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Abstract

Motivated by the control theoretic distinction between controllable and uncontrollable

events, we distinguish between two types of agents within a multi-agent system: controllable

agents, which are directly controlled by the system's designer, and uncontrollable agents,

which are not under the designer's direct control. We refer to such systems as partially

controlled multi-agent systems, and we investigate how one might in
uence the behavior of

the uncontrolled agents through appropriate design of the controlled agents. In particular,

we wish to understand which problems are naturally described in these terms, what methods

can be applied to in
uence the uncontrollable agents, the e�ectiveness of such methods, and

whether similar methods work across di�erent domains. Using a game-theoretic framework,

this paper studies the design of partially controlled multi-agent systems in two contexts: in

one context, the uncontrollable agents are expected utility maximizers, while in the other

they are reinforcement learners. We suggest di�erent techniques for controlling agents'

behavior in each domain, assess their success, and examine their relationship.

1. Introduction

The control of agents is a central research topic in two engineering �elds: Arti�cial In-
telligence (AI) and Discrete Events Systems (DES) (Ramadge & Wonham, 1989). One
particular area both of these �elds have been concerned with is multi-agent environments;
examples include work in distributed AI (Bond & Gasser, 1988), and work on decentralized
supervisory control (Lin & Wonham, 1988). Each of these �elds has developed its own
techniques and has incorporated particular assumptions into its models. Hence, it is only
natural that techniques and assumptions used by one �eld may be adopted by the other or
may lead to new insights for the other �eld.

In di�erence to most AI work on multi-agent systems, work on decentralized discrete
event systems distinguishes between controllable and uncontrollable events. Controllable
events are events that can be directly controlled by the system's designer, while uncontrol-
lable events are not directly controlled by the system's designer. Translating this termi-
nology into the context of multi-agent systems, we introduce the distinction between two
types of agents: controllable agents , which are directly controlled by the system's designer,
and uncontrollable agents , which are not under the designer's direct control. This leads
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naturally to the concept of partially controlled multi-agent system (PCMAS) and to the
following design challenge: ensuring that all agents in the system behave appropriately
through adequate design of the controllable agents. We believe that many problems are
naturally formulated as instances of PCMAS design. Our goal is to characterize important
instances of this design problem, to examine the tools that can be used to solve it, and to
assess the e�ectiveness and generality of these tools.

What distinguishes partially controlled multi-agent systems in the AI context from sim-
ilar models in DES are the structural assumptions we make about the uncontrolled agents
involved. Unlike typical DES models which are concerned with physical processes or de-
vices, AI is particularly interested in self-motivated agents, two concrete examples of which
are rational agents, i.e., expected utility maximizers, and learning agents, e.g., reinforce-
ment learners. Indeed, these examples constitute the two central models of self-motivated
agents in game theory and decision theory, referred to as the educative and evolutive models
(e.g., see Gilboa & Matsui, 1991). The special nature of the uncontrollable agents and the
special structure of the uncontrollable events they induce is what di�erentiates PCMAS
from corresponding models in the DES literature. This di�erence raises new questions and
suggests a new perspective on the design of multi-agent systems. In particular, it calls for
techniques for designing controllable agents that, by exploiting the structural assumptions,
can in
uence the behavior of the uncontrollable agents and lead the system to a desired
behavior.

In order to understand these issues, we study two problems that can be stated and solved
by adopting the perspective of PCMAS design; problems which by themselves should be
of interest to a large community. In both of these problems our goal is to in
uence the
behavior of agents that are not under our control. We exert this in
uence indirectly by
choosing suitable behaviors for those agents that are under our direct control. In one case,
we attempt to in
uence the behavior of rational agents, while in the other case, we try to
in
uence learning agents.

Our �rst study is concerned with the enforcement of social laws. When a number of
agents designed by di�erent designers work within a shared environment, it can be bene�cial
to impose certain constraints on their behavior, so that, overall, the system will function
better. For example, Shoham and Tennenholtz (1995) show that by imposing certain \tra�c
laws," they can considerably simplify the task of motion planning for each robot, while still
enabling e�cient motions. Indeed, as we see later, such conventions are at the heart of
many coordination techniques in multi-agent systems. Yet, without suitable mechanisms,
rational agents may have an incentive not to follow these conventions. We show how, in
certain cases, we can use the perspective of partially controlled multi-agent systems and the
structural assumption of rationality to enforce these conventions.

Our second study involves a two-agent system consisting of a teacher and a student.
The teacher is a knowledgeable agent, while the student is an agent that is learning how
to behave in its domain. Our goal is to utilize the teacher (which is under our control)
to improve the behavior of the student (which is not controlled by us). Hence, this is an
instance of partially controlled multi-agent systems in which the structural assumption is
that the uncontrolled agent employs a particular learning algorithm.

Both studies presented in this paper suggest techniques for achieving satisfactory system
behavior through the design of the controllable agents, and where relevant, these techniques
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are experimentally assessed. Beyond the formulation and solution of two interesting prob-
lems in multi-agent system design, this paper suggests a more general perspective on certain
design problems. Although we feel that it is still premature to draw general conclusion about
the potential for a general theory of PCMAS design, certain concepts, those of punishment
and reward, suggest themselves as central to this area.

The paper is organized as follows: In Section 2, we describe the problem of enforcing
social behavior in multi-agent systems. In Section 3 we describe a standard game-theoretic
model for this problem and suggest the mechanism of threats and punishments as a general
tool for this class of problems. Issues that pertain to the design of threats and punishments
are discussed in Section 4. Section 5 introduces our second case study in PCMAS design:
embedded teaching of reinforcement learners. In this context, a teacher and a learner
are embedded in a shared environment with the teacher serving as the controller whose
aim is to direct the learner to a desired behavior. A formal model of this problem is
introduced in Section 6. In Section 7, we show how to derive optimal teaching policies (under
certain assumptions) by viewing teaching as a Markov decision process. The e�ectiveness
of di�erent teaching policies is studied experimentally in Section 8. Finally, in Section 9,
we examine the relationship between the methods used in each of the two domains and the
possibility of a general methodology for designing partially controlled multi-agent systems.
We conclude in Section 10, with a summary and discussion of related work.

2. The Enforcement of Social Behavior

In this section we introduce the problem of the enforcement of social laws in a multi-agent
context. Our proposed solution falls naturally out of the PCMAS design perspective we
take. Here, we explain and motivate the particular problem of social law enforcement and
our approach to its solution. In Sections 3 and 4 we formalize and investigate this approach
in the framework of a general game-theoretic model.

We use the following scenario to illustrate the problem:

You have been hired to design a new working environment for arti�cial
agents. Part of your job involves designing a number of agents that will use
and maintain a warehouse. Other agents, designed by di�erent designers, will
be using the warehouse to obtain equipment. To make sure that di�erent agents
designed by di�erent designers can operate e�ciently in this environment, you
choose to introduce a number of social laws, that is, constraints on the behavior
of agents, that will help the agents coordinate their activities in this domain.
These rules include a number of `tra�c laws', regulating motion in the domain,
as well as a law that speci�es that every tool that is used by an agent must be
returned to its designated storage area. Your robots are programmed to follow
these laws, and you expect the others to do so. Your laws are quite success-
ful, and allow e�cient activity in the warehouse, until a new designer arrives.
Pressed by his corporate bosses to deliver better performance, he decides to
exploit all your rules. He designs his agent to locally maximize its performance,
regardless of the social laws. What can you do?
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In multi-participant environments, as the one above, each agent might have its own
dynamic goals, and we are interested in �nding ways in which agents can coexist while
achieving their goals. Several approaches for coordination of agent activity are discussed in
the distributed systems and the DAI literature. Some examples are: protocols for reaching
consensus (Dwork & Moses, 1990), rational deals and negotiations (Zlotkin & Rosenschein,
1993; Kraus & Wilkenfeld, 1991; Rosenschein & Genesereth, 1985), organizational struc-
tures (Durfee, Lesser, & Corkill, 1987; Fox, 1981; Malone, 1987), and social laws (Moses
& Tennenholtz, 1995; Shoham & Tennenholtz, 1995; Minsky, 1991; Briggs & Cook, 1995).
In some of these methods, the behavior of an agent is predetermined or prescribed from a
certain stage, for example, the content of the deal after it is reached, the outcome of the
negotiation process after it is completed, or the social law after it is instituted. This work
relies on the assumption that the agents follow these prescribed behaviors, e.g., they obey
the law or stick to the agreement. This assumption is central to the success of any of these
methods. However, it makes agents that follow the rules vulnerable to any rational agent
that performs local maximization of payo�, exploiting the knowledge that others follow the
rules. In our example, the new designer may program his robot not to return the tools,
saving the time required to do so, thus causing other agents to fail in their tasks.

Despite its somewhat futuristic 
avor (although instances of such shared environments
are beginning to appear in cyberspace), this scenario is useful in illustrating the vulnerability
of some of the most popular coordination mechanism appearing in the multi-agent literature
within AI (e.g., see Bond & Gasser, 1988) when we assume that the agents involved are
fully rational. As an aside, note that, in this case, we actually need not attribute much
intelligence to the agents themselves, and it is su�cient to assume that their designers
design them in a way that maximizes their own utility, disregarding the utility of the other
agents.

In order to handle this problem we need to modify existing design paradigms. By
adopting the perspective of partially controlled multi-agent systems, we obtain one possible
handle on this problem, which requires making the following basic assumption: that the
original designer, as in the above scenario, controls a number of reliable agents.1 Our
basic idea is that some of these reliable agents will be designed to punish agents that
deviate from the desirable social standard. The punishment mechanism will be `hard-
wired' (unchangeable) and will be common-knowledge. The agents that are not controlled
by the original designer will be aware of this punishment possibility. If the punishment
mechanism is well designed, deviations from the social standard become irrational. As a
result, no deviation will actually occur and no punishment will actually be executed! Hence,
by making our agents a bit more sophisticated, we can prevent the temptation of breaking
social laws.

In the suggested solution we adopt the perspective of partially controlled multi-agent sys-
tems. Some of the agents are controllable, while others are uncontrollable but are assumed
to adopt the basic model of expected utility maximization. The punishment mechanism
is (part of) the control strategy that is used to in
uence the behavior of the uncontrolled
agents.

1. For ease of exposition, we assume that reliable agents follow the designer's instructions; we assume that
no non-malicious failures, such as crash failures, are possible.
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3. Dynamic Game Theoretic Model

In this section we introduce a basic game-theoretic model, which we use to study the
problem of the enforcement of social behavior and its solution. Later on, in Sections 5{8,
this model will be used to study embedded teaching. We wish to emphasize that the model
we use is the most common model for representing emergent behavior in a population2

(e.g., Huberman & Hogg, 1988; Kandori, Mailath, & Rob, 1991; Altenberg & Feldman,
1987; Gilboa & Matsui, 1991; Weidlich & Haag, 1983; Kinderman & Snell, 1980).

De�nition 1 A k-person game g is de�ned by a k-dimensional matrix M of size n1�� � ��
nk, where nm is the number of possible actions (or strategies) of the m'th agent. The entries
of M are vectors of length k of real numbers, called payo� vectors. A joint strategy in M

is a tuple (i1; i2; : : : ; ik), where for each 1 � j � k, it is the case that 1 � ij � nj .

Intuitively, each dimension of the matrix represents the possible actions of one of the k
players of the game. Following the convention used in game theory, we often use the term
strategy in place of action. Since the dimensions of the matrix are n1 � � � � � nk , the i'th
agent has ni possible strategies to choose from. The j'th component of the vector residing
in the (i1; i2; : : : ; ik) cell of M (i.e., Mi1;i2;:::;ik) represents the feedback player j receives
when the players' joint strategy is (i1; i2; : : : ; ik), that is, if agent m's strategy is im for
all 1 � m � k. Here, we use the term joint strategy to refer to the combined choice of
strategies of all the agents.

De�nition 2 A n-k-g iterative game consists of a set of n agents and a given k person
game g. The game g is played repetitively an unbounded number of times. At each iteration,
a random k-tuple of agents play an instance of the game, where the members of this k-tuple
are selected with uniform distribution from the set of agents.

Every iteration of an n-k-g game represents some local interaction of k agents. Those agents
that play in a particular iteration of the game must choose the strategy they will use in this
interaction; an agent can use di�erent strategies in di�erent interactions. The outcome of
each iteration is represented by the payo� vector corresponding to the agents' joint strategy.
Intuitively, this payo� tells us how good the outcome of this joint behavior is from the point
of view of each agent. Many situations can be represented as an n-k-g game, for example,
the \tra�c" aspect of a multi-agent system can be represented by an n-k-g game, where
each time a number of agents meet at an intersection. Each such encounter is an instance
of a game in which agents can choose from a number of strategies, e.g., move ahead, yield.
The payo� function gives the utility to each set of strategies. For example, if each time only
two agents meet and both agents choose to move ahead, a collision occurs and their payo�s
are very low.

De�nition 3 A joint strategy of a game g is called e�cient if the sum of the players' payo�s
is maximal.

2. In this paper we use the term emergent behavior in its classical mathematical-economics interpretation:
an evolution of a behavior based on repetitive local interactions of (usually pairs of) agents, where each
agent may change its strategy for the following interactions based on the feedback it received in previous
interactions.
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Hence, e�ciency is one global criterion for judging the \goodness" of outcomes from the
system's perspective, unlike single payo�s which describe a single agent's perspective.3

De�nition 4 Let s be a �xed joint strategy for a given game g, with payo� pi(s) for player
i; in an instance of g in which a joint strategy s0 was played, if pi(s) � pi(s

0) we say that
i's punishment w.r.t. s is pi(s) � pi(s

0), and otherwise we say that its bene�t w.r.t. s is
pi(s

0)� pi(s).

Hence, punishment and bene�t w.r.t. some joint strategy s measure the gain (bene�t) or
loss (punishment) of an agent if we can somehow change the joint behavior of the agents
from s to s0.

In our current discussion punishment and bene�t will always be with respect to a chosen
e�cient solution.

As designers of the multi-agent system, we would prefer it to be as e�cient as possible.
In some cases this entails behavior that is in some sense unstable, that is, individual agents
may locally prefer to behave di�erently. Thus, agents may need to be constrained to behave
in a way that is locally sub-optimal. We refer to such constraints that exclude some of the
possible behaviors as social laws .

Due to the symmetry of the system and under the assumption that the agents are
rational and their utility is additive (i.e., that the utility of two outcomes is the sum of their
utilities), it is clear that no agent's expected payo� can be higher than the one obtained
using the strategies giving the e�cient solution. Thus, it is clear that in this case an e�cient
solution is fair, in the sense that all agents can get at least what they could if no such law
existed, and no other solution can provide a better expected payo�.

However, the good intentions of the designer of creating an environment bene�cial to
the participating agents, may back�re. A social law provides information on the behavior
of agents conforming to it, information that other agents (or their respective designers) can
use to increase their expected payo�.

Example 1 Assume that we are playing an n-2-g game where g is the prisoner's dilemma,
represented in strategic form by the following matrix.

agent 2
agent 1 1 2

1 (2,2) (-10,10)

2 (10,-10) (-5,-5)

The e�cient solution of this game is obtained when both players play strategy 1. Assume
that this solution is chosen by the original designer, and is followed by all agents under its
control.

A designer of a new agent that will function in an environment in which the social law is
obeyed may be tempted to program her agent not to conform to the chosen law. Instead, he
will program the agent to play the strategy the maximizes its expected outcome, strategy

3. Addition of payo�s or utilities across agents is a dangerous practice. However, in our particular model, it
can be shown that a system in which joint-strategies are always e�cient maximizes each agent's expected
cumulative rewards.
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#2. This new agent will obtain a payo� of 10 when playing against one of the `good' agents.
Thus, even though the social law was accepted in order to guarantee a payo� of 2 to any
agent, `good' agents will obtain a payo� of -10 when playing against such non-conforming
agents. Note that the new designer exploits information on the strategies of `good' players,
as dictated by the social law. The agents controlled by the new designer are uncontcolable
agents; their behavior can not be dictated by the original designer.

Agents not conforming to the social law will be referred to as malicious agents . In order
to prevent the temptation to exploit the social law, we introduce a number of punishing
agents , designed by the initial designer, that will play `irrationally' if they detect behavior
not conforming to the social law, attempting to minimize the payo� of the malicious agents.
The knowledge that future participants have of the punishment policy would deter devia-
tions and eliminate the need for carrying it out. Hence, the punishing behavior is used as a
threat aimed at deterring other agents from violating the social law. This threat is (part of)
the control strategy adopted the controllble agents in order to in
uence the behavior of the
unconrollable agents. Notice that this control strategy relies on the structural assumption
that the unconrollable agents are expected utility maximizers.

We de�ne the minimized malicious payo� as the minimal expected payo� of the mali-
cious players that can be guaranteed by the punishing agents. A punishment exists , if the
minimized malicious payo� is lower than the expected payo� obtained by playing according
to the social law. A strategy that guarantees the malicious agents an expected payo� lower
than the one obtained by playing according to the social law is called a punishing strategy .
Throughout this section and the following section we make the natural assumption that the
expected payo� of malicious agents when playing against each other is no greater than the
one obtained in the e�cient solution4.

Example 1 (continued) In Example 1, the punishment would simply be to play strategy
2 from now on. This may cause the payo� of a punishing agent to decrease, but would
guarantee that no malicious agent obtains a payo� better than -5 playing against a punishing
agent. If many non-malicious agents are punishing, the malicious agents' expected payo�
would decrease and become smaller then the payo� guaranteed by the social law. Strategy
2 would be the punishing strategy.

4. The Design of Punishments

In the previous section we described a general model of multi-agent interaction and showed
how the perspecive of partially controlled multi-agent systems leads to one possible solution
to the problem of enforcing social behavior in this setting, via the idea of threats and
punishments. We now proceed to examine the issue of punishment design.

We assume that there are p agents which the designer controls that either have an ability
to observe instances of the game that occur, or that can be informed as to the outcome of
games. There are c additional agents that conform with the law (that is, play the strategies
entailed by the chosen e�cient solution), and m malicious agents, that are not bound by
the law.

4. Other assumptions may be treated similarly.
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We would like to answer questions such as: Does a game o�er the ability to punish?
What is the minimized malicious payo�? What is the optimal ratio between p; c; and m?
Is there a di�erence between di�erent social laws?

Example 1 (continued) Consider Example 1 again. We have observed above that we can
cause an expected maximal loss for the malicious agents of 7 (= 2 � (�5)). This occurs
when the punishing agents play strategy 2. The gain that a malicious agent makes when
playing against an agent following the social law is 8 (= 10� 2). In order for a punishing
strategy to be e�ective, it must be the case that the expected payo� of a malicious agent
will be no greater than the expected payo� obtained when following the social law. In order
to achieve this, we must ensure that the ratio of punishing/conforming agents is such that a
malicious agent will have su�cient encounters with punishing agents. In our case, assuming
that when 2 deviators meet their expected bene�t is 0 and recalling that an agent is equally
likely to meet any other agent, we need p

c
> 8

7 to make the incentive to deviate negative.

Implementing the punishment approach requires more complex behavior. Our agents
must be able to detect deviations as well as to switch to a new punishing strategy. This
whole behavior can be viewed as a new, more complex, social law. This calls for more
complex agents to carry it out, and makes the programming task harder.

Clearly, we would like to minimize the number of such complex agents, keeping the
bene�t of malicious behavior negative. Here, the major question is the ratio between the
bene�t of deviation and the prospective punishment.

As can be seen from the example, the larger the punishment, the smaller the number
of the more sophisticated punishing agents that is needed. Therefore, we would like to �nd
out which strategies minimize the malicious agent's payo�. In order to do this we require a
few additional de�nitions.

De�nition 5 A two person game g is a zero-sum game if for every joint strategy of the
players, the sum of the players' payo�s is 0.

Hence, in a zero-sum game, there are no win/win situations, the larger the payo� of one
agent, the smaller the payo� of the other agent. By convention, the payo� matrix of a two
person zero-sum game will mention only the payo�s of player 1.

De�nition 6 Let g be a two person game. Let P g
i (s,t) be the payo� of player i in g (where

i 2 f1; 2g) when strategies s and t are played by player 1 and 2 respectively. The projected
game, gp, is the following two person zero-sum game: The strategies of both players are as
in g, and the payo� matrix is P gp(s; t) = �P g

2 (s,t). De�ne the transposed game of g, gT ,
to be the game g where the roles of the players change.

In the projected game, the �rst agent's payo� equals the negated value of the second agent's
payo� in the original game. Thus, this game re
ects the desire to lower the payo�s of the
second player in the original game.

We give a general result for a two-person game, g (with any number of strategies). We
make use of the following standard game-theoretic de�nition:

484



On Partially Controlled Multi-Agent Systems

De�nition 7 Given a game g, a joint strategy � for the players is a Nash equilibrium of
g if whenever a player takes an action that is di�erent than its action at �, its payo� given
that the other players play as in � is no higher than its payo� given that everybody plays �.

That is, a strategy � is a Nash equilibrium of a game if no agent can obtain a better payo�
by unilaterally changing its behavior when all the other agents play according to �.

Nash-equilibrium is the central notion in the theory of non-cooperative games (Luce &
Rai�a, 1957; Owen, 1982; Fudenberg & Tirole, 1991). As a result, this notion is well studied
and understood, and reducing new concepts to this basic concept may be quite useful from
a design perspective. In particular, Nash-equilibrium always exists for �nite games, and the
payo�s prescribed by any Nash-equilibria of a given zero-sum game are uniquely de�ned.
We can show:

Theorem 1 Given an n-2-g iterative game, the minimized malicious payo� is achieved by
playing the strategy of player 1 prescribed by the Nash equilibrium of the projected game gp,
when playing player 1 (in g), and the strategy of player 1 prescribed by the Nash equilibrium
of the projected game (gT )p, when playing player 2 (in g).5

Proof: Assume that the punishing agent plays the role of player 1. If player 1 adopts the
strategy prescribed by a Nash-equilibrium � then player 2 can not get a better payo� than
the one guaranteed by � since each deviation by player 2 will not improve its situation (by
the de�nition of Nash-equilibrium). On the other hand, player 1 can not cause more harm
than the harm obtained by playing its strategy in �. To see this, assume that player 1 uses
an arbitrary strategy s, and that player 2 adopts the strategy prescribed by �. The outcome
for player 1 will be not higher than the one guaranteed by playing the Nash-equilibrium
(by the de�nition of Nash-equilibrium). In addition, due to the fact that we have here a
zero-sum game this implies that the outcome for player 2 will be no lower than the one
guaranteed if player 1 would play according to �. The case where the punishing agent is
player 2 is treated similarly.

Example 1 (continued) Continuing our prisoner's dilemma example, gp would be

agent 2
agent 1 1 2

1 -2 -10

2 10 5

with the Nash equilibrium attained by playing the strategies yielding 5. In this example,
(gT )p = gp. Therefore, the punishing strategies will be strategy # 2 for each case.

Corollary 1 Let n-2-g be an iterative game, with p punishing agents. Let v and v' be the
payo�s of the Nash equilibria of gp and gTp respectively (which, in this case, are uniquely

de�ned). Let b,b' be the maximal payo�s player 1 can obtain in g and gT respectively,

5. Notice that, in both cases, the strategies prescribed for the original game are determined by the strategies
of player 1 in the Nash-Equilibria of the projected games.
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assuming player 2 is obeying the social law. Let e and e' be the payo�s of player 1 and 2,
respectively, in g, when the players play according to the e�cient solution prescribed by the
social law. Finally, assume that expected bene�t of two malicious agents when they meet
is 0. A necessary and su�cient condition for the existence of a punishing strategy is that
(n�1�p)

n�1 � (b+ b0)� p
n�1 � (v + v0) < (e+ e0).

Proof: The expected payo� obtained by a malicious agent when encountering a law-

abiding agent is b+b0

2 , and its expected payo� when encountering a punishing agent is �(v+v0)
2 .

In order to test the conditions for the existence of a punishing strategy we would need to
consider the best case scenario from the point of view of a malicious agent; in such a case all
non-punishing agents are law-abiding agents. In order to obtain the expected utility for a
malicious agent we have to make an average of the above quantities taking into account the
proportion of law-abiding and punishing agents in the population. This gives us that the
expected utility for a malicious agent is (n�1�p)

2(n�1) � (b+ b0)� p

2(n�1) � (v + v0). By de�nition,
a punishing strategy exists if and only if this expected utility is lower than the expected
utility guaranteed by the social law. Since the expected utility which can be guaranteed by
a social law is e+e0

2 , we get the desired result.

The value of the punishment, (v+v0)
2 in the above, is independent of the e�cient solution

chosen, and e+e0 is identical for all e�cient solutions, by de�nition. However, b+b0 depends
on our choice of an e�cient solution. When a number of such solutions exist, minimizing
b+b0 is an important consideration in the design of the social law, as it a�ects the incentive
to `cheat'.

Example 2 Let's look at a slightly di�erent version of the prisoner's dilemma. The game
matrix is

agent 2
agent 1 1 2

1 (0,0) (-10,10)

2 (10,-10) (-5,-5)

Here there are 3 e�cient solutions, given by the joint strategies (1,1), (1,2), (2,1). In
the case of (1,1) we have b+b'=20 (gained by playing strategy 2 instead of 1). In the case
of (2,1) and (1,2) b+b'=5.

Clearly, there is more incentive to deviate from a social law prescribing strategies (1,1)
than from a social law prescribing (2,1) or (1,2).

To summarize, the preceding discussion suggests designing a number of punishing agents,
whose behavior in punishment mode is prescribed by Theorem 1 in the case of n-2-g games.
By ensuring a su�cient number of such agents we take away any incentive to deviate from
the social laws. Hence, given that the malicious agents are rational, they will follow the social
norm, and consequently, there will be no need to utilize the punishment mechanism. We
observed that di�erent social laws leading to solutions that are equally e�cient have di�erent
properties when it comes to punishment design. Consequently, under the assumption that
we would like to minimize the number of punishing agents while guaranteeing an e�cient
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solution to the participants, we should choose an e�cient solution that minimizes the value
of b+ b0.

5. Embedded Teaching

In this section we move on to our second study of a PCMAS design problem; only now,
the uncontrollable agent is a reinforcement learner. This choice is not arbitrary; rational
agents and reinforcement learners are the two major types of agents studied in mathematical
economics, decision theory, and game theory. They are also the types of agents discussed
in work in DAI which is concerned with self-motivated agents (e.g., Zlotkin & Rosenschein,
1993; Kraus & Wilkenfeld, 1991; Yanco & Stein, 1993; Sen, Sekaran, & Hale, 1994).

An agent's ability to function in an environment is greatly a�ected by its knowledge of
the environment. In some special cases, we can design agents with su�cient knowledge for
performing a task (Gold, 1978), but, in general, agents must acquire information on-line
in order to optimize their performance, i.e., they must learn. One possible approach to
improving the performance of learning algorithms is employing a teacher. For example,
Lin (1992) uses teaching by example to improve the performance of agents, supplying them
with examples that show how the task can be achieved. Tan's work (1993) can also be
viewed as a form of teaching in which agents share experiences. In both methods some non-
trivial form of communication or perception is required. We strive to model a broad notion
of teaching that encompasses any behavior that can improve a learning agent's performance.
That is, we wish to conduct a general study of partially controlled multi-agent systems in
which the uncontrollable agent runs a learning algorithm. At the same time, we want our
model to clearly delineate the limits of the teacher's (i.e., the controlling agent's) ability to
in
uence the student.

Here, we propose a teaching approach that maintains a situated \spirit" much like that
of reinforcement learning (Sutton, 1988; Watkins, 1989; Kaelbling, 1990), which we call
embedded teaching . An embedded teacher is simply a \knowledgeable" controlled agent
situated with the student in a shared environment. Her6 goal is to lead the student to
adopt some speci�c behavior. However, the teacher's ability to teach is restricted by the
nature of the environment they share: not only is her repertoire of actions limited, but
she may also lack full control over the outcome of these actions. As an example, consider
two mobile robots without any means of direct communication. Robot 1 is familiar with
the surroundings, while Robot 2 is not. In this situation, Robot 1 can help Robot 2 reach
its goal through certain actions, such as blocking Robot 2 when it is headed in the wrong
direction. However, Robot 1 may have only limited control over the outcome of such an
interaction because of uncertainty about the behavior of Robot 2 and its control uncertainty.
Nevertheless, Robot 2 has a speci�c structure, it is a learner obeying some learning scheme,
and we can attempt to control it indirectly through our choice of actions for Robot 1.7

6. To di�erentiate between teacher and student, we use female pronouns for the former and male pronouns
for the latter.

7. In general, the fact that an agent is controllable does not imply that we can perfectly control the outcome
of its actions, only their choice. Hence, a robot may be controllable in our sense, running a program
supplied by us, yet its move-forward command may not always have the desired outcome.
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In what follows, our goal is to understand how an embedded teacher can help a student
adopt a particular behavior. We address a number of theoretical questions relating to
this problem, and then we experimentally explore techniques for teaching two types of
reinforcement learners.

6. A Basic Teaching Setting

We consider a teacher and a student that repeatedly engage in some joint activity. While
the student has no prior knowledge pertaining to this activity, the teacher understands its
dynamics. In our model, the teacher's goal is to lead the student to adopt a particular
behavior in such interactions. For example, teacher and student meet occasionally at the
road and the teacher wants to teach the student to drive on the right side. Or perhaps, the
teacher and the student share some resource, such as CPU time, and the goal is to teach
him judicious use of this resource. We model such encounters as 2-2-g iterative games.

To capture the idea that the teacher is more knowledgeable than the student, we assume
that she knows the structure of the game, i.e., she knows the payo� function, and that she
recognizes the actions taken at each play. On the other hand, the student does not know the
payo� function, although he can perceive the payo� he receives. In this paper, we make the
simplifying assumptions that both teacher and student have only two actions from which
to choose and that the outcome depends only on their choice of actions. Furthermore,
excluding our study in Section 8.4, we ignore the cost of teaching, and hence, we omit the
teacher payo� from our description.8 This provides a basic setting in which to take this
�rst step towards understanding the teaching problem.9

The teaching model can be concisely modeled by a 2� 2 matrix. The teacher's actions
are designated by I and II , while the student's actions are designated by the numbers 1
and 2. Each entry corresponds to a joint action and represents the student's payo� when
this joint action is played. We will suppose that we have matrix A of Figure 1, and that we
wish to teach the student to use action 1. At this stage, all we assume about the student is
that if he always receives a better payo� following action 1 he will learn to play it.

We can see that in some situations teaching is trivial. Assume that the �rst row domi-
nates the second row, i.e., a > c and b > d. In that case, the student will naturally prefer to
take action 1, and teaching is not very challenging, although it might be useful in speeding
the learning process. For example, if a� c > b� d, as in matrix B in Figure 1, the teacher
can make the advantage of action 1 more noticeable to the student by always playing action
I .

Now suppose that only one of a > c or b > d holds. In this case, teaching is still easy.
We use a basic teaching strategy, which we call preemption. In preemption the teacher
chooses an action that makes action 1 look better than action 2. For example, when the
situation is described by matrix C in Figure 1, the teacher will always choose action I .

8. A case could be made for the inherent value of teaching, but this may not be the appropriate forum for
airing these views.

9. In fact, our idea has been to consider the most basic embedded teaching setting which is already chal-
lenging. As we later see, this basic setting is closely related to a fundamental issue in non-cooperative
games.
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I II

1 a b

2 c d

(A)

I II

1 6 5

2 1 2

(B)

I II

1 5 1

2 2 6

(C)

I II

1 3 -2

2 5 6

(D)

I II

1 5 -10

2 10 -5

(E)

Figure 1: Game matrices A, B, C, D, and E. The teacher's possible actions are I and II ,
and the student's possible actions are 1 and 2.

Next, assume that both c and d are greater than both a or b, as in matrix D in Figure 1.
Regardless of which action the teacher chooses, the student receives a higher payo� by
playing action 2 (since minf5; 6g > maxf3;�2g). Therefore, no matter what the teacher
does, the student will learn to prefer action 2. Teaching is hopeless in this situation.

All other types of interactions are isomorphic to the case where c > a > d > b, as in
matrix E in Figure 1. This is still a challenging situation for the teacher because action 2
dominates action 1 (because 10 > 5 and �5 > �10). Therefore, preemption cannot work.
If a teaching strategy exists, it will be more complex than always choosing the same action.
Since this seems to the most challenging teaching situation, we devote our attention to
teaching a reinforcement learner to choose action 1 in this class of games.

It turns out that the above situation is quite important in game-theory and multi-agent
interaction. It is a projection of a very famous game, the prisoner's dilemma, discussed
in the previous sections. In general, we can represent the prisoner's dilemma using the
following game matrix:

teacher
student Coop Defect

Coop (a,a) (b,c)

Defect (c,b) (d,d)

or more commonly

teacher
student Coop Defect

Coop (a,a) (-c,c)

Defect (c,-c) (d,d)

where c > a > d > b. The actions in the prisoner's dilemma are called Cooperate (Coop)
and Defect; we identify Coop with actions 1 and I , and Defect with actions 2 and II . The
prisoner's dilemma captures the essence of many important social and economic situations;
in particular, it encapsulates the notion of cooperation. It has thus motivated enormous dis-
cussion among game-theorists and mathematical economists (for an overview, see Eatwell,
Milgate, & Newman, 1989). In the prisoner's dilemma, whatever the choice of one player,
the second player can maximize its payo� by playing Defect. It thus seems \rational" for
each player to defect. However, when both players defect, their payo�s are much worse than
if they both cooperate.
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As an example, suppose two agents will be given $10 each for moving some object. Each
agent can perform the task alone, but it will take an amount of time and energy which they
value at $20. However, together, the e�ort each will make is valued at $5. We get the
following instance of the prisoner's dilemma:

Agent 1
Agent 2 Move Rest

Move (5,5) (-10,10)

Rest (10,-10) (0,0)

In the experimental part of our study, the teacher's task will be to teach the student
to cooperate in the prisoner's dilemma. We measure the success of a teaching strategy by
looking at the cooperation rate it induces in students over some period of time, that is, the
percentage of the student's actions which are Coop. The experimental results presented in
this paper involving the prisoner's dilemma are with respect to the following matrix:

Teacher
Student Coop Defect

Coop (10,10) (-13,13)

Defect (13,-13) (-6,-6)

We have observed qualitatively similar results in other instantiations of the prisoner's
dilemma, although the precise cooperation rate varies.

7. Optimal Teaching Policies

In the previous section we concentrated on modeling the teaching context as an instance
of a partially controlled multi-agent system, and determining which particular problems
are interesting. In this section we start exploring the question of how a teacher should
teach. First, we de�ne what an optimal policy is. Then, we will de�ne Markov decision
processes (MDP) (Bellman, 1962), and show that under certain assumptions teaching can be
viewed as an MDP. This will allow us to tap into the vast knowledge that has accumulated
on solving these problems. In particular, we can use well known methods, such as value
iteration (Bellman, 1962), to �nd the optimal teaching policy.

We start by de�ning an optimal teaching policy. A teaching policy is a function that
returns an action at each iteration; possibly, it may depend on a complete history of the
past joint actions. There is no \right" de�nition for an optimal policy, as the teacher's
motivation may vary. However, in this paper, the teacher's objective is to maximize the
number of iterations in which the student's action are \good", such as Coop in the prisoner's
dilemma. The teacher does not know the precise number of iterations she will be playing,
so she slightly prefers earlier success to later success.

This is formalized as follows: Let u(a) be the value the teacher places on a student's
action, a, let � be the teacher's policy, and assume that it induces a probability distribution
Pr�;k over the set of possible student actions at time k. We de�ne the value of the strategy
� as

val(�) =
1X

k=0


kEk(u)
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where Ek(u) is the expected value of u:

Ek(u) =
X

a2As

Pr�;k(a) � u(a)

Here, As is the student's set of actions. The teacher's goal is to �nd a strategy � that
maximizes val(�), the discounted expected value of the student's actions. For example, in
the case of the prisoner's dilemma, we could have
As = fCoop,Defectg and u(Coop) = 1 and u(Defect) = 0.

Next, we de�ne MDPs. In an MDP, a decision maker is continually moving between
di�erent states. At each point in time she observes her current state, receives some payo�
(which depends on this state), and chooses an action. Her action and her current state
determine (perhaps stochastically) her next state. The goal is to maximize some function
of the payo�s. Formally, an MDP is a four-tuple hS;A; P; ri, where S is the state-space, A
is the decision-maker's set of possible actions, P : S � S � A ! [0; 1] is the probability of
a transition between states given the decision-maker's action, and r : S ! < is the reward
function. Notice that given an initial state s 2 S, and a policy of the decision maker �, P
induces a probability distribution Ps;�;k over S, where Ps;�;k(s

0) is the probability that the
kth state obtained will be s0 if the current state is s.

The 
0-optimal policy in an MDP is the policy that maximizes at each state s the
discounted sum of the expected values of the payo�s received at all future states, starting
at s, i.e.,

1X

k=0


k0(
X

s02S

Ps;�;k(s
0) � r(s0))

Although it may not be immediately obvious, a single policy maximizing discounted sums
for any starting state exists, and there are well-known ways of �nding this policy. In the
experiments below we use a method based on value-iteration (Bellman, 1962).

Now suppose that the student can be in a set � of possible states, that his set of actions
is As, and that the teacher's set of actions is At. Moreover, suppose that the following
properties are satis�ed:
(1) The student's new state is a function of his old state and the current joint-action,
denoted by � : ��As �At ! �;
(2) The student's action is a stochastic function of his current state, where the probability
of choosing a at state s is �(s; a);
(3) the teacher knows the student's state. (The most natural way for this to happen is that
the teacher knows the student's initial state, the function � , and the outcome of each game,
and she uses them to simulate the agent.)

Notice that under these assumptions a teaching policy should be a function of �: We
know that the student's next action is a function of his next state. We know that the
student's next state is a function of his current state, his current action, and the teacher's
current action. Hence, his next action is a function of his current state and action, as
well as the teacher's current action. However, we know that the student's current action
is a function of his current state. Hence, the student's next action is a function of his
current state and the teacher's current action. This implies that the only knowledge the
teacher needs to optimally choose her current action is the student's current state, and any
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additional information will be redundant and cannot improve her success. More generally,
when we repeat this line of reasoning inde�nitely into the future, we see that the teacher's
policy should be a function of the student's state: a function from � to At. It is now
possible to see that we have the makings of the following MDP.

Given this observation and our three assumptions, we see that, indeed, the teacher's
policy induces a probability distribution over the set of possible student actions at time k.
This implies that our de�nition of val makes sense here.

De�ne the teacher's MDP to be TMDP= h�; At; P; Ui, where

P (s; s0; at)
def
=
X

as2As

�(s; as) � �s0;�(s;as;at)

(�i;j is de�ned as 1 when i = j, and 0 otherwise). That is, the probability of a transition
from s to s0 under at is the sum of probabilities of the student's actions that will induce
this transition. The reward function is the expected value of u:

U(s)
def
=
X

as2As

�(s; as) � u(as)

Theorem 2 The optimal teaching policy is given by the 
0 optimal policy in TMDP.

Proof: By de�nition, the 
0 optimal policy in TMDP is the policy � that for each s 2 �
maximizes

1X

k=0


k0(
X

s02�

Ps;�;k(s
0) � U(s0))

that is,
1X

k=0


k0(
X

s02�

Ps;�;k(s
0) � (
X

as2As

�(s0; as) � u(as)))

However, this is equal to

(�)
1X

k=0


k0
X

as2As

X

s02�

�(s0; as) � Ps;�;k(s
0) � u(as)

We know that Ps;�;k(s0) is the probability that s0 will be the state of the student in time
k, given that the teacher uses � and that her current state is s. Hence,

X

s02�

�(s0; as) � Ps;�;k(s
0)

is the probability that as will be the action taken by the student at time k given the initial
(current) state is s. Upon examination, we see now that (*) is identical to val(�).

The optimal policy can be used for teaching, when the teacher possess su�cient infor-
mation to determine the current state of the student. But even when that is not the case, it
allows us to calculate an upper bound on the success val(�) of any teaching policy �. This
number is a property of the learning algorithm, and measures the degree of in
uence any
agent can have over the given student.
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8. An Experimental Study

In this section we describe an experimental study of embedded teaching. First, we de�ne the
learning schemes considered, and then, we describe a set of results obtained using computer
simulations.

8.1 The Learning Schemes

We experiment with two types of students: One uses a reinforcement learning algorithm
which can be viewed as Q-learning with one state, and the other uses Q-learning. In choosing
parameters for these students we tried to emulate choices made in the reinforcement learning
literature.

The �rst student, which we call a Blind Q-learner (BQL), can perceive rewards, but
cannot see how the teacher has acted or remember his own past actions. He only keeps
one value for each action, for example, q(Coop) and q(Defect) in the case of the prisoner's
dilemma. His update rule is the following: if he performed action a and received a reward
of R then

qnew(a) = (1� �) � qold(a) + � �R

The parameter �, the learning-rate, is �xed (unless stated otherwise) to 0:1 in our exper-
iments. We wish to emphasize that although BQL is a bit less sophisticated than \real"
reinforcement learners discussed in the AI literature (which is de�ned below), it is a popu-
lar and powerful type of learning rule, which is much discussed and used in the literature
(Narendra & Thathachar, 1989).

The second student is a Q-learner (QL). He can observe the teacher's actions and has
a number of possible states. The QL maintains a Q-value for each state-action pair. His
states encode his recent experiences, i.e., the past joint actions. The update rule is:

qnew(s; a) = (1� �) � qold(s; a) + � � (R+ 
V (s0))

Here R is the reward received upon performing a at state s; s0 is the state of the student
following the performance of a at s; 
 is called the discount factor, and will be 0:9, unless
otherwise noted; and V (s0) is the current estimate of the value of the best policy on s0,
de�ned as maxa2As q(s

0; a). All Q-values are initially set to zero.
The student's update rule tells us how his Q-values change as a result of new experi-

ences. We must also specify how these Q-values determine his behavior. Both QL and
BQL students choose their actions based on the Boltzmann distribution. This distribution
associates a probability Ps(a) with the performance of an action a at a state s (P (a) for
the BQL).

Ps(a)
def
=

exp(q(s; a)=T )
P

a02A exp(q(s; a0)=T )
(QL) P (a)

def
=

exp(q(a)=T )
P

a02A exp(q(a0)=T )
(BQL)

Here T is called the temperature. Usually, one starts with a high value for T , which
makes the action choice more random, inducing more exploration on the part of the student.
T is slowly reduced, making the Q-values play a greater role in the student's choice of action.
We use the following schedule: T (0) = 75 and T (n+1) = T (n)�0:9+0:05. This schedule has
the characteristic properties of fast initial decay and slow later decay. We also experiment
with �xed temperature.
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Figure 2: Fraction of Coops as a function of temperature for the approximately optimal
policy (left) and for \teaching" using an identical Q-learner (right). Each curve
corresponds to Coop rate over some �xed number of iterations. In the approx.
optimal policy the curves for 1000, 5000 and 10000 iterations are nearly identical.

8.2 Blind Q-Learners

Motivated by our discussion in Section 6 we will concentrate in this section and in the
following section on teaching in the context of the prisoner's dilemma. In Section 8.4 we
discuss another type of teaching setting. This section describes our experimental results
with BQL. We examined a policy that approximates the optimal policy, and two teaching
methods that do not rely on a student model.

8.2.1 Optimal Policy

First we show that BQLs �t the student model of Section 7. For their state space, we use
the set of all possible assignment for their Q-values. This is a continuous subspace of <2,
and we discretize it (in order to be able to compute a policy), obtaining a state space with
approximately 40,000 states. Next, notice that transitions are a stochastic function of the
current state (current Q-values) and the teacher's action. To see this notice that Q-value
updates are a function of the current Q-value and the payo�; the payo� is a function of the
teacher's and student's actions; and the student's actions are a stochastic function of the
current Q-value. In the left side of Figure 2 we see the success of teaching using the policy
generated by using dynamic programming to solve this optimization problem. Each curve
represents the fraction of Coops as a function of the temperature for some �xed number of
iterations. The values are means over 100 experiments.

8.2.2 Two Q-Learners

We also ran experiments with two identical BQLs. This can be viewed as \teaching" using
another Q-learner. The results are shown in the right side of Figure 2. At all temperatures
the optimal strategy performs better than Q-learning as a \teaching" strategy. The fact that
at temperatures of 1.0 or less the success rate approaches 1 will be bene�cial when we later
add temperature decay. However, we also see that there is an inherent limit to our ability
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Figure 3: Fraction of Coops as a function of temperature for the teaching strategy based
on TFT (left) and 2TFT (right).

to a�ect the behavior at higher temperatures. An interesting phenomenon is the phase
transition observed around T = 2:5. A qualitative explanation of this phenomenon is that
high temperature adds randomness to the student's choice of action, because it makes the
probabilities P (a) less extreme. Consequently, the ability to predict the student's behavior
lessens, and with it the probability of choosing a good action. However, while randomness
serves to lower the success rate initially, it also guarantees a level of e�ective cooperation,
which should approach 0.5 as the temperature increases. Finally, notice that although
(Coop,Coop) seems like the best joint-action for a pair of agents, two interacting Q-learners
never learn to play this joint strategy consistently, although they approach 80% Coops at
low temperatures.

8.2.3 Teaching Without a Model

When the teacher does not have a precise model of the student, we cannot use the techniques
of Section 7 to derive an optimal policy; in these models, we assume that the teacher
can \observe" the student's current state (i.e. that it knows the student's Q-values). We
therefore explore two teaching methods that only exploit knowledge of the game and the
fact that the student is a BQL.

Both methods are motivated by a basic strategy of countering the student's move. The
basic idea is to try and counter good actions by the student with an action that will lead
to a high payo�, and to counter bad actions with an action that will give him a low payo�.
Ideally, we would like to play Coop when the student plays Coop, and Defect when the
student plays Defect. Of course, we don't know what action the student will choose, so we
try to predict from his past actions.

If we assume that the Q-values change very little from one iteration to the other, the
student's most likely action in the next game is the same action that he took in the most
recent game. Therefore, if we saw the student play Coop in the previous turn, we will play
Coop now . Similarly, the teacher will follow a Defect by the student with a Defect on her
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Figure 4: Fraction of Coops as a function of time for BQL using the temperature decay
scheme of Section 8.1. Teaching strategies shown: approximately optimal strat-
egy, Q-learning, TFT, and 2TFT.

part. This strategy, called Tit-For-Tat (TFT for short), is well known (Eatwell et al., 1989).
Our experiments show that it is not very successful in teaching a BQL (see Figure 3).

We also experimented with a variant of TFT, which we call 2TFT. In this strategy the
teacher plays Defect only after observing two consecutive Defects on the part of the student.
It is motivated by our observation that in certain situations it is better to let the student
enjoy a free lunch (that is, match his Defect with a Coop) than to make Coop look bad
to him, because that may cause his Q-value for Coop to be so low that he is unlikely to
try it again. Two consecutive Defects indicate that the probability of the student playing
Defect next is quite high. The results, shown in Figure 3, indicate that this strategy worked
better than TFT, and in some ranges of temperature, better than Q-learning. However, in
general, both TFT and 2TFT gave disappointing results.10

Finally, Figure 4 shows the performance of all four teaching strategies discussed so
far when we incorporate temperature decay. We can see that the optimal policy is very
successful. As we explained before, teaching is easier when the student is more predictable,
which is the case when temperature is lower. With temperature decay the student spends
most of his time in relatively low temperature and behaves similarly to the case of �xed,
low temperature. While an initial high-temperature phase could have altered this behavior,
we did not observe such e�ects.

8.3 Teaching Q-Learners

Unlike BQL, Q-learners (QL) have a number of possible states which encode the joint actions
of previous games played. A QL with memory one has four possible states, corresponding
to the four possible joint actions in the prisoner's dilemma; a QL with more memory will
have more states, encoding a sequence of joint actions.

More complex learning architectures have more structure, which brings with it certain
problems. One possible problem may be that this structure is more \teaching-resistant." A

10. In some sense the use of an identical Q-learner implies having a model of the student, while TFT and
2TFT do not make use of such a model.
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Figure 5: Each curve shows the fraction of Coops of QL as a function of temperature for a
�xed number of iterations when TFT was used to teach (left) and when an iden-
tical Q-learner was used to teach (right). Values are means over 100 experiments.

more real threat is added computational complexity. As we mentioned, to approximate the
optimal teaching policy for BQL we had to compute over a space of approximately 40,000
discretized states. While representing the state of a BQL requires only two numbers, one
for each Q-value, representing the state of a QL with m states requires 2m + 1 numbers:
one for the Q-value of each state/action pair, and one encoding the current state. The size
of the corresponding discretized state-space for the teacher's Markov decision process grows
exponentially in m. For the simplest case of memory one (a student with four states) this
would be about 1018 states. Since solving the problem with 40,000 states took 12 hours
on a sun sparcstation-10, we were not able to approximate optimal teaching policies for
even the simplest QL.

But all is not lost. More structure may mean more complexity, but it also means more
properties to exploit. We can reach surprisingly good results by exploiting the structure of
Q-learners. Moreover, we can do this using a teaching method introduced in the previous
section. However, in QL this method takes on a new meaning that suggests the familiar
notions of reward and punishment. Interestingly, one may recall that punishment has been
our major tool in our approach to the enforcement of social behavior.

In choosing their actions, QLs \care" not only about immediate rewards, but also about
the current action's e�ect on future rewards. This makes them suitable for a reward and
punishment scheme. The idea is the following: suppose the QL did something \bad" (Defect
in our case). Although we cannot reliably counter such a move with a move that will lower
his reward, we can punish him later by choosing an action that always gives a negative
payo�, no matter what the student plays. We achieve this by following a student's Defect
with a Defect by the teacher. While the immediate reward obtained by a QL playing Defect
may be high, he will also learn to associate a subsequent punishment with the Defect action.
Thus, while it may be locally bene�cial to perform Defect, we may be able to make the
long-term rewards of Defect less desirable. Similarly, we can follow a student's Coop with
a reward in the form of a Coop by the teacher, since it guarantees a positive payo� to the
student.
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Figure 6: Fraction of Coops of QL as a function of time with temperature decay with TFT
and with Q-learning as teaching strategies.

This suggests using Tit-For-Tat again. Notice that for BQLs, TFT cannot be understood
as a reward/punishment strategy because BQLs care only about the immediate outcome of
an action; the value they associate with each action is a weighted average of the immediate
payo�s generated by playing this action.

In Figure 5 we see the success rates of TFT as a function of temperature, as well as the
rates for Q-learning as a teaching strategy. In this latter case, the teacher is identical to the
student. It is apparent that TFT is extremely successful, especially in higher temperatures.
Interestingly, the behavior is quite di�erent than that of two QLs. Indeed, when we examine
the behavior of two QLs, we see that, to a lesser extent, the phase change noticed in
BQLs still exists. We obtain completely di�erent behavior when TFT is used: Coop levels
increase with temperature, reaching almost 100% above 3.0. Hence, we see that TFT works
better when the student Q-learner exhibits a certain level of experimentation. Indeed, if
we examine the success of these teaching strategies at a very low temperature, we see that
Q-learning performs better than TFT. This explains the behavior of TFT and QL when
temperature decay is introduced, as described in Figure 6. In this �gure, QL seems to be
more e�ective than TFT. This is probably a result of the fact that in this experiment the
student's temperature is quite low most of the time.

In these experiments the QL remembers only the last joint action. We experimented with
QL with more memory and performance was worse. This can be explained as follows. For a
QL with memory one or more, the problem is a fully observable Markov decision process once
the teacher plays TFT, because TFT is a deterministic function of the previous joint action.
We know that Q-learning converges to the optimal policy under such conditions (Watkins &
Dayan, 1992). Adding more memory e�ectively adds irrelevant attributes, which, in turn,
causes a slower learning rate. We have also examined whether 2TFT would be successful
when agents have a memory of two. The results are not shown here, but the success rate
was considerably lower than for TFT, although better than for two QLs.

TFT performed well as a teaching strategy, and we explained the motivation for using it.
We now want to produce a more quantitative explanation, one that can be used to predict
its success when we vary various parameters, such as the payo� matrix.
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Let the student's payo� matrix be as in matrix A of Figure 1; let p be the probability
that the student plays Coop, and let q = 1 � p be the probability that the student plays
Defect. These probabilities are a function of the student's Q-values (see the description in
Section 8.1). Let us assume that the probabilities p and q do not change considerably from
one iteration to the next. This seems especially justi�ed when the learning rate, �, is small.

Given this information, what is the student's expected reward for playing Coop? In
TFT, the teacher's current action is the student's previous action, so we can also assume
that the teacher will play Coop with probability p. Thus, the student's expected payo� for
playing Coop is (p � a+ q � b). Since Q-learners care about their discounted future reward
(not just their current reward), what happens next is also important. Since we assumed
that the student cooperated, the teacher will cooperate in the next iteration, and if we still
assume p to be the probability that the student will cooperate next, the student's expected
payo� in the next step is (p �a+q �c). If we ignore higher order 
 terms the expected reward
of playing Coop becomes: p �a+ q � b+
(p �a+ q � c): The expected reward of Defect is thus:
p � c+ q � d+ 
(p � b+ q � d): Therefore, TFT should succeed as a teaching strategy when:

p � a+ q � b+ 
(p � a+ q � c) > p � c+ q � d+ 
(p � b+ q � d):

Since initially p = q = 0:5, and it is the behavior at the stage where p and q are approx-
imately equal that will determine whether TFT succeeds, we can attempt to predict the
success of TFT based on whether:

DIF = a+ b+ 
(a+ c)� [(c+ d+ 
(b+ d))] � 0

To test this hypothesis we ran TFT on a number of matrices using Q-learners with di�erent
discount factors. The results in Figure 7 show the fraction of Coops over 10000 iterations
as a function of DIF for a teacher using TFT, and with temperature decay. We see that
DIF is a reasonable predictor of success. When it is below 0, almost all rates are below
20%, and above 8 most rates are above 65%. However, between 0 and 8 it is not successful.
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8.4 Teaching as a Design Tool

In Section 6 we identi�ed a class of games that are challenging to teach, and the previous
sections were mostly devoted to exploring teaching strategies in these games when the
student is a Q-learner. One of the assumptions we made was that the teacher is trying to
optimize some function of the student's behavior and does not care what she has to do in
order to achieve this optimal behavior. However, often the teacher would like to maximize
some function that depends both on her behavior and on the student's behavior. When
this is the case, even the more simple games discussed in Section 6 pose a challenge.

In this section, we examine a basic coordination problem, block pushing, in which our
objective is not teaching, but where teaching is essential for obtaining good results. Our
aim in this section is to demonstrate this point, and hence the value of understanding
embedded teaching. Our results show that there is a teaching strategy that achieves much
better performance than a naive teaching strategy and leads to behavior that is much better
than that of two reinforcement learners.

Consider two agents that must push a block as far as possible along a given path in
the course of 10,000 time units. At each time unit each agent can push the block along
the path, either gently (saving its energy) or hard (spending much energy). The block will
move in each iteration c � x � h+ (2� x) � h units in the desired direction, where h; c > 0 are
constants and x is the number of agents which push hard. At each iteration, the agents are
paid according to the distance the block was pushed. Naturally, the agents wish to work as
little as possible while being paid as much as possible, and the payo� in each iteration is a
function of the cost of pushing and the payment received. We assume that each agent prefers
that the block will be pushed hard by at least one of the agents (guaranteeing reasonable
payment), but each agent also prefers that the other agent will be the one pushing hard. If
we denote the two actions by gentle and hard, we get that the related game can be described
as follows:

hard gentle

hard (3,3) (2,6)

gentle (6,2) (1,1)

Notice that the above game falls into the category of games where teaching is easy. If
all the teacher cares about is that the student will learn to push hard, she will simply push
gently. However, when the teacher is actually trying to maximize the distance in which the
block moved, this teaching strategy may not be optimal. Notice that there can be at most
20000 instances of hard push; the naive teaching strategy mentioned above will yield no
more than 10000 instances of hard push. In order to increase the number, we need a more
complex teaching strategy.

In the results below we use BQL with � = 0:001. Consider the following strategy for
the teacher: push gently for K iterations, and then start to push hard. As we will see, by
a right selection of K, we obtain the desired behavior. Not only will the student push hard
most of the time, but the total number of hard push instances will improve dramatically.
In Figure 8, the x coordinate corresponds to the parameter K, while the Y coordinate
corresponds to the number of hard push instances which occur in 10000 iterations. The
results obtained are average results for 50 trials.
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Figure 8: Teaching to push hard: number of hard push instances by the student in 10000
iterations as a function if the number of iterations in which the teacher does not
push hard (avg. over 50 trials).

As we can see from Figure 8, the e�ciency of the system is non-monotonic in the
threshold K. The behavior we obtain with an appropriate selection of K is much better
than what we would have obtained with the naive teaching strategy. It is interesting to
note the existence of a sharp phase transition in the performance at the neighborhood of
the optimal K. Finally, we mention that when both agents are reinforcement learners, we
get only 7618 instances of \push hard", which is much worse than what is obtained when
we have a knowledgeable agent that utilizes its knowledge to in
uence the behavior of the
other agent.

9. Towards A General Theory

The two case studies presented in this paper raise the natural question of whether general,
domain independent techniques for PCMAS design exist, and whether we have learned
about such tools from our case studies. We believe that it is still premature to say whether
a general theory of PCMAS design will emerge; this requires much additional work. Indeed,
given the considerable di�erences that exist between the two domains explored in this
paper, and given the large range of multi-agent systems and agents that can be envisioned,
we doubt the existence of common low-level techniques for PCMAS design. Even within
the class of rational agents which we investigated, agents can di�er considerably in their
physical, computational, and memory capabilities, and in their approach to decision making
(e.g., expected utility maximization, maximization of worst-case outcomes, minimization of
regret). Similarly, the problem of social-law enforcement can take on di�erent forms, for
example, the malicious agents could cooperate among each other. However, once a more
abstract view is taken, certain important unifying concepts appear, namely, punishment
and reward.

Punishment and reward are abstract descriptions of two types of high-level feedbacks
that the controllable agents can provide to the uncontrollable agents. Although punishment
and reward take di�erent form and meaning in the two domains, in both cases, the uncon-
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trollable agents seem to \care" about the controllable agent's reaction to their action. What
we see is that in both cases, the controllable agents can in
uence the uncontrollable agents'
perception of the worthiness of their actions. The precise manner in which the controllable
agents a�ect this perception di�ers, but in both cases it utilizes some inherent aspect of
uncertainty in the uncontrollable agent's world model. In the case of rational agents, despite
their perfect knowledge of the dynamics of the world, uncertainty remains regarding the
outcome of the non-malicious agents' actions. By �xing a certain course of action for the
controllable agents, we in
uence the malicious agents' perception of the outcome of their
own actions. In the case of the learning agent, one can a�ect the perception of the student's
action by a�ecting its basic world model. Hence, it seems that a high-level approach for PC-
MAS design has two stages: First, we analyze the factors that in
uence the uncontrollable
agent's perception of their actions. Next, we analyze our ability to control these factors. In
retrospect, this has been implicit in our approach. In our study of social-law enforcement,
we used the projected game to �nd out how an agent's perception of an action can be
changed and used the indirect mechanism of threats to enforce the perception we desired.
In our study of embedded teaching, we started with an analysis of di�erent games and the
possibility of a�ecting an agent's perception of an action in these games. Next, we tried
to provide this perception. In the case of BQL students, our controllable teacher did not
have complete control over the elements that determine the student's perception because
of the random nature of the student's action. Yet, she did try to somehow a�ect them. In
the case of the Q-learners, direct control was not available over all factors determining the
student's perception. Yet, the teacher could control some aspects of this perception, which
were found to be su�cient.

One might ask how representative our studies are of general PCMAS domains, and
therefore, how relevant is the insight they may provide. We have chosen these two domains
with the belief that they represent key aspects of the types of agents studied in AI. In
AI, we study dynamic agents that act to improve their state. These agents are likely to
use information to revise their assessment of the state of the world, much like the learning
agents, and will need to make decisions based on their current information, much like the
expected utility maximizers we have studied. Hence, typical multi-agent systems studied in
AI include agents that exhibit one or both of these properties.

While punishment and rewards provide the conceptual basis for designing the control-
lable agents, MDPs supply a natural model for many domains. In particular, MDPs are
suitable when uncertainty exists, stemming either from the other agents' choices or from
nature. As we showed in Section 7, at least in principle, we can use established techniques to
obtain strategies for the controllable agents when the problem can be phrased as a Markov
decision process. Using the MDP perspective in other cases would require more sophisti-
cates tools and a number of important challenges must be met �rst: (1) The assumptions
that the agent's state is fully observable and that the environment's state is fully observable
is unrealistic in many domains. When these assumptions are invalid, we obtain a partially
observable Markov decision process (POMDP) (Sondik, 1978). Unfortunately, although
POMDPs can be used in principle to obtain the ideal policy for our agents, current tech-
niques for solving POMDPs are limited to very small problems. Hence, in practice one will
have to resort to heuristic punishment and reward strategies. (2) In Section 7 we had only
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one controlling agent. This poses a natural challenge of generalizing tools and techniques
from MDPs to distributed decision making processes.

10. Summary and Related Work

This paper introduces the distinction between controllable and uncontrollable agents and the
concept of partially controlled multi-agent systems. It provides two problems in multi-agent
system design that naturally fall into the framework of PCMAS design and suggests concrete
techniques for in
uencing the behavior of the uncontrollable agents in these domains. This
work contributes to AI research by introducing and exploring a promising perspective on
system design and it contributes to DES research by considering two types of structural
assumptions on agents, corresponding to rational and learning agents.

The application of our approach to the enforcement of social behavior introduces a new
tool in the design of multi-agent systems, punishment and threats. We used this notion and
investigated it as part of an explicit design paradigm. Punishment, deterrence, and threats
have been studied in political science (Dixit & Nalebu�, 1991; Schelling, 1980); yet, in
di�erence to that line of work (and its related game-theoretic models), we consider the case
of a dynamic multi-agent system and concentrate on punishment design issues, such as the
question of minimizing the number of reliable agents needed to control the system. Unlike
much work in multi-agent systems, we did not assume all agents to be rational or all agents
to be law-abiding. Rather, we only assumed that the designer can control some of the agents
and that deviations from the social laws by the uncontrolled agents need to be rational.
Notice that the behavior of controllable agents may be considered irrational in some cases;
however, it will eventually lead to desired behavior for all the agents. Some approaches
to negotiations can be viewed as incorporating threats. In particular, Rosenschein and
Genesereth (1985) consider a mechanism making deals among rational agents, where agents
are asked to o�er a joint strategy to be followed by all agents and declare the move they
would take if there will be no agreement on the joint strategy. This latter move can be viewed
as a threat describing the implications of refusing the agent's suggested joint strategy. For
example, in the prisoner's dilemma setting an agent may propose joint cooperation and
threaten defecting otherwise. The work in the �rst part of this paper could be viewed
as examining how such a threat could be credible and e�ective in a particular context of
iterative multi-agent interactions.

As part of our study, we proposed embedded teaching as a situated teaching paradigm
suitable for modeling a wide range of teaching instances. We modeled the teacher and
the student as players in an iterated two-player game. We concentrated on a particular
iterative game, which we showed to be the most challenging game of its type. In our model,
the dynamics of the teacher-student interaction is made explicit, and it clearly delineated
the limits placed on the teacher's ability to in
uence the student. We showed that with
a detailed model of the student, optimal teaching policies can be theoretically generated
by viewing the teaching problem as a Markov decision process. The performance of the
optimal teaching policy serves as a bound on any agent's ability to in
uence this student.
We examined our ability to teach two types of reinforcement learners. In particular, we
showed that when an optimal policy cannot be used, we can use TFT as a teaching method.
In the case of Q-learners this policy was very successful. Consequently, we proposed a model
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that explains this success. Finally, we showed that even in those games in which teaching
is not challenging, it is nevertheless quite useful. Moreover, when our objective is more
than simply teaching the student, even those simpler domains present some non-trivial
choices. In the future we hope to examine other learning architectures and see whether the
lessons learned in this domain can be generalized, and whether we can use these methods
to accelerate learning in other domains.

A number of authors have discussed reinforcement learning in multi-agent systems.
Yanco and Stein (1993) examine the evolution of communication among cooperative rein-
forcement learners. Sen et al. (1994) use Q-learning to induce cooperation between two
block pushing robots. Matraic (1995) and Parker (1993) consider the use of reinforcement
learning in physical robots. They consider features of real robots, which are not discussed
in this paper. Shoham and Tennenholtz (1992) examine the evolution of conventions in a
society of reinforcement learners. Kittock (1994) investigates the e�ects of societal struc-
ture on multi-agent learning. Littman (1994) develops reinforcement learning techniques for
agents whose goals are opposed, and Tan (1993) examines the bene�t of sharing information
among reinforcement learners. Finally, Whitehead (1991) has shown that n reinforcement
learners that can observe everything about each other can decrease learning time by a factor
of n. However, the above work is not concerned with teaching, or with the question of how
much in
uence one agent can have over another. Lin (1992) is explicitly concerned with
teaching as a way of accelerating learning of enhanced Q-learners. He uses experience re-
play and supplies students with examples of how the task can be achieved. As we remarked
earlier, this teaching approach is di�erent from ours, since the teachers are not embedded
in the student's domain. Within game theory there is an extensive body of work that tries
to understand the evolution of cooperation in the iterated prisoner's dilemma and to �nd
good playing strategies for it (Eatwell et al., 1989). In that work both players have the
same knowledge, and teaching is not an issue.

Last but not least, our work has important links to work on conditioning and especially
operant conditioning in psychology (Mackintosh, 1983). In conditioning experiments an
experimenter tries to induce changes in its subjects by arranging that certain relationships
will hold in their environment, or by explicitly (in operant conditioning) reinforcing the
subjects' actions. In our framework the controlled agent plays a similar role to that of the
experimenter. Our work uses a control-theoretic approach to the related problem, while
applying it to two basic AI contexts.

The main drawback of our case studies is the simple domains in which they were con-
ducted. While this is typical of initial exploration of new problems, future work should try
to remove some of the limiting assumptions that our models incorporate. For example, in
the embedded teaching context, we assumed that there is no uncertainty about the out-
come of a joint action. Similarly, our model of multi-agent interaction in Section 3 is very
symmetric, assuming all agents can play all of the k roles in the game, that they are equally
likely to play each role, etc. Another assumption made was that malicious agents were
\loners" acting on their own, as opposed to a team of agents. Perhaps more importantly,
future work should identify additional domains that are naturally described in terms of
PCMAS and formalize a general methodology for solving PCMAS design problems.
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