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Abstract. We derive various partial spherical means formulas for the 3+1 wave equa-

tion. Such formulas, considered earlier by both Weston and Teng, involve only partial

integration over a solid angle in addition to history-dependent boundary terms, and are

appropriate for faces, edges, and corners of “computational domains”. For example, a

hemispherical means formula corresponds to a face (plane boundary). Exploiting the

theory of wave front sets for linear operators developed by Hörmander, Warchall has

proved theorems which suggest the existence of “one-sided update formulas” for wave

equations. We attempt to realize such an update formula via an explicit construction

based on our hemispherical means formula. We focus on face points and plane bound-

aries, but also introduce one-fourth and one-eighth spherical means formulas with most

of our arguments going through for a point located on either a domain edge or a cor-

ner. Throughout our analysis we encounter a number of, we believe, heretofore unknown

identities for classical solutions to the wave equation.

1. Introduction. Specification and efficient numerical implementation of exact ra-

diation boundary conditions (RBC) for slender or complicated domains, possibly with

sharp corners, is a fundamental problem in computational mathematics with broad ap-

plications in the sciences. Even for the wave equation, the problem is essentially open

for domains which are slender or otherwise complicated by edges and corners, although

this view is subject to revision in light of recent breakthroughs [1, 2] on “corner com-

patibility conditions” by Hagstrom, Warburton, and Givoli. Successful implementations

of RBC do exist for boundaries which are highly symmetric, such as infinite planes,

spheres, and infinite cylinders. In particular, Alpert, Greengard, and Hagstrom (AGH)

described an implementation based on Laplace convolution for the 3+1 wave equation
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180 STEPHEN R. LAU

Fig. 1. Idealized representation of a scatter. The solid ellip-
soid represents a high aspect ratio scatterer within a computational
domain determined by a bounding surface. A spherical boundary is
depicted on the left. The two boundaries depicted on the right are
adapted to the geometry, affording smaller computational domains.

[3]. The AGH approach has been extended both to plane and cylindrical boundaries [4]

and to a number of other equations. For example, it has been successfully applied to

both the Schrödinger equation by Jiang [5] and the linear PDE describing perturbations

of Schwarzschild black holes [6, 7, 8]. In each case, a spherical boundary is assumed.

However, despite the theoretical and practical importance of this approach, the require-

ment of a spherical boundary, or otherwise highly symmetric boundary, is often a severe

limitation. Indeed, in modeling wave phenomena involving slender geometries, say the

scattering of acoustic waves off of a submarine, the choice of a spherical boundary in-

evitably wastes computational zones, as suggested in Figure 1.

Exploiting the theory [9, 10] of wave front sets for linear operators developed by Hör-

mander, Warchall has proved theorems suggesting the existence of “one-sided update

formulas” for wave equations [11]. For classical solutions to the 3+1 wave equation

(−∂2
t +Δx)U = 0, the ramifications of his work are described as follows (see Theorem

6 of [11] for details). Consider three times t0 < t1 < t2 = T , a spatial point X on the

boundary ∂Σ of an open convex set Σ, and O = Σ ∩ {x : |x − X| ≤ T − t1}. If (i)

the data {U(t1,x), Ut(t1,x)} vanishes on an open set that contains O and (ii) the data

{U(t0,x), Ut(t0,x)} is supported on the interior of Σ, then U(T,X) = 0. Notice that

proviso (ii) restricts the t0–data to the “computational domain” in the (perhaps ancient)

past. By uniqueness of solutions to the wave equation, we may then conclude that for

such t0–data the value U(T,X) is determined solely by the t1–data on O. Through the

introduction of a conjectured one-sided update formula, Warchall has suggested that

this result might yield a practical way of numerically implementing RBC for the wave

equation.

In this paper we attempt to realize Warchall’s conception for the 3+1 wave equation

via explicit constructions, although truly succeeding only for a limited class of solutions.

Various partial spherical means formulas serve as the starting point for our analysis.

Such formulas involve only partial integration over a solid angle in addition to history-

dependent boundary terms, and are appropriate for faces, edges, and corners of “com-

putational domains.” These formulas are essentially the same as those studied by Teng
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PARTIAL SPHERICAL MEANS FORMULAS AND BOUNDARY CONDITIONS 181

[12] and also exhaustively for a plane boundary by Weston [13]. We use these formu-

las to obtain new split level formulas which also depend on the intermediate time t1,

and this is a key difference between our work and theirs. At least within the spacetime

neighborhoods in which our analysis takes place, we work with classical solutions to the

homogeneous 3+1 wave equation. While our assumptions are indeed more restrictive

than the setting adopted by Warchall, they are reasonable from the standpoint of nu-

merical computations. While our motivation stems solely from numerical applications,

this is essentially a theoretical paper, chiefly because we do not yet know if our current

results suggest a practical numerical implementation. Therefore, one might reasonably

view this as a failed work. Nevertheless, our main results are the following.

• For domain faces, edges, and corners, we introduce partial spherical means formu-

las with history terms. Some of these formulas are the same as those considered

by Weston [13] and Teng [12], but others are slightly more general (either in

terms of geometry or in featuring multiple times).

• We express the history terms arising in partial spherical means formulas solely

in terms of the intermediate time level t1, thereby achieving split level formulas

which express U(T,X) solely in terms of the data at two initial times, t0 and

t1. Assuming appropriate initial data at time t0, we then formally quasi-localize

in space (to the backward lightcone of (T,X)) the already time-localized new

expressions for the history terms, thereby nearly realizing Warchall’s conception

for sufficiently general solutions. We explain why our construction falls short.

• We give a constructive proof of Warchall’s theorem for a certain class of point-

source solutions to the 3+1 wave equation. From the proof one could write down

an explicit update formula (i.e., realize Warchall’s conception for such solutions),

although we are unsure of its utility for a numerical implementation.

In addition, we offer what we see as the key obstacles to realizing Warchall’s conception

in a sufficiently general setting.

The organization of this paper is as follows. In the next subsection we prove a lemma

establishing partial spherical means formulas and describe some concrete examples, in-

cluding several hemispherical means formulas. Section 3 focuses on a split level formula

for plane boundaries, our attempt at a concrete realization of Warchall’s conception for

sufficiently general solutions. Section 4 gives the derivation of the split level formula.

For a general multipole solution to the wave equation, Section 5 presents a concrete

demonstration of Warchall’s conception. Section 6 considers edges and corners, and the

extent to which our results generalize to these scenarios. We include a number of appen-

dices. The first shows that our hemispherical means formula is equivalent to the AGH

plane boundary conditions based on the Laplace convolution technique. The remaining

appendices collect further technical details not presented in the text.

2. Preliminaries.

2.1. Notation. Consider Minkowski spacetime, that is, R4 equipped with the pseudo-

Riemannian line-element

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (2.1)
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182 STEPHEN R. LAU

here written in time spherical polar coordinates. The factor dθ2 + sin2 θdφ2 is the line-

element of a unit-radius round sphere S2, which has1 dΩ = dφdθ sin θ as its area element.

Consider a spacetime point p with Cartesian coordinates (T,X, Y, Z), assuming T > 0.

With x = (x, y, z), X = (X,Y, Z), and r = |x −X|, the past null cone of p is the locus

of points obeying t + r = T . Denote by BX(t, r) the radius–r round sphere at time

t and centered at the spatial point X. The center of BX(t, r) is not p unless t = T .

BX(t, T − t) is the intersection of time level t with the past null cone of p. When

considering a hemispherical means formula below, we split BX(t, T − t) into B+
X(t, T − t)

and B−
X(t, T − t), according to whether z > Z or z < Z. We also define the circular ring

�X(t, T − t) = clB+
X(t, T − t) ∩ clB−

X(t, T − t), the intersection of the boundary plane

z = Z at time level t with the past null cone of p. We view B−
X(t, T − t) as inside the

computational domain, and B+
X(t, T − t) as outside. When X is the origin 0, we simply

write, for example, B(t, T − t) and �(t, T − t), rather than B0(t, T − t) and �0(t, T − t).

Let S∗ be the angular parameter space specifying a spherical polygon, that is, a portion

of the unit sphere enclosed by the arcs of great circles. Let B∗(t, r) be a corresponding

spherical polygon contained in B(t, r). The boundary ∂B∗(t, r) of B∗(t, r) is a closed,

continuous, and piecewise smooth curve γ(t, r), and it may be a single great circle.

Expressing the boundary γ(t, r) as a union
⋃

i γi(t, r) of smooth curves, we use dσi =

dφir to represent the induced Riemannian measure (differential of arc-length) on the

component γi(t, r), where φi is an angular coordinate along the component. Furthermore,

∂/∂xi will represent the Cartesian direction which coincides on γi(t, r) with the curves’s

outward-pointing normal as a component of ∂B∗(t, r). The ∂/∂xi direction need not be

one of the fixed Cartesian basis directions ∂/∂x, ∂/∂y, ∂/∂z. Along γi(t, r) the vector

field ∂/∂xi points perpendicularly to γi(t, r) and also tangent to B(t, r).

For W = W (t, x, y, z) we introduce the following convention for (unnormalized) angu-

lar averages: 〈
W
〉
B∗(t,r)

=

∫
S∗

dΩW (t, r sin θ cosφ, r sin θ sinφ, r cos θ), (2.2)

where B∗(t, r) is the radius–r spherical portion centered at the origin for which (θ, φ) ∈
S∗. This average does not use the proper area measure dΩr2 on B∗(t, r). By choosing

not to incorporate the proper area measure in the definition of the average, we both

slightly streamline the appearance of many formulas and ensure that r → 0+ limits are

readily taken. We will write〈
W
〉
BX(t,r)

=

∫
S2

dΩW (t,X + r sin θ cosφ, Y + r sin θ sinφ, Z + r cos θ) (2.3)

when the average (in this example over a whole sphere) is taken about a generic spatial

point X. Furthermore, we write

[W ]�X(t,ρ) =

∫ 2π

0

dφW (t,X + ρ cosφ, Y + ρ sinφ, Z) (2.4)

for ring averaging based at X.

1Because we will encounter many long integral expressions, we find it useful to use the physicists’

convention of putting all coordinate measures to the left.
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2.2. Partial spherical means formulas. To derive these, first let M = {(t,x) : x ≤
T − t} represent the solid past null cone of the spacetime point (T, 0, 0, 0). For a generic

time t < T , let Mt represent the closed portion of M lying to the future of time level t.

Partial spherical means formulas arise from the following (also given in [14]).

Lemma 2.1. Let U be a classical solution to the wave equation on a neighborhood of

Mt. Then, with q the solid angle subtended by the spherical polygon B∗(t, r), we have

qU(T, 0, 0, 0) =
∑
i

∫ T

t

dτ
1

T − τ

∫
γi(τ,T−τ)

dσi
∂U

∂xi

(T − t)
〈
Ut

〉
B∗(t,T−t)

+ ∂T (T − t)
〈
U
〉
B∗(t,T−t)

. (2.5)

The result can be shifted to a generic spatial point X by translation invariance.

Proof. We first note that the equation holds in the t → T− limit. Indeed, in each

integral over γi(τ, T − τ ) the apparently singular (T − τ )−1 is canceled by a (T − τ )

in the dσi measure. Therefore, to gather the result, we must simply establish that the

right-hand side of (2.5) is constant in t. With that aim, we consider the following key

identity:

(T − t)−1ΔU(t, (T − t)ν)

= ∂t
{
(T − t)Ut(t, (T − t)ν) + ∂T

[
(T − t)U(t, (T − t)ν)

]}
, (2.6)

where Δ is the S2 Laplacian and ν a set of direction cosines. This identity is the wave

equation expressed in spherical polar coordinates. Indeed, note that the left-hand side

of (2.6) is symbolically

(∂t − ∂R)R(Ut + UR + U/R) = R(Utt − URR − 2UR/R). (2.7)

Since the angular parameter space S∗ does not depend on time, we may integrate (2.6),

thereby obtaining

(T − t)−1

∫
S∗

dΩΔU(t, (T − t)ν)

= ∂t

∫
S∗

dΩ
{
(T − t)Ut(t, (T − t)ν) + ∂T

[
(T − t)U(t, (T − t)ν)

]}
, (2.8)

or in our more compact notation,

(T − t)−1
〈
ΔU
〉
B∗(t,T−t)

= ∂t(T − t)
〈
Ut

〉
B∗(t,T−t)

+ ∂t∂T (T − t)
〈
U
〉
B∗(t,T−t)

. (2.9)

By Stokes’ Theorem, the term on the left-hand side of the equation integrates to

(T − t)−1
〈
ΔU
〉
B∗(t,T−t)

=
∑
i

1

T − t

∫
γi(t,T−t)

dσi
∂U

∂xi
, (2.10)

that is, precisely minus the time derivative of the first term on the right-hand side of

(2.5), whence the right-hand side of (2.5) is indeed constant in t. �
The lemma can also be proved with distributions or by generalizing Hadamard’s ap-

proach for deriving the spherical means formula [15, 16]. We have carried out Hadamard’s

approach for several partial spherical means formulas. This route may prove a useful tool
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when the angular parameter space is time-dependent. When B∗(t, T − t) is the entire

sphere B(t, T − t), the lemma (2.1) yields the standard spherical means formula [17, 18]

4πU(T, 0, 0, 0) = (T − t)

∫
S2

dΩUt(t, (T − t)ν) +
∂

∂T

[
(T − t)

∫
S2

dΩU(t, (T − t)ν)

]
.

(2.11)

In a sense, the spherical means formula holds because the “boundary of a boundary is

zero” [19]. When γ(t, T − t) is the equatorial great circle lying in the plane z = Z, the

lemma yields

2πU(T, 0, 0, 0) = −
∫ T

t

dτ

∫ 2π

0

dφUz(τ, (T − τ ) cosφ, (T − τ ) sinφ, 0)

+ (T − t)

∫
S+

dΩUt(t, (T − t)ν) +
∂

∂T

[
(T − t)

∫
S+

dΩU(t, (T − t)ν)

]
, (2.12)

with S+ = {(θ, φ) : 0 ≤ θ < π/2, 0 ≤ φ < 2π} representing the angular parameter space

specifying the northern hemisphere. S− specifies the southern hemisphere. Edge and

corner examples of the lemma are given in Section 6.

2.3. Hemispherical means formulas. This subsection elaborates on the hemispherical

example (2.12). Formulas given in §2.3.1 can be generalized to edge and corner formulas,

while some of those in §2.3.2 are specific to a plane boundary.

2.3.1. Consequences of the formula. We first use our notation for angular averages to

express (2.12) in the following succinct form:

2πU(T, 0, 0, 0) =−
∫ T

t

dτ [Uz]�(τ,T−τ)

+ (T − t)
〈
Ut

〉
B+(t,T−t)

+ ∂T (T − t)
〈
U
〉
B+(t,T−t)

. (2.13)

Combining (2.13) with

4πU(T, 0, 0, 0) = (T − t)
〈
Ut

〉
B(t,T−t)

+ ∂T (T − t)
〈
U
〉
B(t,T−t)

, (2.14)

that is, the ordinary spherical means formula (2.11), we obtain the mirror formula of

(2.13),

2πU(T, 0, 0, 0) =

∫ T

t

dτ [Uz]�(τ,T−τ)

+ (T − t)
〈
Ut

〉
B−(t,T−t)

+ ∂T (T − t)
〈
U
〉
B−(t,T−t)

. (2.15)

As with (2.13), or indeed the ordinary spherical means formula, (2.15) requires no special

assumptions on the support of the initial data.

To achieve more interesting consequences of our result, we suppose that the initial

data vanishes for z > −δ (with δ > 0 small). More precisely, it is enough to assume that

the data vanishes on a neighborhood of clB+(t0, T − t0). Then we may choose t = t0 in
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(2.13) to find2

2πU(T, 0, 0, 0)
CID
= −

∫ T

t0

dτ [Uz]�(τ,T−τ). (2.16)

The result (2.16) was obtained and exploited by Weston [13] and also appears in the

monograph [17]. Next, we replace t with t1 in (2.15), assuming t0 < t1 < T , and add the

result to (2.16), thereby reaching

4πU(T, 0, 0, 0)
CID
= −

∫ t1

t0

dτ [Uz]�(τ,T−τ)

+ (T − t1)
〈
Ut

〉
B−(t1,T−t1)

+ ∂T (T − t1)
〈
U
〉
B−(t1,T−t1)

. (2.17)

We view this as the key formula of this section. Replacing t1 with t0 in (2.17), we get

4πU(T, 0, 0, 0)
CID
= (T − t0)

〈
Ut

〉
B−(t0,T−t0)

+ ∂T (T − t0)
〈
U
〉
B−(t0,T−t0)

, (2.18)

that is, the standard spherical means formula applied to our special initial data at t0.

2.3.2. Other versions of the hemispherical means formula. Since Uz solves the wave

equation if U does (assuming requisite smoothness), from (2.17) we have3

4πUz(T, 0, 0, 0)
CID
= −

∫ t1

t0

dτ [Uzz]�(τ,T−τ)

+ (T − t1)
〈
Utz

〉
B−(t1,T−t1)

+ ∂T (T − t1)
〈
Uz

〉
B−(t1,T−t1)

. (2.19)

Written in cylindrical coordinates, the wave equation is

Utt − Uzz = Uxx + Uyy = ρ−1(ρUρ)ρ + ρ−2Uφφ, (2.20)

where ρ =
√
x2 + y2. Writing (2.20) as

Uzz = (∂t − ∂ρ)(Ut + Uρ)− ρ−1Uρ − ρ−2Uφφ (2.21)

and substituting the right-hand side into (2.19), we obtain

4πUz(T, 0, 0, 0)
CID
=

∫ t1

t0

dτ
1

T − τ
∂T [U ]�(τ,T−τ) − (∂t1 + 2∂T )[U ]�(t1,T−t1)

+ (T − t1)
〈
Utz

〉
B−(t1,T−t1)

+ ∂T (T − t1)
〈
Uz

〉
B−(t1,T−t1)

. (2.22)

To reach this formula, we have used the facts that ∂/∂t − ∂/∂ρ and ∂/∂ρ respectively

correspond to ∂/∂τ and ∂/∂T , and also

−(∂t1 + 2∂T )[U ]�(t1,T−t1) = −[Ut + Uρ]�(t1,T−t1). (2.23)

2 The acronym CID stands for computational initial data, that is, initial data at time t0 which is

supported on the interior of the computational domain, whence P
CID
= Q is a true equality provided

we assume computational initial data. In many, but not all, of the formulas which follow, one may

alternatively interpret P
CID
= Q as shorthand for

P = Q+ (T − t0)
〈
Ut
〉
B+

X(t0,T−t0)
+ ∂T (T − t0)

〈
U
〉
B+

X(t0,T−t0)
,

where in this subsection X = (0, 0, 0), but later on X will be generic. Alternative interpretations for

P
CID
= Q are more complicated for some formulas in Sections 2.3.2 and 3, and for the edge and corner

scenarios in Section 6. We also refer to initial data which “obeys the CID condition” (or a similar phrase).
In that case, we do assume computational initial data, with no alternative interpretation possible.

3The author thanks T. Hagstrom for the following argument.
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The t1 → T− limit of (2.22) then yields

Ut(T, 0, 0, 0) + Uz(T, 0, 0, 0)
CID
=

1

2π

∫ T

t0

dτ
1

(T − τ )
∂T [U ]�(τ,T−τ), (2.24)

since the hemispherical means terms in (2.22) tend to 2πUz(T, 0, 0, 0) as t1 → T−. More-

over, since Uρ will average to zero in the limit, the integral −[Ut + Uρ]�(t1,T−t1) as a

whole tends to −2πUt(T, 0, 0, 0). Weston also found the formula (2.24) in his “split-

ting” analysis of the wave equation [13]. Appendix A shows that (2.24) is the physical-

space version of a plane boundary condition derived in Ref. [4]. Other expressions for

Ut(T, 0, 0, 0) + Uz(T, 0, 0, 0) are possible. To get one, we replace U by Ut in (2.17),

whereupon finding after an integration by parts that

4πUt(T, 0, 0, 0)
CID
= −

∫ t1

t0

dτ∂T [Uz]�(τ,T−τ) − [Uz]�(t1,T−t1)

+ (T − t1)
〈
Utt

〉
B−(t1,T−t1)

+ ∂T (T − t1)
〈
Ut

〉
B−(t1,T−t1)

. (2.25)

This formula is closely related to the one obtained via a straightforward differentiation

of (2.17) by ∂/∂T , with the two related by an angular integration by parts at time level

t1. We find (another Weston formula)

Ut(T, 0, 0, 0) + Uz(T, 0, 0, 0)
CID
= − 1

2π

∫ T

t0

dτ∂T [Uz]�(τ,T−τ), (2.26)

after taking the t1 → T− limit in (2.25).

3. Split level initial value problem. Using translation invariance and restoring

the integrals at time t0, we may express (2.17) as follows:

4πU(T,X) = (T − t0)
〈
Ut

〉
B+

X(t0,T−t0)
+ ∂T (T − t0)

〈
U
〉
B+

X(t0,T−t0)

+ (T − t1)
〈
Ut

〉
B−

X(t1,T−t1)
+ ∂T (T − t1)

〈
U
〉
B−

X(t1,T−t1)
+H(t0, t1), (3.1)

where4

H(t0, t1) ≡ −
∫ t1

t0

dτ

∫ 2π

0

dφUz(τ,X + (T − τ ) cosφ, Y + (T − τ ) sinφ, Z). (3.2)

This section describes an alternative formula for the history term H(t0, t1) in (3.1), one

which depends on data solely at time level t1. We therefore arrive at a formula expressing

the value U(T,X) in terms of data at two initial times, t0 and t1. One version of this

split level formula is our best attempt at a sufficiently general realization of Warchall’s

conception. For simplicity, this section only considers the plane boundary case, but the

results carry over to the edge and corner scenarios described in Section 6.

4Assuming the initial data obeys the CID condition (cf. footnote 2), the t0 in H(t0, t1) may be
replaced by any later time t0 + δt, provided that no radiation intersects the ring history {�X(t, T − t) :
t ∈ [t0, t0+δt]}. Therefore, under this assumption, H(t0+δ, t1) = H(t0, t1). Such insensitivity to t0 also
holds for other incarnations of H(t0, t1) derived below, Eqs. (3.4,3.6,4.15,4.17). In particular, numerical

experimentation with (3.6) has confirmed this insensitivity.
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3.1. Main formula. To write down the formula, we introduce a parameterization

X(T − t0, φ) = (X + (T − t0) cosφ, Y + (T − t0) sinφ, Z) (3.3)

of the ring �X(t0, T − t0), and then define a radial variable R =
∣∣X(T − t0, φ)− x

∣∣. Our

split level formula is determined by a new expression for the history term,

H(t0, t1) =

∫ 2π

0

dφ

∫
BX(T−t0,φ)(t1,t1−t0)

dSxK(T − t0,X− x, φ)G(t0 +R,x),

G(t0 +R,x) =
1

4πR

[
−Ut(t0 +R,x) +

∂U

∂R
(t0 +R,x) +

1

R
U(t0 +R,x)

]
, (3.4)

where the integration is over data only at time t1. Indeed, for points on the sphere

BX(T−t0,φ)(t1, t1 − t0), we have
∣∣X(T − t0, φ)− x

∣∣ = (t1 − t0) so that t0 + R = t1. The

area element dSx = dΩx(t1 − t0)
2. Also appearing in (3.4) is the kernel

K(T − t0,X− x, φ) =
−(Z − z)

(T − t0) + (X − x) cosφ+ (Y − y) sinφ−
∣∣X(T − t0, φ)− x

∣∣ .
(3.5)

We note that K(T − t0,X−x, φ) depends solely on the difference X−x and is harmonic

(solves Laplace’s equation) in either variable. Moreover, it is annihilated by ∂/∂T+∂/∂t0
and satisfies ∇XR · ∇XK(T − t0,X− x, φ) = 0.

Using the analysis in Section 4, we write down another version of (3.4). Namely,

H(t0, t1) =

∫ 2π

0

dφ

∫
S2

dΩk(α, β)gφ(α, β), (3.6)

where dΩ = dβdα sinα,

gφ(α, β) =− (t1 − t0)

2π
Ut(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β))

+
∂

∂t1

(t1 − t0)

4π
U(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β)), (3.7)

and the angular kernel k(α, β) stemming from K(T − t0,X− x, φ) is

k(α, β) =
sinα cosβ

cosα− 1
. (3.8)

Here μ(φ, α, β) are certain direction cosines, listed later in (4.7), whose precise form need

not concern us now. The described scenario comes from (4.15) in Subsection 4.2.

3.2. Associated Poisson problem. The following is a key observation:∫
S2

dΩgφ(α, β) = U(t0,X(T − t0, φ)), (3.9)

because the inner integral in (3.4), with K(T − t0,X − x, φ) set to unity, is the future

spherical means formula (see Subsection 4.1) for the past value U(t0,X(T − t0, φ)). Ob-

viously, we then have (cf. footnote 2)∫
S2

dΩgφ(α, β)
CID
= 0. (3.10)

Therefore, given initial data obeying the CID condition, the function gφ(α, β) satisfies

the Neumann compatibility requirement for a solvable Poisson problem on the sphere
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S2, and we are guaranteed a solution uφ to the Poisson problem Δuφ = gφ, which is

unique up to an unimportant constant. More generally, we have a φ–dependent average

ĝφ defined by

4πĝφ =

∫
S2

dΩgφ(α, β), 4πĝφ = U(t0,X(T − t0, φ)), (3.11)

and the shifted problem Δuφ = gφ − ĝφ is uniquely solvable up to a constant.

At all points, save for the α = 0 North Pole where it is singular, the kernel k(α, β) is

annihilated by the spherical Laplacian

Δ ≡ ∂2

∂α2
+ cotα

∂

∂α
+ csc2 α

∂2

∂β2
. (3.12)

Our expression −k(α, β)/ cosβ is the m = 1 “fundamental solution” discussed in [20]. It

is also closely related to the Green’s function for Δ, that is [21]

G(α, β; γ, ω) = − ln
1∣∣1− sinα cosβ sin γ cosω − sinα sin β sin γ sinω − cosα cos γ

∣∣ .
(3.13)

Indeed, taking the α derivative of G(α, β; γ, ω) and then setting γ = 0, we again find

−k(α, β)/ cosβ. The distributional nature of k(α, β) is spelled out in the following.

Lemma 3.1. Let u be the solution (unique up to a constant) to a solvable Poisson problem

Δu = g. (Here g might be gφ or gφ − ĝφ for a nonzero average ĝφ, but in any case we

drop the subscript φ for the lemma.) We then have∫
S2

dΩk(α, β)g(α, β) = 4

∫ 2π

0

dβ cosβu′(0, β), (3.14)

where the prime in (3.14) stands for ∂/∂α differentiation. Before turning to the proof,

we note that Appendix C further justifies (3.14) with a formal argument based on the

machinery of scalar spherical harmonics.

Proof. We define the angular region S2
ε = {(α, β) : 0 ≤ β < 2π, 0 ≤ α ≤ ε} about the

North Pole. Consider two such regions, S2
ε and S2

η , where η > ε. Then the closure of

S2
η\S2

ε is the spherical band {(α, β) : 0 ≤ β < 2π, ε ≤ α ≤ η}. Next, we integrate the

identity k(α, β)
[
Δu(α, β)− g(α, β)

]
= 0 over S2

η\S2
ε , shifting the Laplacian off of u(α, β)

and onto k(α, β), thereby obtaining∫ 2π

0

dβ sin η
[
k(η, β)u′(η, β)− u(η, β)k′(η, β)

]
=

∫ 2π

0

dβ sin ε
[
k(ε, β)u′(ε, β)− u(ε, β)k′(ε, β)

]
+

∫
S2
η\S2

ε

dΩk(α, β)g(α, β). (3.15)

Now, in detail we have∫ 2π

0

dβ sin ε
[
k(ε, β)u′(ε, β)− u(ε, β)k′(ε, β)

]
=

∫ 2π

0

dβ cosβ

[
sin2 ε

cos ε− 1
u′(ε, β) +

sin ε

cos ε− 1
u(ε, β)

]
∼ −4

∫ 2π

0

dβ cosβu′(0, β),

(3.16)
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with the asymptotic result holding as ε → 0+. In reaching the last result, we have

exploited the expansion

u(ε, β) = C + u′(0, β)ε+O(ε2), (3.17)

where, due to the regularity of u(α, β) in a neighborhood of the α = 0 North Pole, the

constant C has no β–dependence. Therefore, under the ε → 0+ limit, (3.15) becomes∫ 2π

0

dβ sin η
[
k(η, β)u′(η, β)− u(η, β)k′(η, β)

]
= −4

∫ 2π

0

dβ cosβu′(0, β) +

∫
S2
η

dΩk(α, β)g(α, β). (3.18)

Straightaway, the η → π− limit of this equation proves the lemma (3.14). �
At least in spirit, the lemma shows that the history term (3.4) “lives” on the ring

�(t1, T − t1). Indeed, since the average ĝφ in (3.11) does not depend on (α, β),∫
S2

dΩk(α, β)gφ(α, β) =

∫
S2

dΩk(α, β)
[
gφ(α, β)− ĝφ

]
. (3.19)

Therefore, since the Poisson problem Δuφ = gφ − ĝφ is solvable, we may write

H(t0, t1) = 4

∫ 2π

0

dφ

∫ 2π

0

dβ cosβu′
φ(0, β). (3.20)

Now assuming CID initial data, we are tempted to view (3.1), with this version of the

history term H(t0, t1), as determining the value U(T,X) solely in terms of t1–data, that

is, simultaneously on the past null cone of (T,X) and essentially within the computational

domain. Such a formula would be the concrete realization of the Warchall theorem that

we seek. However, we have not shown that the vanishing of gφ(α, β) in a neighborhood of

the North Pole implies that
∫
S2 dΩk(α, β)gφ(α, β) vanishes. Appendix C further explores

this central issue. Moreover, the point-by-point ring contribution stems from a family

of Poisson problems, with each appearing to depend nonlocally on field values, through

gφ(α, β) − ĝφ
CID
= gφ(α, β), over an entire sphere. By first computing the φ–average of

gφ(α, β), one can instead solve a single Poisson problem.

Note that gφ(α, β) has a special form (3.7) and stems from a solution to the wave

equation. Several factors then suggest that the history term (3.4) may be localized

about the ring �(t1, T − t1), provided the initial data obeys our CID condition. First,

the sphere BX(T−t0,φ)(t1, t1− t0) of integration is causally disconnected from the update

point (T,X), save for where it osculates the ring. We remark further on this issue below.

Second, a certain class of point-source solutions does give rise to explicit localizations.

Even for a gφ(α, β) stemming from a monopole source (and even with the monopole

location chosen for simplification), establishing this localization directly from (3.4) is

involved. Indeed, in following this path, we have found it necessary to split the expression

for gφ(α, β) into a piece which integrates to the ring along with separate remainder terms.

These remainders ultimately give rise to a (correct) term at �(t0, T − t0), and so in total

they vanish, provided the initial data obey our CID condition. However, as they are all

individually singular on the sphere, their combination is a delicate calculation. For this

reason, in Section 5 we establish the localization for point sources using another method.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



190 STEPHEN R. LAU

3.3. Further comments on the main formula. The domain of integration in (3.4) is

determined by the spheres BX(T−t0,φ)(t1, t1− t0), which, for varying φ, sweep out a solid

spatial torus TX(t1, T − t0, t1 − t0) parameterized by

x = X+(T−t0−� cosω) cos γ, y = Y +(T−t0−� cosω) sin γ, z = Z+� sinω, (3.21)

with 0 ≤ γ, ω < 2π and 0 ≤ � ≤ (t1 − t0). We note that the integration in (3.4) sweeps

over points in TX(t1, T − t0, t1 − t0) more than once, and

�X(t1, T − t1) = clB+
X(t1, T − t1) ∩ TX(t1, T − t0, t1 − t0). (3.22)

The set TX(t1, T − t0, t1− t0)\�X(t1, T − t1) has no casual influence on the update point

(T,X), which is remarkable in light of the identity

(T − t1)
〈
Ut

〉
B+

X(t1,T−t1)
+ ∂T (T − t1)

〈
U
〉
B+

X(t1,T−t1)

CID
= H(t0, t1), (3.23)

with (3.4) on the right-hand side. This formula arises from comparison of (3.1) with the

ordinary spherical means formula. For initial data obeying the CID condition it relates

integration over two sets which are causally disconnected, apart from the intersection

�X(t1, T − t1) of their closures (a set of measure zero with respect to both).

Given data {U(t0,x),Ut(t0,x)} which is supported only for z < Z, consider a pertur-

bation {δU(t0,x), δUt(t0,x)} of the data. We may confine the perturbation’s support

to a region E of space that lies outside of the backward null cone of (T,X), but does

influence U(t1,x) and Ut(t1,x) on TX(t1, T −t0, t1−t0)\�X(t1, T −t1). Moreover, taking

E− as the half of E for which z < Z, we may further restrict the perturbation’s support

to the interior int(E−) of E−. Although we shall not describe the relevant spatial region

int(E−), we do show a cross section of E in Figure 2. The evolution of a perturbation

supported on int(E−), when substituted into (3.4), must yield zero. Clearly, such appro-

priately supported data yields zero when substituted into the original history term (3.2).

Let us turn to another observation. Before in (3.7) we suppressed the dependence of

gφ(α, β) on t1, T − t0, and t1 − t0, but now we make this dependence manifest with the

explicit notation

gφ(α, β, t, ξ, R) = − R

4π
Ut(t,X(ξ, φ) +Rμ(φ, α, β)) +

∂

∂R

R

4π
U(t,X(ξ, φ) +Rμ(φ, α, β)).

(3.24)

Upon performing the R differentiation and evaluating the resulting expression on t = t1,

ξ = T − t0, and R = (t1 − t0), we see that gφ(α, β, t1, T − t0, t1 − t0) is precisely (3.7).

We then have the following.

Lemma 3.2. The t1 time derivative of (3.7) is

∂t1gφ(α, β, t1, T − t0, t1 − t0) = − 1

4π(t1 − t0)
ΔU(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β)),

(3.25)

where Δ is the spherical Laplacian (3.12).

Proof. We proceed symbolically, noting that gφ(α, β, t, ξ, R) has the form

gφ =
R

4π
(−Ut + UR + U/R), (3.26)
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z=Z

ez

ex
ye

Fig. 2. Shaded regions of influence. The figure depicts the y =
Y plane. The heavy black dot is X = (X,Y, Z), and the large circle
centered around X is a cross section of the sphere r = T − t0. The
inner � and ⊗ represent the ring �X(t1, T − t1) coming out of and
going into the page, and the outer � and ⊗ the ring �X(t0, T − t0).
The shaded regions are cross sections of a spatial region E. Data
supported on the interior of the set E influences TX(t1, T−t0, t1−t0),
but has no influence on the point (T,X). The set int(E−) is that
portion of int(E) for which z < Z.

where the expression sits at time level t1. In (3.25) we understand that the expression

(3.24) is first evaluated at R = t1− t0 and subsequently differentiated with respect to t1.

So the differentiation “sees” the R slot. Therefore, the action of ∂t1 in (3.7) corresponds,

in our symbolic expression (3.26), to the action of ∂t + ∂R. Since

(∂t + ∂R)gφ =
R

4π
(−Utt + URR + 2UR/R), (3.27)

we may invoke the wave equation itself, written in spherical polar coordinates, to get the

lemma. This is essentially the same argument that went into the proof of the spherical–

polygon lemma in Section 2. �
A combination of Lemmas 3.1 and 3.2 shows that

∂t1H(t0, t1, T − t0, t1 − t0) = (3.28)

− 1

π(t1 − t0)

∫ 2π

0

dφ
∂

∂α

∫ 2π

0

dβ cosβU(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β))
∣∣
α=0

,

where now the dependence of the history term H(t0, t, ξ, R) on the extra variables is

manifest. The relevant operations in (3.28) are taken in the following order: β–averaging,

α–differentiation, setting of α = 0. This formula explicitly demonstrates that if U(t1,x)

vanishes in a spatial neighborhood of the ring �(t1, T − t1), then the t1–derivative of

the history term vanishes. This is necessary for consistency with the spherical-polygon

lemma in Section 2. In the proof of that lemma, we have calculated, provided that
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U(t1,x) vanishes in a neighborhood of �(t1, T − t1), the value zero for the t1–derivative

∂t1(T − t1)
〈
Ut

〉
B−

X(t1,T−t1)
+ ∂t1∂T (T − t1)

〈
U
〉
B−

X(t1,T−t1)
(3.29)

of the hemispherical means contribution to U(T,X). Since the sum of both derivatives

must be zero (for U(T,X) does not depend on t1) if either derivative vanishes, then so

must the other.

4. Derivation of Eq. (3.4). To derive (3.4) from (3.2), we use the future spherical

means formula, which we first quickly review.

4.1. Single time level formula. To begin, we reconsider the past spherical means for-

mula (2.11) in different symbols,

U(s,x) =
(s− t)

4π

∫
S2

dΩUt(t,x+ (s− t)ν) +
∂

∂s

(s− t)

4π

∫
S2

dΩU(t,x+ (s− t)ν), (4.1)

here with s > t. This formula expresses the field value U(s,x) in terms of data in the

past. The corresponding future spherical means formula,

U(t,x) = − (s− t)

4π

∫
S2

dΩUt(s,x+(s− t)ν)− ∂

∂t

(s− t)

4π

∫
S2

dΩU(s,x+(s− t)ν), (4.2)

expresses the field value U(t,x) in terms of data in the future. For our work, a more

useful form of (4.2) is

U(t,x) = − (s− t)

2π

∫
S2

dΩUt(s,x+(s− t)ν)+
∂

∂s

(s− t)

4π

∫
S2

dΩU(s,x+(s− t)ν). (4.3)

Since the Cartesian derivative Uz also obeys the wave equation, using (4.3), we can

rewrite the integrand of H(t0, t1) in (3.2) as

−Uz(τ,X(T − τ, φ)) =
(t1 − τ )

2π

∫
S2

dΩUtz(t1,X(T − τ, φ) + (t1 − τ )ν)

− ∂

∂t1

[
(t1 − τ )

4π

∫
S2

dΩUz(t1,X(T − τ, φ) + (t1 − τ )ν)

]
, (4.4)

where X(ρ, φ) = (X + ρ cosφ, Y + ρ sinφ, Z) with the notation from (3.3). Substitution

of (4.4) into H(t0, t1) from (3.2) yields the following:

H(t0, t1) =

∫ t1

t0

dτ

∫ 2π

0

dφ

{
(t1 − τ )

2π

∫
S2

dΩUtz(t1,X(T − τ, φ) + (t1 − τ )ν)

− ∂

∂t1

[
(t1 − τ )

4π

∫
S2

dΩUz(t1,X(T − τ, φ) + (t1 − τ )ν)

]}
, (4.5)

an expression which depends solely on data at time level t1.

4.2. Explicit τ–integration. Our goal is to explicitly carry out the τ–integration in

(4.5). We focus first on the generic expression

I(φ) =
∫ t1−ε

t0

dτ (t1 − τ )

∫
S2

dΩWz(t1,X(T − τ, φ) + (t1 − τ )ν), (4.6)
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Fig. 3. Rotation of the spherical integration. We have placed
the new z–axis through the centers of the spheres shown. The
outward-pointing unit vector for a level–τ sphere is ν = νxex +
νyey + νzez = ν′xe

′
x + ν′ye

′
y + ν′ze

′
z .

where Wz is either −Uz/(4π) or Utz/(2π) and ε is a small parameter. As the surface

element dΩ is rotationally invariant, we may choose the direction cosines to be

μx ≡ (Rφν
′)x = − cosφν′z − sinφν′y = − cosφ cosα− sinφ sinα sin β,

μy ≡ (Rφν
′)y = − sinφν′z + cosφν′y = − sinφ cosα+ cosφ sinα sin β,

μz ≡ (Rφν
′)z = ν′x = sinα cosβ, (4.7)

here in terms of new direction cosines ν′ = (sinα cosβ, sinα sin β, cosα). In this notation

μ is shorthand for ν(φ,ν′) = Rφν
′. The rotation Rφ ensures that the new z–axis is the

line connecting (X,Y, Z) and (X + (T − τ ) cosφ, Y + (T − τ ) sinφ, Z), as depicted in

Figure 3. For each fixed φ, the spatial Cartesian coordinates are

x(τ, α, β) = X + (T − τ ) cosφ+ (t1 − τ )μx(φ, α, β),

y(τ, α, β) = Y + (T − τ ) sinφ+ (t1 − τ )μy(φ, α, β),

z(τ, α, β) = Z + (t1 − τ )μz(φ, α, β), (4.8)

that is, x(τ, α, β) = X(T − τ, φ) + (t1 − τ )μ(φ, α, β). The coordinate transformation

x = x(τ, α, β) is nonsingular, except at both α = 0 and τ = t1 (which is why we have

introduced the small parameter ε above). By the chain rule,

∂

∂z
= − (1 + cosα) cosβ

sinα

∂

∂τ
− cosβ

t1 − τ

∂

∂α
− sinβ

(t1 − τ ) sinα

∂

∂β
. (4.9)
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Next, using the remarkable identity

(t1 − τ ) sinαWz = − ∂

∂τ
[(t1 − τ )(1 + cosα) cosβW ]

− ∂

∂α
(sinα cosβW )− ∂

∂β
(sin βW ) , (4.10)

we arrive at the result

I(φ) =− (t1 − τ )

∫ 2π

0

dβ

∫ π

0

dα

× (1 + cosα) cosβW (t1,X(T − τ, φ) + (t1 − τ )μ(φ, α, β))
∣∣t1−ε

t0
. (4.11)

With this formula we see that one term from (4.5) is

term1 =
(t1 − t0)

2π

∫ 2π

0

dφ

∫ 2π

0

dβ

∫ π

0

dα

× (1 + cosα) cosβUt(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β)). (4.12)

The other contribution to (4.5) is more delicate. First, notice that formally, we may pull

the ∂/∂t1 differentiation outside of the τ–integral in the second term of (4.5), because

application of the derivative on the limit of integration gives zero. Therefore, for this

second term the contribution we get from the lower limit of integration is

term2a =− ∂

∂t1

(t1 − t0)

4π

∫ 2π

0

dφ

∫ 2π

0

dβ

∫ π

0

dα

× (1 + cosα) cosβU(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β)). (4.13)

We remark that our main purpose in performing the rotation (4.7) has been to achieve

a careful analysis of the terms which arise from the upper limit of integration t1. The

foliation of R3 into level–τ surfaces (spheres) is degenerate at τ = t1, and so the upper

limit of integration should be handled with care.5 The only term which potentially

survives from the upper limit involves the ∂/∂t1 differentiation. Exploiting the small

parameter ε introduced before, we are able to isolate this contribution as

term2b = lim
ε→0+

1

4π

∫ 2π

0

dφ

∫ 2π

0

dβ

∫ π

0

dα

× (1 + cosα) cosβU(t1,X(T − t1 + ε, φ) + εμ(φ, α, β)), (4.14)

5Another option is to pass from the (τ, α, β) system to a true orthogonal system of spherical polar
coordinates within and concentric with the outermost τ = t0 sphere. We have also carried out this

approach and found identical results.
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which gives a zero contribution since U is sufficiently smooth. Forming (term1 + term2a

+ term2b), we find that (4.5) can be expressed as

H(t0, t1) =
(t1 − t0)

2π

∫ 2π

0

dφ

∫ 2π

0

dβ

∫ π

0

dα

× (1 + cosα) cosβUt(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β))

− ∂

∂t1

(t1 − t0)

4π

∫ 2π

0

dφ

∫ 2π

0

dβ

∫ π

0

dα

× (1 + cosα) cosβU(t1,X(T − t0, φ) + (t1 − t0)μ(φ, α, β)), (4.15)

that is, Eq. (3.6). We now revert back to a standard set of direction cosines

ν = (sin θ cosψ, sin θ sinψ, cos θ) (4.16)

and carry out the corresponding angular transformation to find

H(t0, t1) =
(t1 − t0)

2π

∫ 2π

0

dφ

∫ 2π

0

dψ

∫ π

0

dθ

× sin θ cos θ

1 + sin θ cos (ψ − φ)
Ut(t1,X(T − t0, φ) + (t1 − t0)ν(θ, ψ))

− ∂

∂t1

(t1 − t0)

4π

∫ 2π

0

dφ

∫ 2π

0

dψ

∫ π

0

dθ

× sin θ cos θ

1 + sin θ cos (ψ − φ)
U(t1,X(T − t0, φ) + (t1 − t0)ν(θ, ψ)). (4.17)

We have numerically tested (3.1) with the history term replaced by both of the previous

expressions. Without further elaboration, we note that (4.17) is not as well behaved

numerically as (4.15), owing to the singularity in the angular pre-factor. Notice that

points on the ring �(t1, T − t1) for which ψ − φ = ±π and θ = π/2 correspond to a

singular pre-factor. Rather formally, we may now write (4.17) as (3.4). The expression

for the kernel (3.5) corresponds to − cos θ/(1 + sin θ cos(ψ − φ)). In the formulas (4.15,

4.17), we could let the ∂/∂t1 act on the first slot of U(t1, •), and then combine that part

of the second term with the first, in so doing switching the −1/(2π) in the first term to

a −1/(4π). In what remains of the second term, the −∂/∂t1 differentiation can then be

taken as ∂/∂T + ∂/∂t0, which, as expected, annihilates K(T − t0,X− x, φ).

5. Warchall theorem for point sources. For an explicit class of solutions and

the boundary types considered in this paper, this section gives a constructive proof of

Warchall’s result. For simplicity, we continue to work with a plane boundary, but the

section’s main theorem extends to edge and corner cases.

Theorem 5.1. Let x0 be a source point with z0 < Z − (T − t1), and define R = x− x0,

R = R(sin θ cosψ, sin θ sinψ, cos θ). Note that R = |x − x0| in this section is not the R

of Section 3. Suppose that the finite combination

Ufinite(t,R+ x0) =


max∑

=0


∑
m=−


ψ
m(t, R)Y
m(θ, ψ) (5.1)
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of multipoles is a classical solution to the wave equation which obeys our CID condition

relative to the plane boundary z = Z. If Ufinite(t1,x) and Ufinite
t (t1,x) vanish on a spatial

neighborhood of the hemisphere clB−
X(t1, T − t1), then Ufinite(T,X) = 0.

Proof. First, by John’s Global Holmgren Theorem as applied the wave equation [22],

vanishment of the data on a spatial neighborhood of clB−
X(t1, T − t1) implies that Ufinite

vanishes on a spacetime neighborhood of this closed hemisphere. Second, the inequality

z0 < Z−(T − t1) ensures that our earlier integral identities are valid. Third, it suffices to

prove the theorem for a single multipole solution Umult(t,R+x0) = ψ
m(t, R)Y
m(θ, ψ).

Indeed, consider the following operators:

Dk =


max∏

=0

 �=k

[
�(�+ 1) + Δ

]/
max∏

=0

 �=k

[
�(�+ 1)− k(k + 1)

]
, (5.2)

Qkn =

k∏
m=−k
m �=n

[
m+ i∂/∂ψ

]/ k∏
m=−k
m �=n

[
m− n

]
, |n| ≤ k, (5.3)

with Δ the spherical Laplacian. By the spectral properties of the spherical harmonics,

QknDkU
finite(t,R+ x0) = ψkn(t, R)Ykn(θ, ψ). (5.4)

Therefore, the individual terms in the series must vanish on the neighborhood in question.

Several lemmas which follow in this section prove the result for Umult(t,x). �
In trying to prove a more general theorem for an infinite multipole expansion, one

encounters the difficulty that the operators Dk and Qkn may no longer be used to isolate

individual multipoles. Moreover, the usual L2 projection is also not at one’s disposal,

since the spacetime neighborhood on which Ufinite vanishes does not contain a round

sphere enclosing the source point x0.

5.1. Monopole sources. Consider the following singlet solution to the wave equation:

U sing(t, x, y, z) = f(t− εR)/R, R2 = (x− x0)
2 + (y − y0)

2 + (z − z0)
2, (5.5)

here with f(u), for ε = 1, an arbitrary profile of retarded time and f(v), for ε = −1, an

arbitrary profile of advanced time. The singlet obeys

U sing
z (τ,X + (T − τ ) cosφ, Y + (T − τ ) sinφ, Z) =

∂

∂τ

[
f(τ − εR)

R I(T − τ,X− x0, φ)

]
,

(5.6)

where R = |X(T − τ, φ)− x0| in terms of the ring parameterization (3.3) and6

I(T − τ,X− x0, φ) =
−(Z − z0)

εR+ ε(T − τ ) + (X − x0) cosφ+ (Y − y0) sinφ
. (5.7)

Similar formulas hold for U sing
x and U sing

y .

6For ε = −1 this is the same kernel as in (3.5), although here it appears in a different guise, because

it uses the fiducial source point x0 rather than x. Hence here we have used I rather than K.
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A direct calculation establishes (5.6). By ∂/∂z differentiation and setting z = Z, we

get

U sing
z (t, x, y, Z) = −(Z − z0)

[
f(t− εR)

R3
+

εf ′(t− εR)

R2

]
, (5.8)

here with R as in (5.5). We now view

U sing
z (t, x, y, Z) = U sing

z (τ,X + (T − τ ) cosφ, Y + (T − τ ) sinφ, Z), (5.9)

as in the statement of the lemma. After some work, we then express (5.8) as

U sing
z (τ,X+(T − τ ) cosφ, Y +(T − τ ) sinφ, Z) = −(Z− z0)

f(τ − εR)

R3
+

I
R

∂

∂τ
f(τ − εR).

(5.10)

A combination of (5.10) with the key identity ∂τ (I/R) = −(Z − z0)/R3 yields the

result (5.6). The identity (5.6) is consistent with our earlier formula (2.16). Indeed,

upon substitution of (5.6) into the right-hand side of (2.16), we may carry out the τ–

integration. Using the result∫ π

0

dφ

1 + a cosφ
=

π√
1− a2

, |a| < 1, (5.11)

we can then perform the leftover φ–integration at τ = T .

Lemma 5.2. Consider an outgoing singlet solution U sing(t,x) given by (5.5) which obeys

the CID condition with respect to the plane boundary z = Z, with the source point x0

such that z0 < Z−(T−t1). If U
sing vanishes on a spatial neighborhood of the hemisphere

clB−
X(t1, T − t1), then U sing(T,X) = 0.

Proof. The claim is easily proved with (2.17). Indeed, using our ε = 1 key identity

(5.6) in (2.17), we see that the history terms immediately reduce to a contribution at

t = t0 (which vanishes due to our CID condition) and one at t = t1 (which vanishes by

our assumptions). �
5.2. Dipole sources. A general doublet (orbital angular momentum � = 1) directed

along ν = (νx, νy, νz) is

Udoub(t, x, y, z) =

[
f ′(t− εR)

R
+ ε

f(t− εR)

R2

]
R · ν
R

, (5.12)

where R = (x − x0, y − y0, z − z0). The dipole (5.12) arises via differentiation of the

monopole solution f(t− εR)/R by ενk∂/∂xk
0 . Direct calculations establish that

Udoub
z (τ,X + (T − τ ) cosφ, Y + (T − τ ) sinφ, Z)

=
∂

∂τ

{
ε
f(τ − εR)

R
∂

∂ν
I(T − τ,X− x0, φ)

−
[
f ′(τ − εR)

1

R
∂R
∂ν

− εf(τ − εR)
∂

∂ν

(
1

R

)]
I(T − τ,X− x0, φ)

}
. (5.13)

Here ∂/∂ν denotes the action of νk∂/∂xk
0 . A lemma similar to Lemma 5.2 follows from

(5.13), but we will now consider the general multipole case.
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5.3. General multipole sources. As shown in Appendix D, a general multipole source

arises via differentiation of the basic monopole source by a homogeneous differential

operator corresponding to a spherical harmonic (see also [23], which established this

result in the frequency domain). Therefore, the higher multipole analog of these formulas

arises via suitable differentiation of (5.6) with respect to the source point x0, and with

respect to a fiducial time t0 which has to be included in the argument of f . After all

differentiations, t0 can be set to zero. Precisely, an order–� multipole solution is given by

Umult(t, x, y, z) =

[

∑

k=0

1

Rk+1

εk

2kk!

(�+ k)!

(�− k)!
f (
−k)(t− t0 − εR)

]
Y
m(θ, ψ), (5.14)

or in the Burke formalism [24],

Umult(t, x, y, z) =
{
f(t− t0 − εR)

}

Y
m(θ, ψ). (5.15)

Following Appendix D, we introduce operators L0

m such that7

Umult(t, x, y, z) =
{
f(t− t0 − εR)

}

Y
m(θ, ψ) = ε
L0


m

f(t− t0 − εR)

R
, (5.16)

whence formally we find

Umult
z (τ,X + (T − τ ) cosφ, Y + (T − τ ) sinφ, Z)

= ε

∂

∂τ
L0

m

[
f(τ − t0 − εR)

R I(T − τ,X− x0, φ)

]
, (5.17)

as the sought-for identity.

Lemma 5.3. Consider an outgoing order–� multipole solution Umult(t,x) given by (5.14)

which obeys our CID condition with respect to the plane boundary z = Z, with the

source point x0 such that z0 < Z−(T −t1). Provided that Umult vanishes on a spacetime

neighborhood of the hemisphere clB−
X(t1, T − t1), then Umult(T,X) = 0.

Proof. With (5.17), the result is again easily proved with (2.17), provided we first

show that the underlying function f vanishes for all retarded times associated with the

spacetime neighborhood of �X(t1, T − t1) in question. Since Umult(t, x, y, z) vanishes on

this neighborhood, we have that
{
f(t−t0−R)

}

 as given in (5.14)–(5.15) vanishes for all

retarded time t− t0 −R values associated with the neighborhood. The explicit formula

f(t− t0 −R) = (−1)

2


(2�)!

[
R2 (∂t + ∂R)

]

R
{
f(t− t0 − εR)

}

 (5.18)

then shows that f(t− t0 −R) vanishes for the same retarded times. �
5.4. Kirchhoff integrals. We may apply the formulas (5.6) and (5.13) in order to obtain

identities for the integrand in Kirchhoff integrals. Such identities would seem a promising

approach toward a sufficiently general realization of Warchall’s conception. However, in

our efforts along this path we have encountered an inverse problem associated with the

relevant retarded potential integral equations. Nevertheless, the possibility would seem

pertinent in light of the explicit τ–integration carried out in Subsection 4.1. Indeed, in

that analysis we represented the solution in terms of the future spherical means formula

7The discrepancy of (−1)� between the result here and (D.11) from Appendix D arises because here
we differentiate with respect to the naught variables.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



PARTIAL SPHERICAL MEANS FORMULAS AND BOUNDARY CONDITIONS 199

(a special instance of the advanced Kirchhoff formula), and so as a continuum of doublets

and singlets at time level t1. Therefore, given our results for monopoles and dipoles in

this section, it is not surprising that we could then carry out the τ–integration explicitly.

However, we stress that that scenario in Subsection 4.1 was more delicate, owing to the

singular behavior on the ring and with sources on both sides of the boundary plane.

6. Edge and corner formulas. This section lists quarter and eighth spherical for-

mulas analogous to the hemispherical formula (2.17). These formulas also feature history-

dependent integrals, and the analysis in Sections 4 and 5 would carry over to these in-

tegrals. For simplicity, we again choose X = (0, 0, 0), and pick definite choices for edge

and corner locations. Euclidean motions would give other choices. In Subsection 6.1 the

“computational domain” is x > 0, z < 0, while in Subsection 6.2 it is x > 0, y < 0, z < 0.

6.1. Edge formulas. Another realization of Eq. (2.5) is the three-fourths formula

3πU(T, 0, 0, 0) =

∫ T

t

dτ

∫ 3π/2

π/2

dψUx(τ, 0, (T − τ ) sinψ, (T − τ ) cosψ) (6.1)

−
∫ T

t

dτ

∫ π/2

−π/2

dψUz(τ, (T − τ ) cosψ, (T − τ ) sinψ, 0)

+ (T − t)

∫
S3/4

dΩUt(t, (T − t)ν) +
∂

∂T

[
(T − t)

∫
S3/4

dΩU(t, (T − t)ν)

]
.

Here the integration is over the angular parameter space for three-fourths of a sphere

S3/4 = S+ ∪ {(θ, φ) : π/2 ≤ θ < π, π/2 < φ < 3π/2}, (6.2)

where S+ is defined just after (2.12). Taken together, the first two integrals on the right-

hand side of (6.1) constitute a path integral over a closed three-space curve which is

continuous but has corners at (x, y, z) = (0,±(T − t), 0). Eq. (6.1) makes no assumptions

on the support of the initial data.

In parallel with the analysis in Subsection 2.3, we now combine (6.1) with the ordinary

spherical means formula to obtain a formula analogous to (2.17). First, we assume that

the t0 initial data vanishes on a neighborhood of clB3/4(t0, T − t0), where B3/4(t0, T −
t0) = B(t0, T − t0)

∖
{(x, y, z) : r = T − t0, x ≥ 0, z ≤ 0}. Then (6.1) with t = t0 yields

3πU(T, 0, 0, 0)
CID
=

∫ T

t0

dτ

∫ 3π/2

π/2

dψUx(τ, 0, (T − τ ) sinψ, (T − τ ) cosψ) (6.3)

−
∫ T

t0

dτ

∫ π/2

−π/2

dψUz(τ, (T − τ ) cosψ, (T − τ ) sinψ, 0).

Now an alternative interpretation of the CID equality (cf. footnote 2) would keep the

appropriate integrals over B3/4(t0, T−t0) rather than B+(t0, T−t0). Second, we combine

(6.1) with t = t1 and the ordinary spherical means formula with data at t = t1 to

produce the “mirror formula” (“complement formula” would be more apt here) to (6.1),

a formula involving angular integration over S1/4 = int(S2\S3/4). Finally, we substitute

this complement formula into the last equation, thereby arriving at the edge formula
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analogous to (2.17),

4πU(T, 0, 0, 0)
CID
=

∫ t1

t0

dτ

∫ 3π/2

π/2

dφUx(τ, 0, (T − τ ) sinφ, (T − τ ) cosφ)

−
∫ t1

t0

dτ

∫ π/2

−π/2

dφUz(τ, (T − τ ) cosφ, (T − τ ) sinφ, 0)

+ (T − t1)
〈
Ut

〉
B1/4(t1,T−t1)

+ ∂T (T − t1)
〈
U
〉
B1/4(t1,T−t1)

, (6.4)

where B1/4(t1, T − t1) = {(x, y, z) : r = T − t1, x > 0, z < 0}.
6.2. Corner formulas. Yet another realization of (2.5) is the seven-eighths formula

7π

2
U(T, 0, 0, 0) =

∫ T

t

dτ

∫ 3π/2

π

dψUx(τ, 0, (T − τ ) sinψ, (T − τ ) cosψ) (6.5)

−
∫ T

t

dτ

∫ π

π/2

dψUy(τ, (T − τ ) sinψ, 0, (T − τ ) cosψ)

−
∫ T

t

dτ

∫ 2π

3π/2

dψUz(τ, (T − τ ) cosψ, (T − τ ) sinψ, 0)

+ (T − t)

∫
S7/8

dΩUt(t, (T − t)ν) +
∂

∂T

[
(T − t)

∫
S7/8

dΩU(t, (T − t)ν)

]
,

where the angular parameter space is now

S7/8 = S3/4 ∪ {(θ, φ) : π/2 ≤ θ < π, 0 < φ ≤ π/2}. (6.6)

Taken as a whole, the first three integrals on the right-hand side of (6.5) constitute a

path integral over a closed, continuous, three-space curve with corners (in the following

order) at the coordinates (0,−(T − t), 0), ((T − t), 0, 0), and (0, 0,−(T − t)). Eq. (6.5)

makes no assumptions on the support of the initial data.

Following a derivation similar to those already presented, one finds the following corner

analog of formulas (2.17) and (6.4):

4πU(T, 0, 0, 0)
CID
=

∫ t1

t0

dτ

∫ 3π/2

π

dψUx(τ, 0, (T − τ ) sinψ, (T − τ ) cosψ) (6.7)

−
∫ t1

t0

dτ

∫ π

π/2

dψUy(τ, (T − τ ) sinψ, 0, (T − τ ) cosψ)

−
∫ t1

t0

dτ

∫ 2π

3π/2

dψUz(τ, (T − τ ) cosψ, (T − τ ) sinψ, 0)

+ (T − t1)
〈
Ut

〉
B1/8(t1,T−t1)

+ ∂T (T − t1)
〈
U
〉
B1/8(t1,T−t1)

.

Here B1/8(t1, T−t1) = {(x, y, z) : r = T−t1, x > 0, y < 0, z < 0}, and now an alternative

interpretation to the CID equality (cf. footnote 2) would keep the appropriate integrals

over B7/8(t0, T − t0).

6.3. Further comments. Starting with either (6.4) or (6.7), one may also use the future

spherical means formula to produce a split time level formula for either an edge or corner

which is fully analogous to (4.5). For such a more complicated formula, analogous re-

marks about causality and domains of integration would be apparent. The τ–integration
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in all history terms can then be carried out explicitly in the same fashion as in Subsection

4.2, leading to kernels such as the one considered in Subsection 3.1.

7. Acknowledgments. I am grateful for the guidance of Professor T. Hagstrom,

from whom I learned of the paper by H. A. Warchall, and also for conversations with

A. Narayan. Many of the results here arose from discussions with Professor Hagstrom.

Appendix A. Laplace-convolution plane boundary condition. This appendix

shows that (2.24) is equivalent to the boundary condition of [4]. We have given the

same argument before in [14]. For simplicity, we now take t0 = 0, stop using capital

letters T,X, Y, Z for the evaluation point, and suspend the CID notation (cf. footnote 2).

Throughout this appendix, we assume that the initial data vanishes on z ≥ 0. Moreover,

we now use x to denote (x, y), whereas before x denoted (x, y, z).

A.1. Temporal convolution. Here set at z = 0, the outgoing condition of [4] is

Ut(t, x, y, 0) + Uz(t, x, y, 0) = F−1
[
ĥ(t, ξ, η, 0)

]
(x, y), (A.1)

where F−1 denotes Fourier inversion, ξ = (ξ, η) are the variables dual to x = (x, y), and

ĥ(t, ξ, η, 0) =

∫ t

0

dτ
J1(w(t− τ ))

w(t− τ )

[
− w2Û(τ, ξ, η, 0)

]
(A.2)

is a temporal Laplace convolution with w =
√
ξ2 + η2. Adopting the notation

F (ξ, η) =
1

2π

∫
R2

dxf(x, y)e−ix·ξ, f(x, y) =
1

2π

∫
R2

dξF (ξ, η)eix·ξ, (A.3)

we write the Fourier convolution theorem in terms of u = (u, v) as

F−1
[
F (ξ, η)G(ξ, η)

]
(x, y) =

1

2π

∫
R2

duf(x− u, y − v)g(u, v). (A.4)

To express (A.1) solely in physical space, we will exploit (A.4).

In order to exploit the convolution theorem, we first compute the inverse transform

1

2π

∫
R2

dξ
J1(wτ )

wτ
eix·ξ =

1

τ

∫ ∞

0

dwJ1(wτ )J0(wρ), (A.5)

where ρ =
√
x2 + y2. To reach the last expression, we have switched to polar coordinates

and used a well-known integral expression for J0(z). From Watson’s monograph [25] (see

Eq. (9), page 406) we then have

1

τ

∫ ∞

0

dwJ0(wρ)J1(wτ ) =
H(τ − ρ)

τ2
, (A.6)

where H(s) = 0 for s < 0, H(0) = 1
2 , and H(s) = 1 for s > 0, whence we have

1

2π

∫
R2

dξ
J1(wτ )

wτ
eix·ξ =

H(τ − ρ)

τ2
(A.7)

as our final expression for the desired inverse Fourier transform.
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A.2. Physical-space plane boundary condition. With the results above, we find that

h(t, x, y, 0) =
1

2π

∫ t

0

dτ
1

(t− τ )2

∫
|x−u|≤t−τ

duΔuU(τ, u, v, 0). (A.8)

Therefore, we can use the divergence theorem to rewrite (A.1) as

Ut(t, x, y, 0) + Uz(t, x, y, 0)

=
1

2π

∫ t

0

dτ
1

(t− τ )

∂

∂t

∫ 2π

0

dφU(τ, x+ (t− τ ) cosφ, y + (t− τ ) sinφ, 0), (A.9)

that is, the same boundary condition as (2.24).

Appendix B. Foliation of E3 into level–τ slices. In this appendix we study the

foliation of Euclidean three-space E
3 (that is, R3 equipped with the Euclidean metric)

by level–τ spheres, as determined by the coordinate transformation (4.8). We have a

separate transformation x = x(τ, α, β) for each choice of φ, and each is adapted to

the ring �X(t1, T − t1) obeying z = Z and (x − X)2 + (y − Y )2 = (T − t1)
2 in the

following way. Let �φ be the line tangent to �X(t1, T − t1) at the point (x, y, z) =

(X + (T − t1) cosφ, Y + (T − t1) sinφ, Z), and let Hφ be the half-plane which lies to the

side of �φ not containing �X(t1, T − t1). Then the coordinates (τ, α, β) corresponding

to the chosen φ cover Hφ (but do not cover R3\Hφ). Moreover, the collection of level–τ

spheres is a smooth foliation of Hφ, one exhibiting singular behavior in the approach

toward the point (X + (T − t1) cosφ, Y + (T − t1) sinφ, Z) of tangency. For each level–τ

sphere the approach towards this point corresponds to the α → 0+ limit.

B.1. ADM form of the line-element. To study this foliation, we write the Euclidean

line-element ds2 = δijdx
idxj (where δij is the Kronecker symbol) in an Arnowit–Deser–

Misner form [19] with respect to the coordinates (τ, α, β),

ds2 = M2dτ2 + σab(dχ
a +W adτ )(dχb +W bdτ ). (B.1)

We are using xi to denote three-dimensional Cartesian coordinates (x1, x2, x3) = (x, y, z)

and χa to denote the two-dimensional surface coordinates (χ2, χ3) = (α, β), reserving χ1

for use as τ . For the case at hand, the two-metric σab corresponds to a round sphere of

radius (t1 − τ ), that is,

σ22 = (t1 − τ )2, σ33 = (t1 − τ )2 sin2 α, σ23 = σ32 = 0. (B.2)

Moreover, for the “radial lapse” M and “radial shift vector” W a we find

M = (1− cosα), W 2 = − sinα

(t1 − τ )
, W 3 = 0. (B.3)

On each level–τ sphere the lapse and shift approach zero as α → 0+, indicating a degen-

erate foliation.
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B.2. Orthonormal framing. It proves convenient to introduce an orthonormal coframe

(a cotriad in fact), which we read off from the line-element (B.1). Boldface, lowercase,

and Latin letters from the middle of the alphabet, i, j,k, . . ., will serve as the “name

indices” for the cotriad, and they will range over 1, a = 2,3. We write the cotriad as8

E1 = Mdτ, Ea = ϑa
b(dχ

b +W bdτ ). (B.4)

Here ϑ2 = (t1 − τ )dα and ϑ3 = (t1 − τ ) sinαdβ comprise the standard coframe (a

codyad) for a round sphere with radius (t1 − τ ). This codyad is dual to the standard

dyad ϑ1 = (t1 − τ )−1∂/∂α and ϑ2 = [(t1 − τ ) sinα]−1∂/∂β. As indicated, the name

indices a for the dyad run over 2, 3. The triad dual to (B.4) is then

E1 =
1

M

(
∂

∂τ
−W b ∂

∂χb

)
, Ea = ϑa

b ∂

∂χb
. (B.5)

For the case at hand, we find the explicit cotriad

E1 = (1− cosα)dτ, E2 = (t1 − τ )dα− sinαdτ, E3 = (t1 − τ ) sinαdβ, (B.6)

which is dual to the explicit triad

E1 =
1

1− cosα

[
∂

∂τ
+

sinα

(t1 − τ )

∂

∂α

]
, E2 =

1

(t1 − τ )

∂

∂α
, E3 =

1

(t1 − τ ) sinα

∂

∂β
. (B.7)

These basis vectors serve as useful tools for examining the degenerate foliation. On each

level–τ sphere, the set {E2, E3} is the standard spherical frame, and E1 is the standard

inward-pointing normal. These features of the triad are preserved in the α → 0+ limit.

B.3. Connection coefficients. The affine connection on E
3 is of course flat and torsion

free. Nevertheless, with respect to the chosen triad (frame field), some of the associated

orthonormal connection coefficients are nonzero (albeit “pure-gauge”). Using the first

Cartan structure equation (no torsion)

dEi = −ωi
j ∧ Ej, (B.8)

with ωi
j = ωi

jkE
k the connection one-forms, we may compute the coefficients ωijk =

ω[ij]k. With the antisymmetry in the first pair of indices, all nonzero coefficients stem

from the following list:

ω211 = − 1

(t1 − τ )

∂

∂α
log(1− cosα), ω323 =

cotα

t1 − τ
, ω212 = ω313 =

1

(t1 − τ )
. (B.9)

The last two coefficients specify the correct second fundamental form for a round sphere

of radius (t1 − τ ) embedded in E
3. The first one specifies the E2–component

b2 = − sinα

(t1 − τ )(1− cosα)
(B.10)

of the “acceleration” vector ba∂/∂χa = baϑa for the E1 normal (the other component b3

is zero). Notice that the acceleration becomes infinite as α → 0+.

8 The stem letter E is commonly used for triads in the general relativity literature.
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B.4. Nature of the degenerate foliation. To study the degenerate nature of the foliation

as α → 0+, we first note that the norm of ∂/∂τ is given by δ(∂/∂τ, ∂/∂τ ), that is,

δττ = M2 + σabW
aW b = 2(1− cosα), (B.11)

which tends to zero as α → 0+. In order to preserve the ∂/∂τ direction in this limit, we

define

Ẽ1 ≡ 1√
2(1− cosα)

∂

∂τ
. (B.12)

Then, using (B.7), we calculate that

Ẽ1 =

√
1− cosα

2
E1 −

√
1 + cosα

2
E2 = cos( 12η)E1 + sin( 12η)E2, (B.13)

with η = 2arctan[−(1 + cosα)/ sinα]. As mentioned, for a fixed level–τ sphere, the

directions E1 and E2 are well defined (inward-pointing normal and tangential direction

along latitude). Therefore, we see that Ẽ1 tends toward the tangential direction −E2

along a level–τ sphere as α → 0+. Notice also that the angle η does not depend on τ ,

whence there is no τ–dependent rotation occurring in the tangent space at the degenerate

point. From (4.9) we find that

∂/∂z = − sinα cosβE1 + cosα sinβE2 − sinβE3, (B.14)

which is a well-behaved transformation as expected.

Appendix C. Further study of the kernel k(α, β) and S2 Poisson problem.

As in the relevant Lemma 3.1, we drop all the φ subscripts throughout this appendix.

C.1. Fourier modes of the S2 Poisson problem. With m ≥ 1, we study the mth mo-

ment

um(α) =

∫ 2π

0

dβ cos(mβ)u(α, β) (C.1)

of a solution to Δu = g, with Δ the S2 Laplacian (3.12), assuming that g(α, β) vanishes

for α less than some cutoff αcut. The mth moment of the equation itself is the following

ODE:
d

dα

(
sinα

dum

dα

)
− m2

sinα
um = sinαgm. (C.2)

To solve (C.2), we first note that cotm(α/2) and tanm(α/2) are linearly independent

solutions to the homogeneous equation. Notice that tanm(α/2) is finite at α = 0, while

cotm(α/2) is finite at α = π. The Wronskian is

tanm(α/2)
∂

∂α
cotm(α/2)− cotm(α/2)

∂

∂α
tanm(α/2) = − 2m

sinα
. (C.3)

Appealing to the theory of one-dimensional Green’s functions for operators of Sturm–

Liouville type [26], we construct the following Green’s function:

G(α, ξ) =

⎧⎨⎩
−(2m)−1 cotm(ξ/2) tanm(α/2), for 0 ≤ α < ξ,

−(2m)−1 tanm(ξ/2) cotm(α/2), for ξ < α ≤ π.

(C.4)
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Since our interest is the region were the inhomogeneity is not supported, we have

um(α) = (2m)−1Km tanm(α/2), for α < αcut, (C.5)

where we have introduced the constant

Km = −
∫ π

αcut

dξ cotm(ξ/2) sin(ξ)gm(ξ). (C.6)

Therefore,

u′
m(α) = 1

4Km sec2(α/2) tanm−1(α/2). (C.7)

We see that u′
m(0) = 0, unless m = 1, in which case u′

1(1) = 1
4K1. For m = 1 the

integral in (C.6) features − cot(ξ/2) = k(ξ, β)/ cosβ, whence, turned around, the analysis

here is another confirmation of (3.14). In any case, from the vanishing of g(α, β) in a

neighborhood of the North Pole we cannot conclude that u′
1(0) = 0.

C.2. Spherical harmonic expansion of the kernel. Using the machinery of scalar spher-

ical harmonics Y
m(α, β), we present calculations which further justify our distributional

interpretation of k(α, β). We compute the value on the right-hand side of (3.14) both

directly and with the kernel, finding agreement between the two methods.

To fix conventions, we define the associated Legendre functions as [26]

Pm

 (ξ) = (−1)m(1− ξ2)

m
2

1

2
�!

d
+m

dξ
+m
(ξ2 − 1)
, (C.8)

with |m| ≤ �. The spherical harmonics are then

Y
m(α, β) = N
mPm

 (cosα)eimβ, (C.9)

where the normalization constant is

N
m =

√
2�+ 1

4π

(�−m)!

(�+m)!
. (C.10)

First, we take the expansion for the source,

g(α, β) =

∞∑

=1


∑
m=−


g
mY
m(α, β), (C.11)

and use it to write down the formal solution to the Poisson problem,

u(α, β) = −
∞∑

=1


∑
m=−


g
m
�(�+ 1)

Y
m(α, β). (C.12)

With (C.9) and (C.10), we then calculate the following moment:

4

∫ 2π

0

dβ cosβu(α, β) = −4π

∞∑

=1

1

�(�+ 1)

[
g
1N
1P

1

 (cosα)

+g
,−1N
,−1P
−1

 (cosα)

]
. (C.13)

Upon using the widely-known result ([26])

P−1

 (cosα) = − (�− 1)!

(�+ 1)!
P 1

 (cosα), (C.14)
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along with (C.10), we cast (C.13) into the form

4

∫ 2π

0

dβ cosβu(α, β) = −
√
4π

∞∑

=1

√
2�+ 1

�(�+ 1)

(g
1 − g
,−1)

�(�+ 1)
P 1

 (cosα). (C.15)

To compute the derivative of this expression at α = 0, we first evaluate the Legendre

differential equation for P
(ξ) at ξ = 1, thereby obtaining

d

dα
P 1

 (cosα)

∣∣
α=0

= −P ′

(1) = −�(�+ 1)

2
. (C.16)

Finally then, with g
1 − g
,−1 = 2Re(g
1), we arrive at

4

∫ 2π

0

dβ cosβu′(0, β) =
√
4π

∞∑

=1

√
2�+ 1

�(�+ 1)
Re(g
1). (C.17)

We now produce the same expression directly from the integral∫
S2

dΩk(α, β)g(α, β). (C.18)

To obtain a formal expansion for the kernel, we start with the Fourier–Legendre expansion

log(1− ξ) = −1 + log 2−
∞∑

=1

2�+ 1

�(�+ 1)
P
(ξ), (C.19)

which holds in the sense of mean convergence in the L2 norm. Next, we formally dif-

ferentiate (C.19), use the result P 1

 (ξ) = −

√
1− ξ2P ′


(ξ), and appeal to (C.10), thereby

finding the following formal spherical harmonic expansion for the kernel:

k(α, β) =
√
4π

∞∑

=1

√
2�+ 1

�(�+ 1)
Re
[
Y
1(α, β)

]
. (C.20)

Note the slow decay of the expansion coefficients, and further note that only m = 1

terms appear. Eq. (C.20) does not hold in the L2 sense, rather in the weak sense when

integrated against a sufficiently smooth g(α, β), as shown by a more careful argument

based on integration by parts and the expansion (C.19). The harmonic’s orthonormal

properties then determine that the integral (C.18) is precisely (C.17).

Appendix D. Mode solutions of the 3+1 wave equation featuring spherical

harmonics as differential operators. This appendix shows that multipole solutions

of the 3+1 wave equation arise from monopole solutions via the action of homogeneous

constant-coefficient differential operators L
m(∂t, ∂x, ∂y, ∂z) corresponding to the spher-

ical harmonics Y
m(θ, φ). This appendix is essentially a time-domain version of the

frequency-domain argument presented in [23].
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D.1. Standard scalar harmonics. We begin by collecting a few standard formulas for

scalar spherical harmonics. To start with, we define the associated Legendre functions

as in (C.8), but now with u rather than ξ as the dependent variable. Via the binomial

expansion, we then establish that

Pm

 (u) = (−1)m(1− u2)

m
2

[(
−m)/2]∑
k=0

a
m,ku

−m−2k, (D.1)

where

a
m,k =
(−1)k(2�− 2k)!

2
k!(�− k)!(�−m− 2k)!
, (D.2)

[(�−m)/2] =

{
(�−m)/2 for �−m even,

(�−m− 1)/2 for �−m odd,
(D.3)

in agreement with Thorne’s Eq. (2.8) in [27]. The spherical harmonics (D.4) are then

Y
m(θ, φ) = (−1)mN
m(eiφ sin θ)m
[(
−m)/2]∑

k=0

a
m,k(cos θ)

−m−2k, (D.4)

where the normalization constant appears in (C.10). Under complex conjugation the

scalar harmonics behave as

Y
,−m = (−1)mY 
m. (D.5)

D.2. Corresponding homogeneous operators and main lemma. For m = |m| we define

operators L
m associated with the Y
m by the formula

L
m = (−1)mN
m

(
∂

∂x
+ i

∂

∂y

)m [(
−m)/2]∑
k=0

a
m,k

(
∂

∂z

)
−m−2k (
∂

∂t

)2k

. (D.6)

Note that this operator is constant-coefficient and degree–� homogeneous. In parallel

with (D.5) we set

L
m = (−1)mL
|m| (D.7)

for m = −|m|.
General outgoing (ε = 1) and ingoing (ε = −1) multipole solutions of the 3+1 wave

equation have the form

U ε

m(t, x, y, z) = ψε


(t, r)Y
m(θ, φ), ψε

(t, r) =


∑
k=0

εk

rk+1

1

2kk!

(�+ k)!

(�− k)!
f (
−k)(t− εr),

(D.8)

where f (p)(u) is the pth derivative of an underlying function f(u) of retarded time u =

t − r, and similarly for f (p)(v), where v = t + r is advanced time. Also in (D.8) we

respectively view (x, y, z) as place holders for (r sin θ cosφ, r sin θ sinφ, cos θ). Since L00 =

Y00 = 1/
√
4π, we trivially find

U ε
00(t, x, y, z) = L00

f(t− εr)

r
= L00ψ

ε
0(t, r) = ψε

0(t, r)Y00(θ, φ). (D.9)

Our main result is the following.
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Lemma D.1. A general outgoing or ingoing multipole solution can be expressed as

ψε

(t, r)Y
m(θ, φ) = (−ε)
L
mψε

0(t, r), (D.10)

or equivalently as

U ε

m(t, x, y, z) = (−ε)
L
mr−1f(t− εr). (D.11)

Corollary D.2. Defining

χ
(t, r) = ψ−1

 (t, r) + (−1)
+1ψ1


 (t, r), (D.12)

which is regular at r = 0, we also have the following:

χ
(t, r)Y
m(θ, φ) = L
mχ0(t, r), (D.13)

a result we shall also express as

U0

m(t, x, y, z) = L
mr−1 [f(t+ r)− f(t− r)] , (D.14)

with U0

m(t, x, y, z) representing the mode solution regular at r = 0.

D.3. Proof of Lemma D.1. Considering the (�,m) lattice shown in Figure 4, we follow

[23] and present an inductive proof based on the following steps:

(i) Prove by induction that

ψε

Y

 = (−ε)
L

ψ

ε
0 and ψε


Y
,−
 = (−ε)
L
,−
ψ
ε
0.

That is to say, establish the result for the black circles in Figure 4.

(ii) Show that the results from (i) imply

ψε

Y
+1,
 = (−ε)
+1L
+1,
ψ

ε
0 and ψε


Y
+1,−
 = (−ε)
+1L
+1,−
ψ
ε
0.

That is to say, establish the result for the white circles in Figure 4.

(iii) By induction extend the result vertically upward (at fixed m) to the crosses in

Figure 4. Notice that each cross can be associated with an (� + 1,m) pair for

which (�,m) and (�− 1,m) are also lattice locations.

Fig. 4. Lattice (	,m) scalar harmonics. In the diagram the up-
ward vertical direction corresponds to increasing 	, starting from
	 = 0. The horizontal direction indicates each of the 2	+ 1 possible
values of m.

.
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Before turning to the proof of each of the steps (i)–(iii), we first collect the following

crucial identities:

εψε

+1 =

�

r
ψε

 −

∂ψε



∂r
, (D.15)

ψε

+1 = ε

2�+ 1

r
ψε

 +

∂2ψε

−1

∂t2
. (D.16)

These are consequences of the explicit formula (D.8) for ψε

(t, r).

In establishing (i), it suffices to consider only m = �, since the m = −� result follows

from the m = � result via elementary arguments based on (D.5) and (D.7). As noted in

(D.9), the � = m = 0 result holds trivially. We then start with (D.6), observing that

L

 = (−1)
N

a

,0

(
∂

∂x
+ i

∂

∂y

)


, (D.17)

from which we infer the key recursion,

L
+1,
+1 = −N
+1,
+1a
+1,
+1,0

N

a

,0

(
∂

∂x
+ i

∂

∂y

)
L

, (D.18)

upon which the induction will rest. Using (D.4), we write

ψε

Y

 = (−1)
r−
ψε


N

a

,0(x+ iy)
. (D.19)

Straightforward differentiation of this equation yields(
∂

∂x
+ i

∂

∂y

)
ψε

Y

 = (−1)
N

a

,0

(x+ iy)
+1

r

∂

∂r

(
ψε



r


)
, (D.20)

whence by (D.15),(
∂

∂x
+ i

∂

∂y

)
ψε

Y

 = ε

N

a

,0
N
+1,
+1a
+1,
+1,0

ψε

+1Y
+1,
+1. (D.21)

Assuming (D.10) holds at level–� for m = �, we then combine the last equation with

(D.18) to get (−ε)
+1L
+1,
+1ψ0 = ψ
+1Y
+1,
+1 as expected.

Turning to step (ii), we consider only m = �−1. As before, we can get the m = −�+1

result via an argument relying on complex conjugation. We begin by noting that (D.6)

implies

L
+1,
 = −N
+1,


N



a
+1,
,0

a

,0

∂

∂z
L

. (D.22)

Assuming the first result from (i), we then have

(−ε)
+1L
+1,
ψ
ε
0 = ε

N
+1,


N



a
+1,
,0

a

,0
r
Y



∂

∂z

(
ψε



r


)
, (D.23)

where in reaching this point we have used the fact that r
Y

 has no z dependence. An

appeal to (D.15) then shows that

(−ε)
+1L
+1,
ψ
ε
0 = −N
+1,


N



a
+1,
,0

a

,0
ψε

+1 cos θY

, (D.24)

and from this equation and (D.4) we get the desired result (−ε)
+1L
+1,
ψ
ε
0 = ψε


+1Y
+1,
.
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In order to establish (iii) and finish the proof, we will make use of the following

identities for the associated Legendre functions Pm

 (u):

(2�+ 1)uPm

 = (�+m)Pm


−1 + (�−m+ 1)Pm

+1, (D.25)

(1− u2)
dPm




du
= (�+ 1)uPm


 − (�−m+ 1)Pm

+1. (D.26)

One may derive these from similar identities for Legendre polynomials, which in turn

stem from various differentiations of the generating function for Legendre polynomials.

From (D.15)–(D.16) and (D.25)–(D.26), we will now obtain another identity which

proves crucial in establishing (iii). First, let u = cos θ = z/r, so that

∂

∂z
= u

∂

∂r
+

(1− u2)

r

∂

∂u
, (D.27)

and consider ∂zψ
ε

(t, r)P

m

 (u). A combination of (D.27) with (D.25)–(D.26) then yields

∂

∂z
ψε

P

m

 =

[
�+m

2�+ 1

∂ψε



∂r
+

(�+ 1)(�+m)

2�+ 1

ψε



r

]
Pm

−1

+

[
�−m+ 1

2�+ 1

∂ψε



∂r
− �(�−m+ 1)

2�+ 1

ψε



r

]
Pm

+1. (D.28)

To obtain the desired identity, we now appeal to (D.15)–(D.16), in order to rewrite the

last equation as follows:

ε
∂

∂z
ψε

P

m

 = − �+m

2�+ 1

∂2ψε

−1

∂t2
Pm

−1 −

�−m+ 1

2�+ 1
ψε

+1P

m

+1, (D.29)

from which we find

ε
∂

∂z
ψε

Y
m = − �+m

2�+ 1

N
m

N
−1,m

∂2ψε

−1

∂t2
Y
−1,m − �−m+ 1

2�+ 1

N
m

N
+1,m
ψε

+1Y
+1,m. (D.30)

Note that the desired identity (D.30) follows from (D.29), since all associated Legendre

functions appearing in (D.29) have the same azimuthal index m.

Let us now turn to the inductive argument establishing step (iii). Rearranging (D.25)

and multiplying the result by N
+1,m exp(imφ), we get

Y
+1,m =
2�+ 1

�−m+ 1

N
+1,m

N
m
cos θY
m − �+m

�−m+ 1

N
+1,m

N
−1,m
Y
−1,m. (D.31)

Notice that for the crosses in Figure 4, here labeled by (�+1,m), we have �−m+1 �= 0.

The corresponding identity for the associated operators L
m is

L
+1,m =
2�+ 1

�−m+ 1

N
+1,m

N
m

∂

∂z
L
m − �+m

�−m+ 1

N
+1,m

N
−1,m

∂2

∂t2
L
−1,m, (D.32)

a result which can also be obtained directly from (D.6). Applying each side of the last

relationship to (−ε)
+1ψ0, and assuming that the result (D.10) holds for levels � and

�− 1, we arrive at

(−ε)
+1L
+1,mψε
0 = −ε

2�+ 1

�−m+ 1

N
+1,m

N
m

∂

∂z
ψε
lY
m

− �+m

�−m+ 1

N
+1,m

N
−1,m

∂2

∂t2
ψε

−1Y
−1,m. (D.33)
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Finally then, use of (D.30) shows that

(−ε)
+1L
+1,mψε
0 = ψε


+1Y
+1,m, (D.34)

establishing step (iii) and completing the proof.

References

[1] T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local radiation
boundary conditions: Corner compatibility conditions and extensions to first-order systems, Wave
Motion 39 (2004) 327-338. MR2058660 (2005a:35009)

[2] T. Hagstrom, T. Warburton, and D. Givoli, Radiation boundary conditions for time-dependent
waves based on complete plane wave expansions, to appear in J. Comput. Appl. Math.

[3] B. Alpert, L. Greengard, and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels
for time-domain wave propagation, SIAM J. Numer. Anal. 37 (2000) 1138-1164. MR1756419
(2002c:65037)

[4] B. Alpert, L. Greengard, and T. Hagstrom, Nonreflecting boundary conditions for the time-
dependent wave equation, J. Comput. Phys. 180 (2002) 270-296. MR1913093 (2003e:65140)

[5] S. Jiang, Fast Evaluation of Nonreflecting Boundary Conditions for the Schrödinger Equation, New
York University, Ph.D. Dissertation, 2001.

[6] S. R. Lau, Rapid evaluation of radiation boundary kernels for time-domain wave propagation on
black holes: Implementation and numerical tests, Classical Quantum Gravity 21 (2004) 4147-4192.
MR2100436 (2005k:83085)

[7] S. R. Lau, Rapid evaluation of radiation boundary kernels for time-domain wave propagation on
blackholes: Theory and numerical methods, J. Comput. Phys. 199 (2004) 376-422. MR2081009
(2005f:83003)

[8] S. R. Lau, Analytic structure of radiation boundary kernels for blackhole perturbations, J. Math.
Phys. 46 (2005) 102503, 21 pp. MR2178591 (2006e:83099)
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