
On Partial Encryption of RDF-Graphs

Mark Giereth

Institute for Intelligent Systems, University of Stuttgart,
70569 Stuttgart, Germany

giereth@iis.uni-stuttgart.de

Abstract. In this paper a method for Partial RDF Encryption (PRE) is
proposed in which sensitive data in an RDF-graph is encrypted for a set
of recipients while all non-sensitive data remain publicly readable. The
result is an RDF-compliant self-describing graph containing encrypted
data, encryption metadata, and plaintext data. For the representation
of encrypted data and encryption metadata, the XML-Encryption and
XML-Signature recommendations are used. The proposed method allows
for fine-grained encryption of arbitrary subjects, predicates, objects and
subgraphs of an RDF-graph. An XML vocabulary for specifying encryp-
tion policies is introduced.

1 Introduction

Giving information a well-defined meaning is on one hand the basis for intel-
ligent applications in an emerging Semantic Web, but on the other hand can
have profound consequences when considering privacy, security, and intellectual
property rights issues. In the Semantic Web vision agents automatically gather
and merge semantically annotated data, infer new data and re-use the data in
different contexts [6]. However seemingly harmless pieces of data could reveal a
lot of information when combined with others. In the Semantic Web there will
also be the need of integrating data which is sensitive in some contexts.

Therefore, methods for specifying who is allowed to use which data are im-
portant in the next step towards the Semantic Web. There are two approaches
to achieve this. The first is to specify access rights, to control the data access and
to secure the communication channel when the data is transferred. The second
attempt is to use cryptographic methods to protect the sensitive data itself.

There has been a considerable amount of work about access control for the
Web [4, 26]. However, all these approaches need trustworthy infrastructures for
specifying and controlling the data access. If sensitive data is stored in (poten-
tially) insecure environments, such as public web-spaces, shared desktop systems,
mobile devices, etc. the only way to do this is to locally encrypt the data before
uploading or storing it. The ability to merge distributed data and to re-use the
data have been important design aspects for the Semantic Web. From that per-
spective, partial encryption – where only the sensitive data are encrypted while
all other data remain publicly readable – is desirable.

A common practice for encrypting sensitive data in an RDF-graph is to cut
the data from the original graph, store the data in a separate file, encrypt the file

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 308–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Partial Encryption of RDF-Graphs 309

and finally link the encrypted file to the original graph [12]. This approach has
some shortcomings: (1) the original RDF-graph is separated into different physi-
cal resources, (2) the encrypted files are not RDF-compliant and therefore could
not be consistently processed by common RDF frameworks, (3) the linking has
to be done manually, and (4) no rules are given for re-integrating the data into
the RDF-graph after decryption. Another practice for encrypting RDF-graphs is
to serialize them in XML and to use XML-Encryption [13] and XML-Signature
[14] based security frameworks. One problem with this approach, is the struc-
tural difference between the tree-based XML Information Set data model [11]
and the graph-based RDF Abstract Syntax data model [16]. Another problem
is that this approach only allows to handle XML serializations of RDF-graphs.

To address these problems, we propose a method for partial RDF encryp-
tion (PRE) which allows for fine-grained encryption of arbitrary fragments of
an RDF-graph without creating additional resources. Both encrypted data and
plaintext data are represented in a single RDF-compliant model together with
the metadata describing the encryption parameters. PRE uses the XML-Encryp-
tion and XML-Signature standards to represent the encryption metadata.

The rest of this paper is organized as follows. In the next section a brief
introduction to RDF-graphs is given. Section 3 gives an overview of the partial
encryption process for RDF-graphs. The subsequent sections look at important
realization aspects: encryption and decryption of RDF fragments (section 4),
description of graph transformations necessary to keep encrypted graphs RDF-
compliant (section 5), a graph-pattern based method for dynamic selection frag-
ments to be encrypted and a notion of encryption policies (section 6). The last
section summarizes and gives an outlook to future work. In the appendix the
namespaces used in the examples are listed.

2 Triple Sets and Graphs

RDF is an assertional language. Each assertion declares that certain information
about a resource is true. An assertion is modeled as a 〈s, p, o〉-triple where s

(subject) identifies the resource the assertion is about, p (predicate) is a property
of the resource, and o (object) is the value of p. A triple is an element of (U ∪
B) × U × (U ∪ B ∪ L), where U denotes the set of URIs [5], B denotes the set
of blank node identifiers, and L denotes the set of RDF literals [16]. A triple set
can be interpreted as a Directed Labeled Graph (DLG) with the subjects and
objects as nodes and node labels, the triples as arcs, and the predicates as arc
labels (s

p
−→ o). A subgraph is a subset of the corresponding triple set. In this

paper the term RDF-graph is used as a synonym for the term triple set. A triple
set (or any subset) can be serialized in different languages, such as RDF/XML,
N-Triples, N3, etc. The result is a sequence of words over an alphabet defined
by the particular RDF serialization language.

A DLG encodes two different types of information: structural information and
label information. Encrypting structural information means to hide the topology
of the graph, whereas encrypting the label information means to hide individual

310 M. Giereth

node and arc values. With regard to RDF-graphs, label information is encoded
by the URI-references and literals of subjects, predicates and objects. Structural
information is encoded in terms of triples. It should be noted that blank nodes
only provide structural information but no label information.

RDF-graphs can be interpreted as restricted DLGs having the following prop-
erties: (1) structural and label information of nodes are both encoded in terms of
URI-references and literals – changing a node label also changes the structure of
the graph; (2) node labels can be distributed over several triples. Thus, changing a
node label can cause several triples of an RDF-graph to be changed; (3) all nodes
are connected by at least on arc – there are no isolated nodes. Thus, the encryption
of a triple, can cause the encryption of the connected subject and object nodes if
they are only connected by that triple; (4) RDF makes the constraint, that subject
and predicate labels have to be URIs. Encrypted labels are not words of the URI
language. Therefore, encrypted labels have to be represented as objects which can
have arbitrary literal values. As a consequence, graph transformations have to be
performed in order to keep an encrypted graph RDF-compliant.

The following three encryption types for RDF-graphs can be distinguished:
(1) encryption of subjects and objects (= encryption of node labels) (2) en-
cryption of predicates (= encryption of arc labels) (3) encryption of triples
(= encryption of nodes, arcs and subgraphs. An arc is represented by a sin-
gle triple, a node by a set of triples having the node label either as subject or
object, and a subgraph can be any subset of a triple set).

3 Partial RDF Encryption

Partial RDF Encryption (PRE) is a transaction which is composed of the six
steps showed in Fig. 1. We will briefly describe each step.

1. Fragment Selection: The first step is the selection of the RDF fragments
to be encrypted. RDF fragments can either be subjects, predicates, objects,
or triples. The selected fragments are called encryption fragments and the
remaining fragments are called plaintext fragments. Selection can be done,
for example, by explicitly enumerating the encryption fragments (static se-
lection), by specifying selection patterns which check specific properties (dy-
namic selection), by random selection, etc. This step is described in more
detail in section 6.

2. Encryption: In this step, each encryption fragment is serialized and en-
crypted. The result of this step is a data structure containing both, encrypted
data and encryption metadata. We will call this structure an Encryption
Container (EC). An encryption container can be serialized and represented
as literal value. This step is described in more detail in section 4.

3. Encryption Transformations: All encryption fragments are replaced by
their corresponding encryption containers. The result is a single self-
describing RDF-compliant graph containing three different kinds of compo-
nents: (1) encrypted data, (2) encryption metadata and (3) plaintext frag-
ments. In order to fulfill RDF well-formedness constraints – in particular

On Partial Encryption of RDF-Graphs 311

Fig. 1. Partial Encryption Process

the constraint that literals are only allowed as the object of a triple – graph
transformations have to be performed. This step is described in more detail
in section 5.

4. Encryption Container Identification: Encryption containers and en-
cryption metadata are identified and extracted. This can be done by using
an RDF query language.

5. Decryption: In this step, the encryption containers are decrypted according
to the parameters specified in the encryption metadata. If a receiver does
not have an appropriate decryption key, the decryption fails.

6. Decryption Transformations: The last step is the re-construction of the
RDF-graph by replacing the encryption containers with the corresponding
decrypted values. Graph transformations have to be performed which are
inverse to the encryption transformations in step three. If a recipient has
the keys to decrypt all encryption containers, then the re-constructed RDF-
graph is identical to original RDF-graph. In the case that keys are missing,
there will be remaining encryption containers in the RDF-graph.

4 Encryption of RDF Fragments

A cryptosystem can formally be described as a tuple (P, C, K, E, D), where P

is a set of plaintexts, C is a set of ciphers, K is a set of keys, E = {ek : k ∈ K}

312 M. Giereth

is a family of encryption functions ek : P → C and D = {dk : k ∈ K} is a
family of decryption functions dk : C → P . For all ke ∈ K there is a kd ∈ K so
that dkd

(eke
(p)) = p holds for all p ∈ P . A cryptosystem is called symmetric if

ke = kd. It is called asymmetric if ke �= kd. Examples of symmetric cryptosystems
are Triple-DES [20] and AES [21]. An example of an asymmetric cryptosystem
is RSA [24].

4.1 Encryption Schemes

For secure key transport and in consideration of performance, plaintexts are
usually encrypted by using a session-key scheme which combines symmetric and
asymmetric encryption (Fig. 2). The sender encrypts a plaintext m using a sym-
metric encryption function f parameterized with a randomly generated session
key k. The result is a cipher cm. To transmit the session key to the recipient in
a secure way, k is encrypted with an asymmetric encryption function g parame-
terized by the public key pub of the recipient. The result is a cipher ck. Then the
ciphers cm and ck are transmitted. The recipient recovers the session key k by
decrypting ck using the decryption function g−1 parameterized with its private
key priv. Finally, the recipient computes the plaintext m from cm using f−1

parameterized with k.

Fig. 2. Session-Key Scheme

We can extend the above session-key scheme to be able to encrypt a set of
messages for a set of recipients. Let M = {m1, . . . , mm} be a non-empty set of
messages to be encrypted, P = {pub1, . . . , pubn} be a non-empty set of public
keys, and Pi ⊆ P be a non-empty set of public keys representing the recipients
of message mi ∈ M . For each message mi a new session key ki is generated.
mi is encrypted using the symmetric function f paramerized by ki. Then ki is
encrypted |Pi|-times using the asymmetric functions g parameterized by pubi ∈

Pi (Fig. 3). The encryption of M takes |M | symmetric and
∑|M|

i=1 |Pi| ≤ |M | · |P |
asymmetric encryption function calls.

For each message, the extended session-key scheme creates a set of key ci-
phers ck1

, . . . , ckn
of which at the most one can be correctly decrypted using a

given private key. A naive approach would be to decrypt sequentially each key
cipher and to check the integrity of the decrypted values. Providing additional
information about the public keys used for encryption (such as finger prints,
certificate serial number, etc.) helps to identify the corresponding private key in
advance. Thus, key information is an important class of encryption metadata.

On Partial Encryption of RDF-Graphs 313

Fig. 3. Extended Session-Key Scheme

4.2 Digests

When using cryptosystems, a method to ensure the data integrity is needed. A
common approach for this problem, is to use one-way hash functions, for example
SHA-1 [19] or MD5 [23]. A hash or digest is a sequence of bytes that represents
the input in a unique way and usually is smaller than the input. The sender
computes the digest dm of a message m using a one-way hash function h. Both,
the digest dm and the cipher cm are transferred to the recipient. The recipient
decrypts the cipher (let m′ be the decrypted cipher) and computes the digest
dm′ = h(m′). If dm′ = dm then m′ = m holds.

An important idea in PRE is using hash values for merging RDF-graphs,
similar to the inverse functional property mbox sha1sum defined in the FOAF
vocabulary [9]. mbox sha1sum contains the digest of an email to prevent publish-
ing the email but to allow for merging based on the email. Partially encrypted
fragments of an RDF-graph can be used for merging, if they (1) are object frag-
ments, are inverse functional, and provide a direct hash value and (2) are subject
fragments and provide a direct hash value.

There are cases in which it is not secure to use direct hash values. For example
when the range of a property only contains few values. When using a direct hash
for a 4-digit bank account PIN, it takes less than 1000 tests to know the correct
PIN by comparing the hash values. In this case a randomization of the value
before computing the digest is necessary. Randomized hash values provide a
higher security. They still can be used for testing the data integrity but cannot
be used for merging. So it is a trade-off between security and data integration.

For the representation of randomized values, we use a simple XML-based
method. The original fragment serialization is embedded as the content of a
FragmentValue element and can be retrieved using a simple XPath expression.
FragmentValue is a child of RandomizedValue which contains randomly generated
bytes as text. The structure is described by the following schema fragment.

<xs:complexType name=’RandomizedValue’ mixed=’true’>

<xs:choice><xs:element name=’FragmentValue’ type=’xs:string’/></xs:choice>

</xs:complexType>

4.3 Encryption Metadata

To allow for a abstract definition of the encryption process, encryption metadata
has to be specified, such as the encryption algorithms and their parameters, the
computed hash values, key information for public key identification, canonical-
ization methods, transformation to be performed, etc. The encryption metadata

314 M. Giereth

is stored together with the ciphers in a single data structure – the Encryption
Container (EC). There are different approaches to integrate encryption con-
tainers into RDF-graphs. We take the approach of serializing the encryption
containers into XML and including the serializations as XML literals.

Fig. 4. Overall Encryption Container Structure

The general EC structure is shown in Fig.4. The key ciphers ck1
, . . . , ckn

are
each stored in an EncryptedKey slot and the message cipher cm is stored in
an EncryptedData slot. Both, EncryptedKey and Encrypted Data have a sim-
ilar structure. The XML-Encryption recommendation [13] provides a detailed
description about the structure. The EncryptionMethod slot specifies the en-
cryption algorithm. Each algorithm has a unique URI (cf. [13]). The KeyInfo
slot provides information about the key used for encrypting the cipher. When
using the extended session-key scheme, the KeyInfo slot inside EncryptedData
contains a sequence of EncryptedKey slots, whereas the KeyInfo slot inside En-
cryptedKey contains information about the public key, for example a certificate
or a certificate reference. The CipherData slot stores the concrete cipher value
computed by the encryption function as Base64 encoded string. The Encryp-
tionProperties slot contains additional information such as the digest value, the
digest algorithm, data type information, the language used for serializing the
data, etc.

Example 1: Alice has annotated the resource http://www.xy.de/alice.htm in
RDF. To access the resource, a username and password is needed. Alice wants to
store the access data together with other annotations in the same RDF-graph, so
that only Bob and Chris can read the access data while all other annotations are
publicly readable. Alice has the X.509 certificates of Bob and Chris and wants to
encrypt the following RDF triples. AES (with 128-bit key size), RSA and SHA-1
is to be used.

<http://www.xy.de/alice.htm> <http://xy.de/schema#username> "alice" .

<http://www.xy.de/alice.htm> <http://xy.de/schema#password> "secret" .

First, the triples are serialized using an RDF language (N-Triples [15] in this ex-
ample). Second, the SHA-1 digest is computed. Then, the data is AES encrypted

On Partial Encryption of RDF-Graphs 315

(in CBC mode) with a generated 128-bit session key k. Then k is RSA encrypted
twice using the RSA public keys contained in the X.509 certificates of Bob and
Chris. Finally, the ciphers, the digest, the certificate, and the algorithm names
and parameters are combined in an encryption container. An XML-Encryption
and XML-Signature conforming serialization looks like:

<xenc:EncryptedData>

<xenc:EncryptionMethod Algorithm="&xenc;#aes128-cbc"/>

<ds:KeyInfo>

<xenc:EncryptedKey>

<xenc:EncryptionMethod Algorithm="&xenc;#rsa-1_5"/>

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>MIICQjCCAasCBE...</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>rrOC4FYSNogKsi...</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedKey>

<xenc:EncryptedKey>encrypted key of Chris...</xenc:EncryptedKey>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>37++haErMYLidG...</xenc:CipherValue>

</xenc:CipherData>

<xenc:EncryptionProperties>

<xenc:EncryptionProperty>

<ds:DigestMethod Algorithm="&ds;#sha1"/>

<ds:DigestValue>/84Cdz6BdYd6kY9zSa6sT1IjLoo=</ds:DigestValue>

</xenc:EncryptionProperty>

</xenc:EncryptionProperties>

</xenc:EncryptedData>

5 Transformations

Since in RDF only the objects can represent literal values, encrypted subjects
and predicates cannot directly be replaced by their corresponding encryption
container serializations. Instead, graph transformations have to be performed.
An overview of the transformations for integrating the encrypted content is given
in Fig. 5 (literals containing the encryption container serialization are marked
with a ’lock’ icon). We will briefly describe each transformation.

1. Subject Transformation: In order to encrypt a subject S, a new triple
〈B, renc:encNLabel, ECS〉 is added to the graph. ECS contains the XML
serialization of the encryption container of S. All references to S are re-
placed by references to B. Therefore all triples containing S either as object
or subject have to be changed.

316 M. Giereth

Fig. 5. Subject, Object and Predicate Transformations

Fig. 6. Triple-Set Transformation

2. Object Transformation: Objects could directly be replaced by their encryp-
tion container serializations. But this would also change the datatype into
rdf:XMLLiteral. Therefore, a blank node is introduced which replaces the
original object node. A new triple 〈B, renc:encNLabel, ECO〉 is added to
the graph. ECO contains the XML serialization of the encryption container
of O including the original datatype information. All references to O have
to be replaced by references to B.

3. Predicate Transformation: Since in RDF only URI references are allowed as
predicates, blank nodes cannot be used for bridging between arcs and their
encrypted label data. Instead a RDF reification [18] based approach is used.
The transformation is carried out in three steps. First, the predicate P of the
original triple t is replaced by the URI reference renc:encPredicate. Second,
a new reification quad is added for identifying t. Finally, a new property
renc:encPLabel = ECP is added to the reification quad stating that the real
predicate of t is encrypted in ECP .

4. Triple-Set Transformation: The encryption of a non-empty triple set Tenc =
{ti, . . . , ti+m} takes the following steps. First, Tenc is serialized into a string s

On Partial Encryption of RDF-Graphs 317

using an RDF serialization language. Second, an encryption container ECT

is constructed containing the encrypted string s together with the encryp-
tion metadata. Third, a new triple 〈B, renc:encTriples, ECT 〉 is added to
the graph. Finally, all triples in Tenc are removed from the graph. The trans-
formation for triple sets are showed in figure 6.

5.1 Handling of Blank Nodes

The described transformations can be directly applied to RDF-graphs that do
not contain blank nodes (ground graphs). As noted earlier, a blank node identi-
fier is not regarded as node label and thus cannot be encrypted. However blank
nodes may be contained in triple sets that are to be encrypted. Blank node iden-
tifiers have to be unique in one RDF-graph. They are not required to be globally
unique and may be changed to some internal representation by RDF frameworks.
In order to be able to encrypt triples containing blank nodes, additional infor-
mation is needed to uniquely identify the blank nodes after decryption, since
their identifiers might have changed.

Fig. 7. Graph Transformations for Blank Nodes

Therefore, a unique UUID [17] is generated for each blank node contained in a
triple to be encrypted. The UUID is assigned to the blank node as URI value of
the renc:assignedURI property. The blank nodes of the triples to be encrypted
are then replaced by the generated URIs. During decryption, the generated URIs
are used for identifying the original blank nodes. Blank nodes can occur as the
subject of a triple, as the object of a triple or both. Fig. 7 gives an overview and
shows the corresponding transformations.

Example 2: Alice wants to encrypt the foaf:knows relation between her and
Bob expressed by triple tenc. Since persons have no adequate URI representation,
blank nodes are used for bundling properties about the person which are the

318 M. Giereth

email addresses in this example. Fig. 8 shows the result of the encryption. The
triple tenc is removed. Three new triples are added: two triples for identifying
the blank nodes (t1 and t2) and one triple containing the encrypted data (t3).
The blank node identifiers for B1 and B2 are replaced by the generated UUIDs
(uri1 and uri2) before the encryption. During decryption the t3 is decrypted,
parsed, and removed. Let Tdec denote the decrypted triples. In a second step, the
objects of all triples having an renc:assignedURI predicate are tested against the
subject and object URIs of the triples in Tdec. If a correspondence is detected
(the object of t1 with uri1 and the object of t2 with uri2), the URI references
are replaced by the corresponding blank nodes and the identification triples (t1,
t2) are removed.

Fig. 8. Blank Node Example

6 Encryption Policies

Encryption policies for RDF-graphs define which fragments to encrypt and how
to encrypt them. The PRE Policy Language (PRE-PL) uses a graph pattern
based approach that allows for dynamic selection of encryption fragments. PRE-
PL uses the RDQL [25, 2] query language. The result of a query can be inter-
preted as a set of fragments which are instances of the same ’category’ defined
by the search pattern. Each category is encrypted in the same way (the same
keys, algorithms, etc.). RDQL mainly defines a list of triple patterns which are
mapped to concrete triples in an RDF-graph. A triple pattern generally has the
form

TriplePattern ::= ’(’ (Var|URI) (Var|URI) (Var|Const) ’)’

where Var are variables, URI are URI references and Const are URI references or
(typed) literals. The result of a query is a set of bindings, in which the variables
are bound to concrete RDF items (subjects, predicates or objects).

On Partial Encryption of RDF-Graphs 319

RDQL has been adapted in a way that it returns a set of triples bound
to each triple pattern instead of returning variable bindings. Based on the or-
dered triple pattern sequence, the encryption fragments are identified by us-
ing the markers s, p, o, or t. The marker s (p, o) will cause the encryption
of the subjects (predicates, objects) of the bound triple set. The marker t will
cause the encryption of each triple in the set. This mechanism allows the en-
cryption of fragments which are not bound to variables, e.g. named values.
Additionally, it has to be specified how to encrypt the selected fragments, i.e.
which encryption method, keys, parameters, etc. to use. PRE-PL is described
in more detail in on the RDF Encryption Project site [3]. We will give a short
example here.

Example 3: The rule ,,encrypt the email addresses of all persons” using Triple-
DES as block cipher algorithm and the RSA keys provided in the certificates of
Bob and Alice can be formulated in PRE-PL as follows:

<pre:PREPolicy>

<ds:KeyInfo>

<ds:X509Data id="alice">...</ds:X509Data>

<ds:X509Data id="bob">...</ds:X509Data>

</ds:KeyInfo>

<pl:DefaultEncryptionScheme>

<pl:Symmetric>

<xenc:EncryptionMethod Algorithm="xenc:tripledes-cbc"/>

</pl:Symmetric>

<pl:Asymmetric>

<xenc:EncryptionMethod Algorithm="xenc:rsa-1 5"/>

</pl:Asymmetric>

<pl:Digest type="pl:directDigest">

<ds:DigestMethod Algorithm="ds:sha1"/>

</pl:Digest>

<pl:RDFLanguage name="pl:N-Triples"/>

<pl:DefaultKeys><pl:KeyRef id="alice"/></pl:DefaultKeys>

</pl:DefaultEncryptionScheme>

<pl:GraphPattern>

<pl:TriplePattern subj="?x" pred="rdf:type" obj="foaf:Person"/>

<pl:TriplePattern subj="?x" pred="foaf:mbox" obj="?y">

<pl:Encryption target="o"><KeyRef id="bob"/></pl:Encryption>

</pl:TriplePattern>

</pl:GraphPattern>

</pl:PREPolicy>

Each PREPolicy has a KeyInfo section for key definition. Each child element pro-
vides key material which is referenced in the GraphPattern sections. Note, that
the external keys can be referenced using the XML-Signature reference mech-
anism [14]. Each PRE policy also defines one DefaultEncryptionScheme section
which defines the default encryption parameters: the symmetric and asymmetric
algorithms, the digest algorithm and additional randomization, the RDF serial-

320 M. Giereth

ization language for triples and the default keys for each fragment. Additional
encryption schemes can be defined which can be referenced in Encryption el-
ements. Each GraphPattern section has a list of triple patterns and optional
constraints which are mapped to an RDQL query. For each TriplePattern it
can be defined how to encrypt the bound fragments. In the above example, the
object of the second triple pattern (the email address) is encrypted using the
default encryption scheme and the additional key with the ID ’bob’.

7 Conclusions and Future Work

A method to partially encrypt RDF-graphs has been presented. It differs from
other approaches in that the result is a single self-describing RDF-compliant
graph containing both, encrypted data and plaintext data. The method al-
lows for fine-grained encryption of subjects, objects, predicates and subgraphs
of RDF-graphs. Encrypted fragments are included as XML literals which are
represented using the XML-Encryption [13] and XML-Signature [14] recommen-
dations. Graph transformations necessary to keep the encrypted RDF-graph
well-formed have been described. The proposed method is adoptable for dif-
ferent algorithms and processing rules by using encryption metadata. We have
motivated the usage of randomized digests for high-sensitive data (such as credit
card number, passwords, etc.) and direct digests for low-sensitive data (such as
email, phone number, etc.) in order to allow a trade-off between security and
application integration needs. We have also introduced the idea of encryption
policies for RDF and the PRE-PL policy language which uses RDQL queries
for dynamic selection of encryption fragments. In future work we will integrate
SPARQL [22] concepts, such as optional pattern matching, in PRE-PL. A pro-
totypical implementation of PRE, PRE4J [3], is available under LGPL for the
Jena Framework [2].

PRE heavily relies on a public key infrastructure or on a web of trust. There
are RDF vocabularies, such as the Semantic Web Publishing Vocabulary [10, 7]
or the WOT Vocabulary [8], for integrating certificates into the Semantic Web
and in particular into FOAF [9] profiles. Therefore, it is planned to extend
FOAF enabled browsers, such as the Foafscape browser [1], to be able to use the
certificates provided in profiles.

As with all partial encryption methods, encrypted data has a certain con-
text which can be used for ’guessing’ the corresponding plaintext data. Semantic
Web applications also typically make use of ontologies. An ontology formulates
a strict conceptual scheme about a domain containing the relevant classes, in-
stances, properties, data types, cardinalities, etc. This information can be used
for attacks or even inferring encrypted content. Property definitions for example
can dramatically reduce the search space for ’guessing’ the plaintexts and can
be used for systematically checking the hash value provided in the encryption
container. Concerning the confidentiality of encrypted data, it is also crucial to
know if the data to be encrypted is inferable. This topic has not been evaluated
in detail, yet.

On Partial Encryption of RDF-Graphs 321

References

1. Foafscape Project Homepage. http://foafscape.berlios.de.
2. Jena Semantic Web Framework. http://jena.sourceforge.net.
3. RDF Encryption Project Homepage. http://rdfenc.berlios.de.
4. L. Bauer, M. Schneider, and E. Felten. A general and flexible access-control sys-

tem for the web. In Proceedings of the 11th USENIX Security Symposium, San
Francisco, CA, Aug 2002.

5. T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396 – Uniform Resource
Identifiers (URI): Generic Syntax. IETF, August 1998. http://www.isi.edu/in-
notes/rfc2396.txt.

6. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 34–43, May 2001.

7. C. Bizer, R. Cyganiak, O. Maresch, and T. Gauss. TriQL.P - Trust Architecture.
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/.

8. D. Brickley. WOT RDF Vocabulary, 2002. http://xmlns.com/wot/0.1/.
9. D. Brickley and L. Miller. FOAF Vocabulary Specification, 2005.

http://xmlns.com/foaf/0.1/.
10. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance and

Trust. Technical report, HP Laboratories Bristol, 2004. HPL-2004-57R1.
11. J. Cowan and R. Tobin, editors. XML Information Set (Second Edition). W3C

Recommendation, February 2004. http://www.w3.org/TR/xml-infoset/.
12. E. Dumbill. PGP Encrypting FOAF Files, 2002.

http://usefulinc.com/foaf/encryptingFoafFiles.
13. D. Eastlake and J. Reagle, editors. XML Encryption Syntax and Processing. W3C

Recommendation, December 2002. http://www.w3.org/TR/xmlenc-core/.
14. D. Eastlake, J. Reagle, and D. Solo, editors. XML-Signature Syntax and Processing.

W3C, February 2002. http://www.w3.org/TR/xmldsig-core/.
15. J. Grant and D. Beckett, editors. RDF Test Cases. W3C Recommendation,

http://www.w3.org/TR/rdf-testcases/, February 2004.
16. G. Klyne and J. Carroll, editors. Resource Description Framework (RDF): Con-

cepts and Abstract Syntax. W3C Recommendation, http://www.w3.org/TR/rdf-
concepts/, February 2004.

17. P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN
Namespace, July 2005.

18. F. Manola and E. Miller, editors. RDF Primer. W3C Recommendation,
http://www.w3.org/TR/rdf-primer/, February 2004.

19. National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHA-1). Technical report, April 1995. http://www.itl.nist.gov/fipspubs/fip180-
1.htm.

20. National Institute of Standards and Technology (NIST). Data Encryption Stan-
dard (DES). Technical report, October 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

21. National Institute of Standards and Technology (NIST). Advanced
Encryption Standard (AES). Technical report, November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

22. E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for RDF.
W3C Working Draft, October 2004. http://www.w3.org/TR/rdf-sparql-query/.

23. R. Rivest. The MD5 Message-Digest Algorithm, RFC 1321. Technical report, April
1992. http://www.faqs.org/rfcs/rfc1321.html.

322 M. Giereth

24. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21,2, 1978.

25. A. Seaborne, editor. RDQL - A Query Language for RDF. W3C Member
Submission, January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/.

26. D. Weitzner, J. Hendler, T. Berners-Lee, and D. Connolly. Creating a policy-
aware web: Discretionary, rule-based access for the world wide web. Hershey, PA
(forthcoming), 2004.

Appendix: Namespaces

Prefix Namespace

ds http://www.w3.org/2000/09/xmldsig#
foaf http://xmlns.com/foaf/0.1/
pl http://rdfenc.berlios.de/pre-pl#
renc http://rdfenc.berlios.de/pre#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
xenc http://www.w3.org/2001/04/xmlenc#
xs http://www.w3.org/2001/XMLSchema

	Introduction
	Triple Sets and Graphs
	Partial RDF Encryption
	Encryption of RDF Fragments
	Encryption Schemes
	Digests
	Encryption Metadata

	Transformations
	Handling of Blank Nodes

	Encryption Policies
	Conclusions and Future Work

