are assessed in a simulation study. We also
show how the posterior odds of di�erential expression in one version of the model is related to the ratio
of the arithmetic mean to the geometric mean of the two sample means. The methodology is used in a
study of mammary cancer in the rat, where four distinct patterns of expression are possible. Copyright
? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Enabled by resources created from genome sequencing projects, DNA microarray technology
has emerged as a fundamental measurement tool in the study of diverse biological systems.
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Microarrays o�er an unprecedented ability to perform large-scale studies of gene expression.
As a result, the focus of many research e�orts has shifted from individual genes to multiple
genes and the complicated and orchestrated ways in which they interact to maintain life.
With the shift from individual to integrated analysis in molecular biology comes a shift

in the related statistical questions posed and methods required. The number of measurements
of distinct genes across an array greatly exceeds that for any individual gene. Thus, we as
statisticians are faced with the ‘large p, small n’ paradigm [1, 2]. Empirical Bayes methods
provide a natural approach to microarray data analysis because they can signi�cantly reduce
the dimensionality of an inference problem involving many unknown parameters (for exam-
ple, Efron and Morris [3, 4]). Our earlier work described a version of parametric empirical
Bayes analysis for spotted microarrays and was restricted to so-called ‘single-slide’ data in
which each gene produces two measurements, one from each cell condition [5]. The proposed
empirical Bayes methodology provides improved estimation of expression fold-change and
allows for the assessment of di�erential expression by the calculation of a posterior odds. In
spite of there being very little data per gene, the methodology works because inference about
a given gene uses information on the �uctuations of expression measurements from all genes.
One goal of the present paper is to extend the parametric empirical Bayes calculations beyond
the case of single-slides in two conditions, and thus to allow replicate expression pro�les in
multiple cell conditions.
The methodological work presented here is motivated in part by an experiment to study

gene expression in a rat model of breast cancer (see Section 2). Microarray data were obtained
from four distinct inbred lines (two parentals and two o�spring congenic lines). The parental
strains di�er in their susceptibility to breast cancer and identifying di�erentially expressed
genes could provide insight into the genetic basis of this di�erence. An interesting feature of
the present study is the presence of the four interrelated groupings (the four inbred lines). For
each gene, we are interested in making inference about the pattern of di�erential expression
among the four groups. We are not simply asking if there is di�erential expression between
two conditions.
The development of statistical methods to address the two condition problem has recently

received much attention. A general approach is to conduct a hypothesis test at each gene
and then correct for multiple tests. Most of the test statistics currently used are t (or t-like)
and di�er primarily in the estimation of the variance. Dudoit et at. [6] use a t-statistic with
variance estimated by the within gene sample variance and go on to address the multiple
testing problem extensively using permutation analysis. Tusher et al. [7] also use the within-
gene sample variance, but adjust the denominator of their test statistic by adding a constant
to account for the dependence between the relative di�erence in expression and absolute
intensity; they address the multiple testing problem using the method of false discovery rates.
Baldi and Long [8] use the posterior variance derived from a Bayesian analysis and do not
consider the multiple testing problem. Methods such as these which treat the genes as separate
�xed e�ects may have reduced e�ciency when compared to empirical Bayes methods which
treat the genes as arising from some population, and thus which allow a level of information
sharing amongst genes.
The two-group empirical Bayes method originally proposed by Newton et al. [5] amounts

to a simple mixture-model calculation. Stochastically, each gene is either di�erentially ex-
pressed or not. Those genes which are equivalently expressed present data according to some
background distribution, and those which are di�erentially expressed present data according
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to a di�erent distribution. The speci�c forms of these distributions arise by another layer
of mixing over the latent mean expression level for each gene. The latent mean values are
treated not as �xed e�ects (as they would be in the standard analyses outlined above) but
follow some speci�ed distribution. With these components in place, inference about di�eren-
tial expression amounts to computing the posterior probability of that event, conditional on
the measurements. The analysis is empirical Bayes because the small number of unknown
parameters which index the component distributions are estimated from the data. In Section
3 we describe the extension of this approach to replicate pro�les in multiple conditions. We
consider two distinct parametric families: a model based on Gamma distributed measurements
and one based on log-normally distributed measurements. As it is often observed (for exam-
ple, Chen et al. [9]), a constant coe�cient of variation is built in to both models. The models
also account for di�erential variation in apparent fold change (for example, Dudoit et al. [6],
Newton et al. [5] and Tusher et al. [7]). We use the methodology to analyse rat mammary
epithelium expression pro�les in Section 6.
There are other mixture-modelling approaches to expression data analysis. Working with

a speci�c experimental design, Efron et al. [10, 11] describe empirical Bayesian calculations
which relax the parametric assumptions. After a long series of preprocessing steps, each gene
yields a one-dimensional test statistic whose marginal distribution turns out to be known and
whose null distribution (that is, on equivalent expression) can be non-parametrically estimated.
Lee et al. [24] also use the idea of a two-group mixture model for expression analysis; their
calculations were in a slightly di�erent context and were applied to parameter estimates from
a �rst-stage analysis. Here we do not endeavour to extend either of these approaches to the
case of multiple conditions, but in Section 5 we do o�er some numerical comparisons of
false discovery rate between our proposal and the non-parametric method in the context of
two conditions.

2. ANIMAL MODELS OF BREAST CANCER

The risk of developing breast cancer is a�ected by both environmental and genetic factors.
Known genetic factors include inherited mutant alleles of genes such as p53, BRCA1 and
BRCA2. Studies have indicated that individuals may carry genes that diminish the conse-
quences of BRCA mutations [13, 14], but such modi�er loci are particularly di�cult to iden-
tify in human populations as potential genetic e�ects are confounded by environmental e�ects
that are not easily controlled. An alternative approach is to study animal models of breast
cancer. Ideally, human homologues of identi�ed genes could then be used to directly evaluate
their e�ects on breast cancer risk in human populations.
In an e�ort to identify potential resistance or modi�er loci. Shepel et al. [15] considered

crosses between an inbred Copenhagen (COP) rat strain that is almost completely resistant to
mammary carcinogenesis and an inbred Wistar-Furth (WF) rat strain which is highly suscep-
tible to mammary carcinoma following the carcinogen DMBA. Four regions likely to contain
genes a�ecting tumour dynamics were identi�ed. To further narrow down these regions, in-
termediate inbred lines are being produced which carry the homozygous WF=WF genotype
throughout the genome except on a relatively small region of interest where the animals are
homozygous COP=COP. Such animal populations are referred to as congenic lines (Figure 1).
We are interested in identifying genes di�erentially regulated among the parental strains (COP
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Figure 1. Schematic diagram showing animal lines (conditions) from which mRNAs were obtained
(left) along with di�erential expression patterns (right). Genotypes shown in black (COP/COP) and
white (WF/WF) are not drawn to scale (the homozygous COP/COP region is approximately 30 cM in
congenic line CI and 1:5 cM in CII). True expression intensities for each group are denoted by �. Note

that di�erences in genotype do not imply di�erences in expression.

and WF) and the derived congenic lines as such genes may be consequential in the tumour
susceptibility di�erences present among each of these strains. Our earlier work on empirical
Bayes approaches for microarrays has been extended to address this problem. The extensions
are discussed in detail in Section 3.

3. HIERARCHICAL MODELLING FRAMEWORK

Our models attempt to describe the probability distribution of a set of expression measurements
taken on a gene g. We assume that some preprocessing technique has been used to adequately
normalize the data so that the measurements can be viewed as bona �de approximations of
relative gene expression in the sampled cells. The expression measurements may arise from
cells under di�erent conditions, and there may be replicate measurements in each condition.
The number of expression patterns possible depends on the number of conditions from which
the expression measurements were obtained. For example, if measurements are taken from
two conditions, two patterns of expression – equivalent expression and di�erential expression
between the two conditions – are possible. Given three conditions,
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)
+
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3

)
=5 expression

patterns are possible. These include equivalent expression across the three conditions, altered
expression in just one condition, and distinct expression in each condition. With microarrays
from four cell conditions there are 15 di�erent patterns. (The total number of patterns is
equal to the Bell exponential number of possible set partitions, in fact.) As we see in the
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rat mammary study which has four cell conditions (Section 2), we can sometimes reduce
the total number of patterns to a more manageable level, and in that case we reduce to four
interesting patterns (Section 6).
Suppose in the general case that m + 1 distinct patterns of expression are possible for a

data vector dg=(dg;1; : : : ; dg;N ) measuring a gene g in N conditions. Then for any pattern k,
the set of experimental conditions S= {1; 2; : : : ; N} is partitioned into r(k) mutually exclusive
and exhaustive subsets {Si; k ; i=1; 2; : : : ; r(k)}, where any measurements contained in a subset
Si; k share a common latent mean level of expression.
On a null hypothesis there is equivalent expression among the conditions (r(k)=1 since

all data values share the same mean expression level), and the data for a given gene arise
from a joint probability density function (pdf) f0(dg). Alternatively the data are in expression
pattern k �=0, and the joint pdf is fk(dg). A priori we do not know which situation manifests
itself for gene g, and so we introduce discrete mixing parameters pk to denote the unknown
probabilities of expression pattern k. Thus, the marginal distribution of the data is given by
a mixture of the form

m∑
k=0
pkfk(dg) (1)

The posterior probability of expression pattern k is then

P(k|dg)∝pkfk(dg) (2)

and the posterior odds in favour of pattern k is

oddsg; k =
pk

1− pk
fk(dg)

1− fk(dg) (3)

Naturally, the pattern speci�c predictive density for pattern k is given by

fk(dg)=
r(k)∏
i=1
f(dg; Si; k ) (4)

where f(dg; Si; k ) is the pdf for the data indexed by subset Si; k .
We assume that measurements which share a common mean expression level �g arise

independently and identically from an observation component fobs(·|�g). Two parametric forms
are considered in Section 4. Our approach is to consider �g as arising from some genome-
wide distribution �(�g), which represents �uctuations in mean expression levels among genes.
Were we to treat the �g as a �xed e�ect, we would not take advantage of information sharing.
With these components in place, f(dg; Si; k ) is the predictive density of dg having integrated
away the mean value common to all measurements in subset Si; k

f(dg; Si; k )=
∫ ( ∏

s∈Si; k
fobs(dg; s |�g)

)
�(�g) d�g (5)

The posterior probabilities given in equation (2) summarize our inference about expression
patterns at each gene. They can be used to identify genes with altered expression in at least
one group, to classify genes into distinct expression groups, or to order genes within groups.
Before posterior summaries can be evaluated, however, we must �rst specify distributional
forms for the components of the hierarchical mixture model.
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4. THE GAMMA-GAMMA AND LOGNORMAL-NORMAL MODELS

The general mixture model in Section 3 is speci�ed by an observation component fobs(·|�g)
which characterizes �uctuations in repeated measurements from a gene having latent mean
expression level �g, and a second component �(�g) which describes �uctuations in these
means among genes. Since properties of individual experiments a�ect each source of vari-
ation, the distributions governing these sources are to some extent experiment dependent.
However, there are characteristics inherent to microarray data that are repeatedly observed
across experiments. These include constant coe�cients of variation [5, 9] as well as depen-
dencies between intensity ratio variation and magnitude [5, 6]. These characteristics provide
insight into appropriate distributional forms. Here we describe two particular versions of the
general mixture formulation that maintain these properties.
In the gamma-gamma (GG) model, the observation component is a gamma distribution

having shape parameter �¿0 and a mean value �g; thus, with scale parameter �g= �=�g

fobs(z|�g)=
��gz

�−1 exp{−�gz}
�(�)

for measurements z¿0. Note that the coe�cient of variation in this distribution is 1=
√
�,

taken to be constant across genes g. Matched to this observation component is a marginal
distribution �(�g) which we take to be an inverse gamma. More speci�cally, �xing �, the
quantity �g= �=�g has a gamma distribution with shape parameter �0 and scale parameter �.
Thus three parameters are involved, �=(�; �0; �), and, upon integration, the joint predictive
density corresponding to (5) has the form

f(z1; z2; : : : ; zn)=K
(
∏n
i=1 zi)

�−1

(�+
∑n

i=1 zi)n�+�0
(6)

where

K =
��0�(n�+ �0)
�n(�)�(�0)

From this result one can calculate the posterior probability of any given expression pattern
following the prescription in Section 3. In the special case of two conditions, the posterior
odds for di�erential expression (3) simplify to

oddsg=
p

1− p K
′

(∑n1
i=1 xg; i +

∑n2
i=1yg; i + �

)N�+�0(∑n1
i=1 xg; i + �

)n1�+�0 (∑n2
i=1yg; i + �

)n2�+�0 (7)

where

K ′=
��0�(n1�+ �0)�(n2�+ �0)

�(�0)�(N�+ �0)

and recall that N = n1 + n2 is the total number of observations on gene g. The odds may
be computed as soon as we have estimates in hand for �=(�; �0; �). In Section 7 we point
out an interesting connection between these posterior odds and the arithmetic-geometric mean
inequality.
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The GG calculations derived above extend those presented in Newton et al. [5] to replicates
and multiple conditions. Many investigators would consider as reasonable a di�erent model
for the array measurements – one in which the log-transformed measurements have a Gaussian
observation component. We may use this in our hierarchical mixture model as follows. Let us
say the natural logarithms of the measurements are denoted x̃g and ỹg. The latent gene-speci�c
mean �g is now a mean for the log-transformed measurements, and these measurements have
a sampling variance �2 which we treat as common to all genes. Note that the coe�cient of
variation for the original measurements becomes

√{exp(�2)− 1} in this model. A conjugate
prior for the �g is normal with some underlying mean �0 and variance �20. Integrating as
in (5), the joint predictive density f for an n-dimensional input becomes Gaussian with mean
vector �0 = (�0; �0; : : : ; �0)

T and exchangeable covariance matrix

�n=(�2)In + (�20)Mn

where In is an n× n identity matrix and Mn is an n× n matrix of ones. This basic formula-
tion has been well studied (for example, Carlin and Louis [16]). In our context there is an
additional layer of discrete mixing, and we may derive the posterior probability of di�erent
expression patterns following (2). For the special case of two conditions, the odds of di�eren-
tial expression (3) may be written in terms of quadratic forms. Let 	g=(x̃g; ỹg)

T − �0 denote
the centred transformed full data vector for gene g

oddsg=
p

1− p
√( |�N |

|�∗|
)
exp

{
− 1
2
	Tg (�

−1
∗ −�−1

N )	g

}

where �∗ is the N ×N block-diagonal matrix with �n1 in the upper left block and �n2 in the
lower right block.
For either the log-normal-normal (LNN) model or GG model, we can use the method of

maximum (marginal) likelihood to obtain estimates of the small set of unknown parameters.
(In the GG model, �=(�; �0; �) and in LNN, �=(�0; �2; �0).) The mixing proportions are
additional parameters. The marginal log-likelihood is a sum over genes g of terms (1) and
this may be optimized by various methods. We use the S-plus program nlminb [17]. For two
conditions, the mixing proportions are estimated directly using nlminb. In the case of three or
more conditions, we use the EM algorithm to handle the vector of mixing proportions [18]
(see Appendix).

5. SIMULATIONS

The proposed methodology provides a way to infer patterns of di�erential expression among
two or more conditions, but it relies on parametric model assumptions and the implementation
of numerical optimization methods. To assess the methodology we performed a small set of
simulation studies. These provide some insight into whether or not the parameters are well
estimated, how much inference is a�ected by �tting a model di�erent from the one which
generated the data, and perhaps most importantly, they provide information on error rates in
the inference of di�erential expression.
First, we simulated the GG model with 10,000 genes in two conditions, having three repli-

cates in each condition. We took model parameters similar to those obtained in Newton et al.
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Figure 2. Histograms are of intensities (log scale) simulated under the GG (left) or LNN
(right) model. Solid line is �tted marginal density from the GG model and dashed line is

�tted marginal density from the LNN model.

[5] (�=10; �0 = 0:9 and �=0:5). The prior probability that a gene is di�erentially expressed
was set to p=0:2. The GG and LNN mixture models described in Section 4 were each �t to
these simulated data. Histograms of the simulated data along with the �tted marginal densities
are shown in the left panel of Figure 2. As expected, the �tted GG marginal density more
closely describes the simulated data.
Next, we simulated a similar data set under the LNN model (�0 = 2:3; �=0:3, and �=1:39);

each mixture model was again �t to the simulated data. As shown in the right panel of Figure
2, the simulated data is better described by the LNN density. Although expected, this result
illustrates that comparing the marginal densities to the empirical distribution can give insight
into which model assumptions are more appropriate.
We did a more formal comparison of GG and LNN by calculating a log Bayes factor to

measure the relative �t of these models [19]. The log Bayes factor is the di�erence of the
log predictive densities calculated under GG or LNN assumptions (the general form of the
predictive density is given by equation (1)). For each simulated data set, the Bayes factor
correctly identi�ed the model generating the simulated data. Considering the success of either
approach in identifying the underlying model, one might think that the parametric assumptions
have a substantial e�ect on which genes are identi�ed as di�erentially expressed. We �nd that
this is not the case.
The di�erences in the simulated data which allow for model identi�cation do not seem

to impact the mixture model’s ability to identify di�erentially expressed genes. For this
simulation, 1968 (1952) genes in the GG (LNN) data happened to be di�erentially ex-
pressed. Each method applied to each data set identi�ed about 1470 genes as di�eren-
tially expressed (that is, odds ¿1). Out of those identi�ed, approximately 95 per cent were
correct.
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Table I. Summary of parameter estimates for GG model applied to GG simulated data.
Parameter estimates are averaged over 100 simulations; standard error is shown in parentheses.

For each simulation, (�; �0; �)= (10; 0:9; 0:5).

p

0.1 0.2 0.3 0.4 0.5

�̂ 10.001 (0.0098) 9.997 (0.0087) 9.995 (0.0104) 9.993 (0.0099) 10.009 (0.01)
�̂0 0.900 (0.0016) 0.900 (0.0015) 0.897 (0.0015) 0.900 (0.0014) 0.901 (0.0013)
�̂ 0.499 (0.0012) 0.500 (0.0011) 0.500 (0.0011) 0.500 (0.0012) 0.500 (0.0011)
p̂ 0.101 (0.0005) 0.201 (0.0007) 0.298 (0.0008) 0.401 (0.0008) 0.501 (0.0009)

Table II. Summary of parameter estimates for LNN model applied to LNN simulated
data. Parameter estimates are averaged over 100 simulations; standard error is shown in

parentheses. For each simulation, (�10; �; �) = (2:33; 0:33:1:39).

p

0.1 0.2 0.3 0.4 0.5

�̂10 2.328 (0.0018) 2.333 (0.0021) 2.329 (0.0015) 2.332 (0.0017) 2.33 (0.0015)
�̂ 0.332 (0.0001) 0.331 (0.0001) 0.332 (0.0002) 0.331 (0.0002) 0.332 (0.0002)
�̂ 1.390 (0.0013) 1.386 (0.0014) 1.390 (0.0011) 1.392 (0.0012) 1.391 (0.0012)
p̂ 0.1 (0.0005) 0.2 (0.0007) 0.3 (0.0009) 0.399 (0.0009) 0.501 (0.0008)

Simulations were repeated to assess the sensitivity, speci�city, positive and negative pre-
dictive values, and false discovery rates of the methodology. We varied the proportion p of
di�erentially expressed genes from 0.1 to 0.5 (in increments of 0.1). For each �xed proportion,
100 sets having six arrays each (three replicates in two conditions, as above) were simulated.
Parameter values were de�ned as above. Odds were calculated using both GG and LNN
models. Sensitivity is calculated as the average (over the 100 simulations) of the fraction of
di�erentially expressed genes correctly identi�ed by the method (odds ¿1); speci�city is the
average of the fraction of equivalently expressed genes correctly identi�ed (odds 61). The
positive predictive value (PPV) is de�ned as the average of the fraction of genes with odds
¿1 that are truly di�erentially expressed; the negative predictive value (NPV) is the average
of the fraction of genes with odds 61 that are equivalently expressed. The false discovery
rate (FDR) is the average of the ratio of the number of false positives to the number of genes
identi�ed as di�erentially expressed.
Parameter estimates averaged over the 100 simulations are given in Tables I and II. As

shown, the parameter estimates are close to the true values, with little standard error. The
operating characteristics of each approach are similar under di�erent simulation assumptions.
For each method, the sensitivity ranges from 65 per cent to 80 per cent and is increasing
with increasing p. The speci�city is at or above 95 per cent for each method and each value
of p considered. The positive predictive value ranges between 94 per cent and 95 per cent,
while the negative predictive value decreases from near 97 per cent when p=0:1 to near
80 per cent when p=0:5. The average false detection rate (FDR), near 0.05 for all values
of p, increased slightly with increasing p. A graphical representation is shown in Figure 3.
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Figure 3. Operating characteristics: results are shown for the GG model applied to simulated data.
To minimize overlap, we jittered the horizontal component. Closed characters imply identical model
and simulation assumptions (GG model applied to GG data); open characters imply the opposite

(GG model applied to LNN data).

The FDR estimates suggest that using an odds value greater than one as a rejection rule
results in a type I error rate near 0.05. Interestingly, the estimates of the FDR are similar to
those reported by Efron et al. [10] in assessment of their empirical Bayes approach. A lower
bound on p for the data set considered there is estimated to be 0.189. The authors consider
the FDR rates using the posterior probability of di�erential expression at values greater than
and equal to 0.9. This corresponds to an odds¿9. They report an FDR of 0.0048 at this level.
Our results are similar. For p=0:2 and odds¿9:1, the FDR averaged over 100 simulations
was 0.0054 (GG on GG), 0.0052 (GG on LNN), 0.0057 (LNN on GG) and 0.0049 (LNN
on LNN); standard errors were all less than 0.0003.
A possibility not so far considered is that the underlying distribution of �g is not well

approximated by either of the parametric forms described above. For instance, if some genes
are not truly expressed in one condition, then the distribution of �g may be better approximated
by a bimodal distribution with one mode near zero. A full study of the robustness of our
proposed methodology to the form of the mixing distribution is beyond the scope of the present
paper, but we report here the results of a modest investigation to address the possibility of
unexpressed genes and their e�ect on the inferences. Using the same parameters as above,
we simulated 5000 genes according to the GG model with three replicates in each of two
conditions and with p=0:2. A proportion ! of the genes are expressed and have mean
intensity from an inverse gamma distribution with shape �0 and scale �; the remaining 1−!
fraction of the genes have mean intensity from an inverse gamma distribution with scale h�

Copyright ? 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:3899–3914
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where h�1. In spite of some bias in estimated parameters, operating characteristics of the
proposed method were not adversely a�ected by this model misspeci�cation. For example, with
!=3=4 and h=1=10, the average FDR and sensitivity were 0.036 and 0.777, respectively.
These values are similar to those from the larger simulation study which assumed a unimodal
distribution for �g. Other operating characteristics were also similar. By direct calculation,
one may further derive a relationship between the odds for di�erential expression computed
in the correct bimodal model to the same odds computed in the standard unimodal set up,
using a �xed set of parameters. The ideally-computed bimodal odds, in the limit as h→ 0, are
smaller only by a factor ! compared to the odds computed in the standard unimodal model
(derivation not shown). Other investigations have shown that odds for di�erential expression
computed using a non-parametric mixing distribution �(�g) can lead to similar inferences as
the GG model presented here [20], thus suggesting a level of robustness of the proposed
method.

6. CASE APPLICATION

As discussed in Section 2, we are interested in the identi�cation of genes that are di�erentially
regulated among parental rat strains (COP and WF) and two derived congenic lines (CI
and CII) in mammary epithelial cells. The size of the homozygous COP=COP region is
approximately 30 centimorgans (cM) in congenic line CI and 1:5 cM in congenic line CII
(see Figure 1). A cM is a unit of measure to quantify distances between genome regions.
In particular, 1 cM is equal to a 1 per cent chance that one location on the genome will be
separated from a second location due to crossing over in a single generation. In humans, 1cM
is equivalent, on average, to 1 million base pairs.
By a standard protocol, mammary epithelial cells were harvested from untreated 12-week-

old females. Messenger RNAs were extracted, prepared and then probed using a set of three
A�ymetrix Rat Genome U34 chips. In most cases, these mRNAs were pooled from samples of
four genetically identical animals to reduce animal to animal variation. Intensity measurements
were obtained for 26,379 genes recorded on 10 chip sets: 1 COP, 2 WF, 5 CI and 2 CII
lines.
All data were processed through DNA-chip analyzer [21]. DNA-chip analyzer (dChip) uses

a statistical model for probe level data to account for artifacts such as probe-speci�c biases.
Corrected and normalized model-based estimates of gene expression were obtained for 25,248
genes (1131 were identi�ed as outliers). A small fraction of the measurements are negative and
these cannot be used by the model �tting procedures, so they are omitted for that purpose (796
out of 25,248). These observations can be included in the posterior probability calculations
as long as they are set to a boundary value.
Both the GG and LNN models were used to categorize patterns of gene expression across

the parental strains and derived congenic lines. For these four conditions, there are 15 pos-
sible expression patterns; however, if latent expression in each congenic matches one of the
parentals, only four expression patterns are possible (see Figure 1). A null pattern consists
of equivalent expression across the four conditions. The other three patterns allow for dif-
ferential expression between the parental strains, with the congenic lines exhibiting the same
mean expression as one of the parentals. Speci�cally, di�erential expression of the COP par-
ent only is speci�ed in pattern 1, between the congenics in pattern 2, and of the WF parent
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Table III. Parameter estimates for GG (�̂; �̂0; �̂) and LNN (�̂0; �̂; �̂) models used in two-group
comparisons between parentals and in four-group comparisons among the parentals and

derived inbred lines.

GG �̂ �̂0 �̂ p̂0 p̂1 p̂2 p̂3

Two groups 12.490 0.919 35.842 0.998 0.002 NA NA
Four groups 16.738 0.883 24.398 0.985 0.012 0.002 0.001

LNN �̂0 �̂ �̂ p̂0 p̂1 p̂2 p̂3

Two groups 6.775 0.292 1.193 0.993 0.007 NA NA
Four groups 6.741 0.257 1.221 0.975 0.017 0.004 0.004

Table IV. Expression averages (left) and posterior pattern probabilities (right) for several
genes classi�ed as having expression pattern 3 by the GG model (see Figure 4). For each
gene, the probability vector from the GG model is in the �rst row and the one from the

LNN model is in the second row.

Gene ID Group Expression pattern

Cop CI CII WF null P1 P2 P3

J00801 3066.3 4777.0 995.3 9082.9 0.05 0 0 0.95
0.04 0 0 0.96

L08100 4367.5 4002.6 1278.3 14162.3 0 0 0 1
0 0 0 1

J00772 392.0 325.8 121.7 678.9 0.04 0 0 0.96
0.97 0.01 0.00 0.02

only in pattern 3. Note that di�erences in genotype need not imply di�erences in expression.
Genes classi�ed into the null pattern show equivalent expression across groups, but di�er in
genotype. Patterns 1 and 2 also allow for distinct genotype and expression patterns. Parameter
estimates for each model are given in Table III.
Under the GG model, 24,795 genes had posterior probability greater than 0.5 of being in the

null pattern; 250, 86 and 111 genes were classi�ed into patterns 1, 2 and 3, respectively. We
did not classify six genes because for them no pattern had posterior probability greater than
0.5. The LNN model identi�ed slightly more genes as di�erentially expressed. Speci�cally,
24,164 were classi�ed into the null pattern; 447, 346 and 280 were classi�ed into patterns 1,
2 and 3 and 11 were not classi�ed. Identi�ed under both methods were 24,119 (null), 217
(pattern 1), 51 (pattern 2) and 78 (pattern 3) genes.
Three genes identi�ed as pattern 3 by the GG model are shown in Table IV. Two of

these genes (J00801 and L08100) are known markers of mammary gland di�erentiation, and
a common belief is that di�erentiation protects against tumour development. For each of these
genes, the average intensity in the WF condition is higher than that observed in the COP or
congenic lines. This indicates increased expression (and increased di�erentiation) in the WF,
which is unexpected since the WF strain is tumour susceptible. It may be the case that not all
forms of di�erentiation are associated with resistance. Preliminary data in other rat strains and
other experiments are supporting this hypothesis (Gould, unpublished data). The third gene
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Figure 4. Average intensities across replicates for the WF and COP data. Only spots which exhibit
signi�cant di�erential expression (as determined by the GG model) are shown.

(J00772) is rat prostatein. Recent work suggests that this gene, normally associated with the
ventral prostate, is strongly expressed in the stromal cells of the rat mammary gland (Watson
and Gould, unpublished data). The GG calculations classify this gene as having elevated
expression in WF, but the LNN calculations are equivocal, and consider it to be unchanged.
Further study of this gene is warranted.
As a separate calculation, we analysed the data from the WF and COP parentals only,

omitting the congenics. Table III contains parameter estimates. The odds calculation under GG
assumptions estimates 58 genes to be di�erentially expressed. Of these, 57 are also identi�ed
by the LNN model. Figure 4 gives a graph of the average intensities (across replicates) for
the spots identi�ed as changed in the GG model. These results are consistent with the multiple
group analysis. Each of the 58 genes identi�ed as di�erentially expressed in the two-group
analysis is also identi�ed when comparing multiple groups; 48 of the 58 genes have posterior
probability larger than 0.5 of being in pattern 1, four of the genes are in pattern 2, and �ve
of the genes are in pattern 3. One gene was not classi�ed. For both the four- and two-group
analysis, Bayes factors indicated that the GG model �ts better than the LLN model.

7. DISCUSSION

We have extended empirical Bayes methodology for gene expression data to account for
replicate arrays, multiple conditions and a range of modelling assumptions. The general hi-
erarchical mixture model proposed accounts for di�erences among genes in their average
expression levels, di�erential expression for a given gene among cell types, and measure-
ment �uctuations. Since properties of individual experiments a�ect each of these features, the
distributions governing them are to some extent experiment dependent. However, there are
characteristics inherent to microarray data that are observed in many experiments, such as
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increasing variation with increasing mean and within-gene correlation. The present approach
accounts for these properties and is also �exible in the sense that various choices can be made
on the distributional forms at each level of the model.
Using a speci�ed model and Bayes rule, posterior probabilities are obtained from which

inferences regarding di�erential expression patterns can be made. The classi�cation of genes
as di�erentially expressed (DE) or equivalently expressed (EE) according to the state favoured
by the posterior probabilities is an optimal procedure in the context of the mixture model.
It minimizes the expected number of mistakes. Interestingly, this goal is di�erent from the
goal in classical testing which is to bound the type I error rate and then aim to maximize
the power. To reduce type I errors we could make a more stringent decision rule and assume
EE unless the odds favouring DE are much larger than 1:1. Preliminary results from a small
simulation study indicated that this might not be necessary as the type I error rate is controlled.
Additional operating characteristics evaluated in the simulation study were also found to be
well controlled.
Under gamma-gamma model assumptions, the estimated positive predictive value was at

least 94 per cent, regardless of the proportion p of di�erentially expressed genes. The negative
predictive value decreased from 97 per cent to 80 per cent with increasing p. This indicates
that although the method may be missing genes, a positive identi�cation is most likely an
accurate one. Estimates of the sensitivity and speci�city re�ect this as well. The sensitivity
increased from 65 per cent to 80 per cent with increasing p, while the speci�city was at or
above 95 per cent for each value of p considered. The average false discovery rate (FDR)
was near 0.05 for all values of p, indicating that control of the type I error rate is inherent
to this empirical Bayes approach. Virtually identical numerical results were obtained under
LNN assumptions. Furthermore, the results were similar when a bimodal distribution for the
true underlying intensities was considered.
These results suggest that error rates are reasonably low and that particular modelling

assumptions might have only a minimal impact on the accurate identi�cation of di�erentially
expressed genes. We note that such results are preliminary, and further work is required
before any such conclusions can be made in general. Only two groups having a �xed number
of replicates in each group were considered in our simulation study. The study could be
extended to evaluate error rates in the case of multiple conditions for a varying number of
replicates. Additional model forms should also be considered, both for data simulation and
odds calculations. We are currently investigating the e�ects of non-parametric assumptions on
the latent mean distribution �(�g) (see Newton [20]).
The proposed method assumes that intensity measurements approximate some true under-

lying expression level. Thus, expression pro�les must be normalized in such a way so that
any systematic sources of variation have been removed. DNA chip analyser [21] was used
here, but many other methods are available. We also note that mRNA samples were pooled
across subjects. Of course, under some conditions this can decrease measurement variability,
thereby reducing the number of replicates required. However, owing to array speci�c ef-
fects, pooling does not eliminate the need for replication [22]. Both Kerr et al. [23] and Lee
et al. [12] stress the importance of replication in microarray studies. In addition to array ef-
fects, if outliers (for example, contaminated samples) are present, pooling can lead to biased
estimates of underlying expression. Optimal experimental designs which provide for maximum
measurement accuracy using a minimum number of arrays have yet to be developed. This is
an area that requires further investigation.
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Finally, we note an interesting statistic which emerges from the odds of di�erential expres-
sion in the GG model (7) when comparing two conditions when the number of replicates in
each group (n1 and n2, respectively) are large compared to �0 and �. Let xg=(xg;1; xg;2; : : : ;
xg; n1) denote the n1 replicate measurements in the �rst condition and yg=(yg;1; yg;2; : : : ; yg; n2)
denote the n2 replicates in the second condition. Up to a power and a proportionality constant,
the odds favouring DE are

(�xg + �yg)=2√
(xgyg)

where �xg and �yg are respective sample means (on the raw scale) of expression measurements
in the two groups. The odds are related to the ratio of the arithmetic to the geometric mean of
the sample means. Considering the arithmetic-geometric mean inequality, this seems to be an
interesting measure of the di�erence between the two samples. A similar analysis of the LNN
odds shows that one is related to the more familiar di�erence �̃xg − �̃yg, that is, the di�erence
between the arithmetic means of the log-transformed responses (a t-like statistic). We think
these facts give some credence to the model-based formulation and also suggest directions
that the models could be extended.

APPENDIX: ESTIMATION IN THE MULTIPLE GROUP CASE

With data dg governed by a mixture of the form (1), we introduce missing pattern indicators
zg; l de�ned as one if the expression pattern of gene g is pattern l and zero otherwise. The
complete data log-likelihood is

lc(�)=
∑
g

{
m∑
k=0
zg; k[logfk(dg) + log(pk)]

}

For � �xed at �0, calculation of the expectation conditional on the observed data and �0
(E-step) gives

l̂c(�)=
∑
g

{
m∑
k=0
ẑg; k[logfk(dg) + log(pk)]

}

ẑg; l is the posterior probability of expression pattern l for gene g

P(l|dg)= plfl(dg)∑m
k=0 pkfk(dg)

where �0 parameterizes the densities fk . We use the arithmetic mean of ẑg; k to estimate pk ;
nlminb in S-plus provides estimates of � (M-step). This process is repeated until there is
convergence in the estimates. Results are checked from various starting con�gurations.
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