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Abstract— A general framework for model order reduction
is proposed for high-order parameter-dependent, linear time-
invariant systems. The procedure is based on matrix interpo-
lation and consists of six steps. At first a set of high-order
nonparametric systems is computed for different parameter
vectors. The resulting local high-order systems are then reduced
by a projection-based reduction method. Thereby, proper right
and left subspaces for the reduced systems are calculated. Next
the bases of the right subspaces of the reduced systems are
adapted and the bases of the left subspaces are adjusted.
For that the concept of duality is introduced. Finally, the
precomputed matrices of the local systems are interpolated
in a matrix manifold with an interpolation method. In this
paper the six steps of the algorithm and the degrees of freedom
which arise therein are presented. Furthermore, advantages
and difficulties in the selection of the degrees of freedom are
pointed out. It is additionally shown that two existing methods
for parametric model order reduction by matrix interpolation
are special cases of the proposed general procedure as they –
often implicitly – determine a limiting selection of the degrees
of freedom.

I. INTRODUCTION

With increasing demands on accuracy for optimization,
simulation or control, the modeling of complex systems de-
livers large-scale systems of ordinary differential equations.
In order to reduce the computational effort, methods of
model order reduction can be applied to replace a large-scale
model by a low-order model. Several methods of model order
reduction are known to approximate the transfer behavior of
the large-scale system [1].

For many engineering applications the high-order systems
depend on parameters, for example geometry or material
parameters. Methods of parametric model order reduction
(pMOR) reduce the order of a large-scale system and at the
same time preserve the parametric dependencies.

In [2] a first approach in pMOR was presented. It approx-
imates the high-order model by matching moments of the
transfer function with regard to the Laplace variable s and
to one parameter. Basically, it was a generalization of the
moment matching method to parametric systems with one
linear parametric dependency. This method was enhanced in
[3] to be applicable to the multiple parameter case. However,
it suffers from the curse of dimensionality as the order of
the reduced system increases rapidly with the number of
parameters.

Besides, several interpolation based methods were pro-
posed. They sample the parameter space and obtain a discrete
set of high-order systems for different parameter vectors. The

All authors are with the Faculty of Mechanical Engineering, Institute
of Automatic Control, Technische Universität München, Boltzmannstr. 15,
D-85748 Garching, Germany. matthias.geuss@tum.de

original system does not need to be analytically given. It is
sufficient if it is available locally for the set of parameter
values. This is for example the case if the original system
is modeled by a FEM program. The local high-order models
are reduced individually to obtain a set of low-order models.

In [4] a procedure applying interpolation of transfer func-
tions of the local low-order models was presented. This
method is based on the Truncated Balanced Realization of
the local models and inherits its beneficial properties like
stability-preservation for the interpolated system. However,
the order of the interpolated reduced system increases with
the number of local models.

Another possibility is the interpolation of the system matri-
ces of local low-order models. In [5], [7] a method applying
matrix interpolation with weighting functions to the reduced
models was presented. A similar approach was proposed in
[10], [11], [12] which uses element-wise interpolation in the
tangent space of matrix manifolds. Both methods have in
common that the order of the interpolated reduced system
is independent of the number of local systems. Additionally,
they can capture mode crossing and mode veering.

This paper focuses on a general method for pMOR by
matrix interpolation. In section II a short introduction of
projection-based model order reduction is given. In section
III pMOR by matrix interpolation is arranged in a general
framework, followed by the integration of the two existing
methods into the framework in section IV. Numerical results
are presented in section V.

II. PRELIMINARIES AND STATE OF THE ART

A. Linear time-invariant dynamical systems

In this paper, a linear time-invariant (LTI) dynamical
system in descriptor form is considered:

G(p) :

{
E(p)ẋ(t) = A(p)x(t) + B(p)u(t),

y(t) = C(p)x(t),
(1)

where E(p) ∈ Rn×n, A(p) ∈ Rn×n, B(p) ∈ Rn×m and
C(p) ∈ Rp×n are parameter-dependent matrices with the
vector of parameters p ∈ Rd. The vectors u(t) ∈ Rm, y(t) ∈
Rp and x(t) ∈ Rn denote the inputs, outputs and states of
the system, respectively1.

In the following, the system representation of (1) is
referred to as G(p). Assume that system matrices of high-
order systems are computed for a set of k parameter vectors
pi with i = 1...k. The i-th local nonparametric system is
then called Gi.

1The time variable t is omitted in the following.
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B. Projection-based model order reduction
Given is a high-dimensional system Gi which shall be

approximated by a low-dimensional system of order q � n
using a Petrov-Galerkin projection. Conversant projection-
based reduction methods are the Truncated Balanced Real-
ization (TBR), Proper Orthogonal Decomposition (POD) or
Krylov subspace methods. For detailed information on the
reduction methods please refer to [1] and references therein.

The projection matrices Vi ∈ Rn×q , Wi ∈ Rn×q span
the right Vi and left subspace Wi, respectively. Therefore,
in the following the matrices Vi are referred to as right
reduced order bases (ROBs) and Wi as left ROBs. They
are calculated by any preferred projection-based reduction
method. This leads to the following reduced order model:

Gr,i :

{
Er,iẋr,i = Ar,ixr,i + Br,iu,

yr,i = Cr,ixr,i,
(2)

where
Er,i = WT

i EiVi,

Ar,i = WT
i AiVi,

Br,i = WT
i Bi,

Cr,i = CiVi.

(3)

III. GENERAL FRAMEWORK FOR PARAMETRIC
MODEL ORDER REDUCTION BY MATRIX

INTERPOLATION
In this section the pMOR approaches based on matrix

interpolation from [5], [7] and [10], [11], [12] are arranged in
a general framework. The reader can use the framework as a
construction kit for pMOR by matrix interpolation including
the following six steps:

A. Sampling of the parameter space.
B. Reduction of the local systems.
C. Adjustment of the right ROBs.
D. Adjustment of the left ROBs.
E. Choice of the interpolation manifold.
F. Choice of the interpolation method.
In the following the six steps and the degrees of freedom

which arise therein are presented. Additionally, various al-
ternatives and the respective advantages and difficulties are
pointed out for the degrees of freedom so that the reader can
determine a selection with respect to the considered system
and the desired features.

A. Sampling of the parameter space
The parameter space is sampled in a suitable way for k

vectors pi and the high-order systems are computed at these
parameter vectors. This results in a set of k high-dimensional
LTI systems Gi with i = 1...k.

B. Reduction of the local systems
The local systems Gi are reduced to the same order q �

n. In order to calculate proper subspaces Vi and Wi for
every local model, the systems Gi are reduced individually.
The basis vectors of the subspaces are normalized. Thereby,
any projection-based reduction method can be applied which
results in a set of reduced systems Gr,i.

C. Adjustment of the right ROBs

The states of the reduced order systems Gr,i lie in different
right subspaces spanned by Vi. For a meaningful interpola-
tion of the system matrices, the states of the reduced systems
Gr,i have to be described in a set of generalized coordinates.
This is done by the state transformations xr,i = Tix̃r,i with
Ti ∈ Rq×q , which leave the input-output behavior of the
local systems unchanged and lead to the following systems:

Er,iTi
˙̃xr,i = Ar,iTix̃r,i + Br,iu,

yr,i = Cr,iTix̃r,i.
(4)

The state transformations are supposed to introduce a
set of generalized coordinates with respect to a reference
subspace spanned by the columns of RV ∈ Rn×q .

1) Reference subspace: The reference subspace should
comprise the directions which describe the most important
dynamics of all local models. The states of Gr,i lie in the
right subspaces spanned by the columns of Vi. Hence, there
are a few possibilities for the calculation of RV :
• Fixed [11]:

The simplest way of choosing RV is to take the right
ROB Vi0 of one of the reduced systems i0:

RV = Vi0 . (5)

This choice does not need any additional calculation
and is determined only once. Therefore, it can be used
for real-time applications. However, it cannot be stated
in advance which subspace Vi0 approximates the most
important dynamics of all systems best.

• Non-weighted SVD [7]:
This approach sums up all right ROBs Vi and takes the
q most important directions by calculating the economy
version of the Singular Value Decomposition (SVD).
The first q columns of U are then chosen as RV :

UΣNT = svd([V1...Vk], ’econ’)
⇒ RV = U(:, 1 : q).

(6)

This approach does not need knowledge of the system
dynamics in advance as the most important directions
of the subspaces Vi are considered. The calculation is
done only once. Therefore, this approach is suited for
real-time applications.

• Weighted SVD [7]:
This approach resembles the non-weighted SVD, but
weights ωi for the right ROBs Vi are introduced:

UΣNT = svd([ω1(p)V1...ωk(p)Vk], ’econ’)
⇒ RV = U(:, 1 : q).

(7)

If the subspaces are very different, subspaces near the
interpolation point can be favored in order to capture
the most important dynamics near every local system.
As the weights are parameter-dependent, RV has to be
calculated for every new interpolation parameter. Hence,
this approach is not suited for real-time applications.
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To sum up, the choice of RV depends on available a priori
knowledge of the system dynamics, the need for real-time
capability and the difference of the right subspaces.

2) Generalized coordinates: The way of computing the
matrices Ti which ensures that the systems Gr,i are de-
scribed in generalized coordinates with respect to a reference
subspace shall be motivated by the following proposition:

Proposition 1: The right subspace of a reduced order
system Gr,i can be expressed by a variety of bases.

With this, the state transformations with matrices Ti can
also be interpreted as changes of basis of the right subspaces
of the reduced models. The new right ROBs are:

Ṽi = ViTi. (8)

The general idea, which was formulated in [11], is that the
corresponding vectors of Ṽi and RV are in good correlation
by a proper choice of Ti. The correlation between two
vectors can be evaluated by the Modal Assurance Criterion
(MAC) [14]. The maximal value of the MAC is 1, which
corresponds to the best correlation, and the minimal value is
0. As the bases are normalized, the MAC between the j-th
vector of Ṽi and the l-th vector of RV is:

MAC
(
Ṽi(:, j),RV (:, l)

)
=
∣∣Ṽi(:, j)

TRV (:, l)
∣∣2. (9)

Hence, the diagonal elements of the product ṼT
i RV

contain the square roots of the MACs between the cor-
responding vectors of Ṽi and RV and the off-diagonal
elements comprise the square roots of the MACs between the
non-corresponding vectors. Therefore, the diagonal elements
of ṼT

i RV shall be maximal and the off-diagonal elements
shall be minimal. In the following, two approaches for the
calculation of the matrices Ti which fulfill the MACs in a
strong and weak manner are described.

• Strong fulfillment of the MACs:
The MACs between the corresponding vectors of Ṽi

and RV are explicitly set to the maximal value 1 and
the MACs of the non-corresponding vectors are set to
the minimal value 0, which leads to:

TT
i VT

i RV
!
= I, (10)

which is equivalent to:

Ti = (RT
V Vi)

−1. (11)

This result is identical to the choice of Ti in [7], where
the derivation is based on a projection-based view.
The matrices Ti ∈ Rq×q are real and describe permu-
tations, rotations and distortions of the bases Vi in the
corresponding right subspace Vi. Therefore, this method
is independent of the representation of Vi, i.e. the bases
Vi do not have to be orthogonal. Additionally, the
MACs between the corresponding vectors are always
maximal and the MACs between the non-corresponding
vectors are minimal and hence optimal. However, the
matrices Ti can be close to singular.

• Weak fulfillment of the MACs [11]:
As a weaker fulfillment of the MACs, the sum of
the diagonal elements of the product ṼT

i RV shall be
maximized. This results in the following maximization
problems, where tr denotes the trace of a matrix:

Ti = arg max
Ti

tr
(
TT

i VT
i RV

)
. (12)

This optimization problem is known as the orthogonal
Procrustes problem. An analytical solution based on
the Singular Value Decomposition (SVD) is given in
[13] which uses orthogonal matrices2 Ti ∈ O(q). After
performing the SVD of VT

i RV = UV,iΣV,iZ
T
V,i, one

gets for the transformation matrices Ti:

Ti = arg max
Ti∈O(q)

tr
(
TT

i UV,iΣV,iZ
T
V,i

)
= arg max

Ti∈O(q)
tr
(
ZT

V,iT
T
i UV,iΣV,i

)
,

(13)

which can be solved by the choice:

Ti = UV,iZ
T
V,i. (14)

The matrices Ti describe permutations and rotations of
the bases Vi in the corresponding right subspace Vi. As
distortions cannot be captured, the matrix interpolation
typically gets less accurate if Vi are not orthogonal.
Additionally, the MACs are generally not optimal. An
advantage is that the matrices Ti are always orthogonal
and hence well-defined.

Note that both alternatives are identical if Vi and RV

span the same subspace. In that case the solutions are simply
Ti = VT

i RV .

D. Adjustment of the left ROBs

Besides the adaption of the right ROBs, the left ROBs
have to be adjusted with respect to a reference subspace
spanned by RW for a meaningful interpolation of the system
matrices of the reduced systems Gr,i. For the adjustment of
the left ROBs the concept of duality between the left and
right subspace is exploited.

Duality between systems is a well-known notion in control
theory [15]. For any system Gr,i there is a dual or adjoint
system GT

r,i with state vector ξr,i which is:

GT
r,i :

{
ET

r,iξ̇r,i = AT
r,iξr,i + CT

r,iyr,i,

u = BT
r,iξr,i.

(15)

The right subspaces of the dual reduced systems are
spanned by the columns of Wi. Therefore, the adjustment
of the left ROBs of the systems Gr,i is equivalent to the
adaption of the right ROBs of the adjoint systems GT

r,i, which
is done in analogy to the explications for the right ROBs of
the systems Gr,i in section III-C.

2O(q) denotes the orthogonal group of square matrices of order q.
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1) Generalized coordinates of the dual systems: The
states of the dual systems GT

r,i lie in different subspaces
spanned by Wi. A set of generalized coordinates for the dual
reduced systems is introduced by the state transformations
ξr,i = Miξ̃r,i.

Considering Proposition 1, the state transformations with
matrices Mi can again be interpreted as changes of basis of
the right subspaces of the adjoint reduced models. The new
bases of their right subspaces are:

W̃i = WiMi.

In order to calculate proper matrices Mi, the notion of
duality is exploited. In analogy to section III-C the concept
of maximizing the MACs between the corresponding vectors
of W̃i and RW and minimizing the MACs between the
non-corresponding vectors is employed. There are again
two possible approaches depending on the fulfillment of
the MACs in a strong or weak manner. Due to duality the
solutions are given below. For the respective advantages and
disadvantages the reader is referred to section III-C:

• Strong fulfillment of the MACs:
As the MACs between the corresponding vectors of W̃i

and RW are set to the maximal value 1 and the MACs
of the non-corresponding vectors are set to the minimal
value 0, one can again set MT

i WT
i RW

!
= I and get:

Mi = (RT
WWi)

−1. (16)

This result is confirmed by [7], where this choice of Mi

was explicitly deduced by a projection-based approach
and without the notion of duality.

• Weak fulfillment of the MACs:
After performing the SVD of WT

i RW =
UW,iΣW,iZ

T
W,i, one gets for the transformation

matrices Mi:

Mi = arg max
Mi∈O(q)

tr
(
MT

i WT
i RW

)
= UW,iZ

T
W,i.

(17)

The changes of basis of the left subspaces of the reduced
systems Gr,i by the matrices Mi lead - based on equations
(4) - to the following systems G̃r,i:

G̃r,i :

{
Ẽr,i

˙̃xr,i = Ãr,ix̃r,i + B̃r,iu,

yr,i = C̃r,ix̃r,i,
(18)

where
Ẽr,i = MT

i Er,iTi,

Ãr,i = MT
i Ar,iTi,

B̃r,i = MT
i Br,i,

C̃r,i = Cr,iTi.

(19)

Therefore, the adjustment of the left ROBs of the reduced
systems Gr,i is obtained by multiplying the system matrices
(4) from the left with the matrices MT

i . The multiplication
leaves the transfer behavior of the local systems unchanged.

To sum up, the matrices Ti linearly combine the columns
and the matrices MT

i linearly combine the rows of the system

matrices (19) in such a way that the correct coefficients of
the matrices are interpolated.

Note that the adjustment of the left ROBs is even necessary
for original systems Gi which are not in descriptor form, i.e.
Ei = I, as the reduced order systems Gr,i are in descriptor
form with Er,i = WT

i Vi.

2) Reference subspace for the dual systems: Due to
duality of the left and right subspaces, the reference subspace
spanned by RW can be calculated in the same way as RV

just by replacing Vi by Wi, see section III-C.1. But other
choices are also possible. The special choices of the existing
approaches in the literature are presented below:

• The systems G̃r,i have compatible state vectors with
regard to RV and are described in the basis RW [7].
Therefore, it was suggested to set the reference subspace
for adjusting the left ROBs to the reference subspace for
adjusting the right ROBs, i.e. RW = RV .

• In [11], [12] the adjustment of the left subspaces is not
mentioned. Instead, the systems (4) are multiplied from
the left with E−1r,i . However, this is equivalent to the
following choice of Mi:

Mi = E−Tr,i = (VT
i ET

i Wi)
−1. (20)

Therefore, the multiplication with E−1r,i implicitly adopts
the approach from (16) by choosing for every system
G̃r,i its own reference subspace spanned by the columns
of RW = EiVi instead of a common subspace for all
systems. Furthermore, the systems are multiplied from
the left with T−1i in order to get reduced systems G̃r,i in
non-descriptor form, i.e. Ẽr,i = I. Hence, this approach
requires less storage space as the matrices Ẽr,i are the
identity matrix and do not need to be stored for the
interpolation process.

E. Choice of the interpolation manifold

The system matrices of G̃r,i are elements of a Riemannian
manifold M. Therefore, the interpolated matrices should as
well be elements of the respective manifold. The concept
of matrix manifolds was introduced for pMOR by matrix
interpolation in [9], [10], [11], [12]. For detailed information
on the application of matrix manifolds for pMOR please refer
to these references.

Let Xr,i ∈M be an element of a matrix manifold, where
Xr,i stands for a precomputed system matrix from (19),
e.g. Ẽr,i. After choosing a reference system i0, the tangent
space is constructed in Xr,i0 . The tangent space is a linear
space and exists as Riemannian manifolds are differentiable
manifolds. The matrices Xr,i of the other local systems are
mapped into the tangent space by the so called logarithmic
mapping. The interpolation of the matrices takes place in the
tangent space and the interpolated matrix is mapped back to
the original space by the exponential mapping resulting in
the matrix Xr,int.

The interpolation formulae for real and regular matrix
manifolds are given below with weighting functions ωi(p):
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• Interpolation on manifold of real matrices:

Xr,int =
∑k

i=1
ωi(p)(Xr,i −Xr,i0) + Xr,i0 . (21)

This is in a way the generalization of the scalar
weighted arithmetic mean for matrix interpolation using
the Euclidean metric.

• Interpolation on manifold of regular matrices:

Xr,int = exp
∑k

i=1 ωi(p)log(Xr,iX
−1
r,i0

)Xr,i0 . (22)

This can in a way be seen as the generalization of the
scalar weighted geometric mean for matrix interpolation
using Euclidean metric in the logarithmic space. This
interpretation was pointed out for the case of the inter-
polation on the manifold of symmetric positive definite
matrices, where it was shown that the determinant of the
interpolated matrix is the scalar geometric mean of the
determinants of the considered matrices, see e.g. [16].

In this paper and in [5], [7] and [10], [11], [12] the matrix
manifold for B̃r,i is the manifold of real matrices Rq×m and
for C̃r,i the manifold of real matrices Rp×q .

For regular matrices Ẽr,i and Ãr,i the manifold of real or
regular matrices are possible. In [11] always the manifold
of regular matrices is used. The interpolation method in
[7] was presented without the notion of matrix manifolds.
In the context of interpolating matrices on manifolds, this
approach always employs the manifold of real matrices Rq×q

under the assumption
∑k

i=1 ωi(p) = 1. In [12] it is noted
that the appropriate manifold is problem dependent. Besides,
an a priori heuristic criterion based on linear regression is
proposed for finding the most appropriate manifold. This
criterion can be used for spline interpolation. We want to
point out that the choice of the interpolation manifold is
equivalent in the scalar case to the choice of the proper mean,
either arithmetic or geometric mean.

Note that interpolating on the manifold of regular matrices
is not always possible. If Xr,i is not in the neighborhood of
Xr,i0 and hence the matrix Xr,iX

−1
r,i0

has negative eigen-
values, then log(Xr,iX

−1
r,i0

) may not be unique and delivers
imaginary matrices. This follows from the theorem below:

Theorem 1 ([17]): A matrix has a unique and real loga-
rithm if and only if it is non-singular and each Jordan block
belonging to a negative eigenvalue occurs an even number
of times.

As a side note we want to present a group of matrices the
interpolation on the manifold of regular matrices can always
be applied to. Consider reduced systems whose matrices Ãr,i

have a symmetric negative definite part, i.e. Ãr,i+ÃT
r,i < 0.

Such matrices arise in so called contractive systems [8].
It follows from Theorem 1 that matrices with complex and

positive eigenvalues have a unique and real logarithm. Then
the following corollary holds:

Corollary 1: If Ãr,i + ÃT
r,i < 0, then the product

Ãr,iÃ
−1
r,i0

only has complex and positive eigenvalues and
according to Theorem 1, has a unique and real logarithm.

Proof: It shall be investigated if the real eigenvalues
λj to the real eigenvectors vj of Ãr,iÃ

−1
r,i0

can be negative.

(Ãr,iÃ
−1
r,i0

)vj = λjvj ⇒ Ã−1r,i0
vj = λjÃ

−1
r,i vj

⇒ vT
j Ã−1r,i0

vj︸ ︷︷ ︸
<0

= λj vT
j Ã−1r,i vj︸ ︷︷ ︸

<0

⇒ λj > 0 ∀ j = 1...q.

The eigenvalues of Ãr,iÃ
−1
r,i0

can only be complex or posi-
tive. Therefore, the logarithm is unique and real.

F. Choice of the interpolation method

The interpolation formulae for the system matrices (21)
and (22) require a proper choice of the weighting func-
tions ωi(p). Alternatively, the matrices can be interpolated
element-wise in the chosen manifolds by any preferred
interpolation method like linear or spline interpolation.

It is noted that the matrices (19) are precomputed and
stored if the reference subspaces are calculated by the fixed
order non-weighted SVD version. Then the interpolation is
done online and the method is real-time capable.

IV. INTEGRATION OF EXISTING METHODS

The two approaches of pMOR by matrix interpolation [5],
[7] and [10], [11], [12] were developed independently and
presented as different methods. In fact, they are special cases
of the same general framework proposed in this paper and
differ in the selection of the degrees of freedom.

TABLE I
INTEGRATION OF EXISTING METHODS INTO THE FRAMEWORK.

Panzer et al. [7] Amsallem et al. [11]

Ref. subspace RV non-/weighted SVD ∗ fixed
Gen. coordinates Ti = (RT

V Vi)
−1 ∗ Ti = UV,iZ

T
V,i

Ref. subspace RW RW = RV ∗ RW = EiVi

Gen. co. dual sys. Mi = (RT
WWi)

−1 ∗ Mi = (RT
WWi)

−1Ti

Interpol. manifold real matrices real/regular matrices ∗
Interpol. method linear spline ∗

Besides the two choices of the degrees of freedom, there
are many other possible selections. As the most accurate
selection is problem dependent, a restriction to the two
special choices shown in the left and right column in Table I
is not useful. Besides, the degrees of freedom can be chosen
with respect to desired features like real-time ability, storage
requirements or structure preservation.

V. NUMERICAL EXAMPLE

The considered example is a FE model which was gen-
erated in [6]. It describes the motion of a 3D cantilever
Timoshenko beam. The parameter of the system is the length
L of the beam which varies between L = 0.4m and L =
2.4m. The model input is a vertical force, which is applied
at the tip of the beam, and the model output is the vertical
displacement at this point.

The model has 200 nodes along the beam, each having
six degrees of freedom: three translational displacements
and three rotational degrees of freedom. Formulating the
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Fig. 1. Relative error inH2-norm of different interpolated ROMs at various
lengths L for the cantilever beam.

resulting second-order system as a first-order system gives
a model with n = 2400 degrees of freedom. Six local
models uniformly distributed for lengths from L = 0.4m
to L = 2.4m are computed. The local models are reduced
using a two-sided Krylov subspace method with the reduced
order q = 10 and an expansion point s0 = 0.

In Fig. 1 the relative error in H2-norm for directly reduced
order models (ROMs) and interpolated reduced order models
is shown for parameters in the interval between L = 0.8m
and L = 2m. In this example the degrees of freedom for the
general framework are chosen as a combination of the two
existing methods. The selection, with the non-weighted SVD
for the calculation of RV , is marked in Table I with (∗). This
selection is compared to the latest methods from Panzer et
al. [7] and Amsallem et al. [11]. The selection of the degrees
of freedom for Panzer et al. is given in the left column of
Table I with the non-weighted SVD for the calculation of
RV . For Amsallem et al. the degrees of freedom are chosen
according to the right column of Table I.

At the parameter values L = 0.8m, L = 1.2m, L = 1.6m
and L = 2m all considered methods share the relative error
of the locally reduced models and between them an addi-
tional error due to the interpolation occurs. In this example
the proposed selection of the degrees of freedom delivers
more accurate results than the two existing approaches.
However, the best selection of the degrees of freedom is
problem dependent and a priori statements about the best
choice are in general not possible.

VI. CONCLUSIONS

In this paper a general framework for pMOR by matrix
interpolation was proposed and the degrees of freedom
including respective advantages and difficulties were pointed
out. For this framework the concept of duality was introduced
and the analogy to the scalar case of arithmetic and geometric
interpolation was highlighted.

It was shown that the existing approaches of pMOR by
matrix interpolation determined a selection of the degrees
of freedom of the proposed general framework. However,
the general procedure offers the user a wider range of
possibilities in order to apply this framework for a considered
problem with respect to desired features like accuracy, real-
time ability, storage requirements or structure preservation.

As pMOR by matrix interpolation makes few assumptions,
it is in general not possible to make a priori statements
on the best choice of the degrees of freedom concerning
accuracy. Therefore, the following work has to concentrate
on developing error bounds for special types of systems.
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