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Let G be a simple connected graph. Suppose Δ � Δ1,Δ2, . . . ,Δl{ } an l-partition of V(G). A partition representation of a vertex
αw.r.tΔ is the l−vector (d(α,Δ1), d(α,Δ2), . . . , d(α,Δl)), denoted by r(α|Δ). Any partition Δ is referred as resolving partition if
∀αi ≠ αj ∈ V(G) such that r (αi|Δ)≠ r (αj|Δ). )e smallest integer l is referred as the partition dimension pd(G) of G if the
l-partition Δ is a resolving partition. In this article, we discuss the partition dimension of kayak paddle graph, cycle graph with
chord, and a graph generated by chain of cycles. It has been shown that the partition dimension of the said families of graphs
is constant.

1. Introduction and Preliminaries

)e concept of partition dimension is a natural general-
ization of metric dimension. It was proposed in [1]. )is
concept came from the study of metric dimension which
was defined independently in [2, 3]. )is parameter of a
graph was proved NP-complete problem given [4]. )e
metric dimension of a connected graph is based on the
distance between vertices, while partition dimension is
based on the distance between a vertex and a set containing
some vertices. Many researchers worked on this topic. A
significant number of papers were published and some of
them are given in [5–9]. )e problem of finding partition
dimension of a connected graph is still unsolved. )ere are
only some lower and upper bounds for the partition di-
mension of general connected graph available in the lit-
erature and the exact values are still open. An upper bound
for the partition dimension of a tree is given in [10]. )e
partition dimension of certain classes of graphs is given in
[11–13].

Graph theory is very vast field of applied and compu-
tational mathematics. )at is why most of the applied sci-
ences field extensively uses the graph theory. )e partition
dimension is also considered an applied topic of graph
theory, and some of them are Djokovic–Winkler relation
[14], strategies for the mastermind game [15], network
discovery and verification [16], and in chemistry to represent
the chemical compounds [17, 18]. In digital world, it is used
to recognize the pattern, in robotics, it used for image
processing, and it also plays a key role for themanagement of
hierarchical data structures [19]. However, the applications
of partition are still limited because the computational cost
to compute the partition dimension is very complex. Some
other applications of this concept is the navigation of robots
in networks, and for interest, few areas appear in these
literature [2, 20].

)e partition dimension of a graph can be constant, but
some graphs have bounded. Here, are some literature
works. Ahmed et al. [21] computed the metric dimension of
kayak paddle graph and cycle graph with chords and
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proved that adding an edge in a cycle graph will not affect
the metric dimension of a cycle graph. Mehreen et al. [5]
computed the partition dimension of fullerene graph is 3.
Rajan et al. [7] described the constant partition dimension
of hexagonal and honeycomb networks. Partition dimen-
sion of certain honeycomb-derived networks is computed
in [6]. )e partition dimension of some wheel-related
graphs is computed in [22]. Rodr̀ıguez-Velàzquez et al.
[8, 9] worked on the trees and unicyclic graphs and
computed the bounds on the partition dimension. For
more details, we refer to [23–26].

)e distance between two vertices v1, v2 ∈ V(G) is a
shortest path between them and is denoted by d(v1, v2). Let
Δ � Δ1, . . . ,Δl{ } be an l-partition of the vertex set V(G) and
r (v|Δ) � d(v,Δ1), d(v,Δ2), . . . , d(v,Δa){ } be an l-tuple
representing a unique code of v w.r.t to Δ. If all represen-
tation codes of the vertex set of the graph G are unique w.r.t
to Δ, then Δ is a resolving partition. )is partition with the
minimum value of l is referred as partition dimension of G
and is denoted by pd (G).

)is paper deals with the partition dimension of the
kayak paddle graph, a cycle graph with a chord, and a graph
generated by a chain of cycles. More precisely, we computed
the partition dimension of said families of graphs and it
turns out to be constant, i.e., 3.

Following theorems are very helpful in finding the
partition dimension of a connected graph.

Theorem 1 (see [1]). Let Π be a resolving partition of V(G)
of a graph G and u, v ∈ V(G). If d(u, w) � d(v, w) for all
vertices w ∈ V(G)/(u, v), then u and v belong to different
classes of Π.

Theorem 2 (see [1]). Let G be a simple and connected graph
of order n; then,

(i) pd(G) is 2 iff G is a path graph

(ii) pd(G) is n iff G is a complete graph

)e remaining article is managed as follows. In Section 2,
the partition dimension of kayak paddle graph is computed,
which is constant for all three parameters given in the
definition. In Section 3, the partition dimension of cycle
graph with chord is discussed, and in Section 4, we study
partition dimension of a family of graph generated by chain
of cycles. In the end, conclusion and references have been
given.

2. Kayak Paddle Graph

)is section deals with the graph generated by cycle, known
as kayak paddle graph, denoted by KP(x, y, z).)is family of
graphs can be constructed by considering two cycles of
length x and y and a path of length z with x, y≥ 3 and z≥ 2.
)e vertex set and edge set of kayak paddle graph are as
follows, respectively:

V(KP(x, y, z)) � α1, α2, . . . , αx{ }∪ β1, β2, . . . , βy{ }∪ c1, . . . , cz−1{ },
E(KP(x, y, z)) � αiαi+1: 1≤ i≤ x{ }∪ βiβi+1: 1≤ i≤y{ }∪ cici+1: 1≤ i≤ z − 2{ }∪ α1c1, cz−1β1{ }, (1)

where αx+1 � α1 and β1 � βy+1.
Figure 1 shows a kayak paddle graph KP(12, 8, 5) with

two cycles of length x � 12 and y � 8 and a path of length
z � 5 joining them.

2.1. Partition Dimension of Kayak Paddle Graph. In the
following result, partition dimension of the kayak paddle
graph generated by two cycles and a path graph has been
discussed.

Theorem 3. Let G � KP(x, y, z) be a kayak paddle graph
with x≥ 3, y≥ 4, and z≥ 2. 9en, pd(KP(x, y, z)) � 3.

Proof. To show that pd(KP(x, y, z)) � 3, we use double
inequality. First of all, we prove that pd(KP(x, y, z))≤ 3 by
constructing a resolving partition with three elements. For
this, consider the following cases on x and y:

(i) Case 1: when x � 2s and y � 2t and s, t≥ 2. We
claim Δ � Δ1,Δ2,Δ3{ } is a resolving set, where
Δ1 � αs{ }, Δ2 � βt{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,{
Δ2}, where q is any of the vertex of the type αi, βi, or
ci other than the vertices of Δ1 and Δ2. )en, Table 1
shows different representations of αε, βε, and cε

vertices with respect to resolving partition Δ, where
a � 1 when ε � s, b � 1 when ε � t, and a, b � 0,
otherwise.

(iii) Case 2: when x � 2s + 1, y � 2t and t≥ 2. )en, we
split x into the following three subcases:

Subcase 2.1: for x � 3, 5, we claim Δ � Δ1,Δ2,Δ3{ }
is a resolving partition with Δ1 � α2{ }, Δ2 � βt{ },
and Δ3 � q ∈ V(G)|q ∉ Δ1,Δ2{ }. )en, Table 2
shows different representations of αε, βε, and cε

with respect to partition Δ, where a � 1 when
ε � 2, b � 1 when ε � t, and a, b � 0, otherwise.
Subcase 2.2: for x � 7, we claim Δ � Δ1,Δ2,Δ3{ } is
a resolving partition with Δ1 � α3{ }, Δ2 � βt{ }, and
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Δ3 � q ∈ V(G)|q ∉ Δ1,Δ2{ }. )en, Table 3 shows
different representations of αε, βε, and cε with
respect to the partition Δ, where a � 1 when ε � 3,
b � 1 when ε � t, and a, b � 0, otherwise.
Subcase 2.3: for x � 2s + 1 and s≥ 4, we claim Δ �
Δ1,Δ2,Δ3{ } is a resolving partition Δ1 � αs{ },
Δ2 � βt{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,Δ2{ }. )en,
Table 4 shows different representations of αε, βε,
and cε with respect to the partition Δ, where a � 1
when ε � s, b � 1 when ε � t, and a, b � 0,
otherwise.

(iv) Case 3: when x � 2s + 1 and y � 2t + 1, then we
split x and y in the following 9 subcases:

Subcase 3.1: for x � 3 and y � 3, 5, we claim Δ �
Δ1,Δ2,Δ3{ } is a resolving partition with Δ1 � α2{ },
Δ2 � β2{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,Δ2{ }. )en,
Table 5 shows different representations of αε, βε,
and cε with respect to the partition Δ, where a �
b � 1 when ε � 2 and a, b � 0, otherwise.
Subcase 3.2: for x � 3 and y � 7, we claim Δ �
Δ1,Δ2,Δ3{ } is a resolving partition with Δ1 � α2{ },
Δ2 � β3{ }, Δ3 � q ∈ V(G)|q ∉ Δ1,Δ2{ }. )en, Ta-
ble 6 shows different representations of αε, βε, and
cε with respect to the partition Δ, where a � 1

when ε � 2, b � 1 when ε � 3, and a, b � 0,
otherwise.
Subcase 3.3: for x � 3 and y � 2t + 1 and t≥ 4, we
claim Δ � Δ1,Δ2,Δ3{ } is a resolving partition,
where Δ1 � α2{ }, Δ2 � βt{ }, and Δ3 � q ∈ V(G)|{
q ∉ Δ1,Δ2}. )en, Table 7 shows different repre-
sentations of αε, βε, and cε with respect to the
partition Δ, where a � 1 when ε � 2, b � 1 when
ε � t, and a, b � 0, otherwise.
Subcase 3.4: for x � 5 and y � 5 and t≥ 4, we claim
Δ � Δ1,Δ2,Δ3{ } is a resolving partition, where
Δ1 � α2{ }, Δ2 � β2{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,{
Δ2}. )en, Table 8 shows different representation
of αε, βε, and cε with respect to the partition Δ,
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Figure 1: A kayak paddle graph: KP(12, 8, 5).

Table 1: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: 1≤ ε≤ s s − ε t + z − 2 + ε a
αε: s + 1≤ ε≤ x ε − s 2s + t + z − ε 0
βε: 1≤ ε≤ t s + z − 2 + ε t − ε b
βε: t + 1≤ ε≤x 2t + s + z − ε ε − t 0
cε: 1≤ ε≤ z − 1 s + ε − 1 t − ε + z − 1 0

Table 2: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε t + z − 2 + ε a
αε: ε � x � 3 1 t + z 0
αε: ε � 3, 4, x � 5 ε − 2 t + z + 1 0
αε: ε � x � 5 2 t + z 0
βε: 1≤ ε≤ t z + ε t − ε b
βε: t + 1≤ ε≤y 2t + 2 + z − ε ε − t 0
cε: 1≤ ε≤ z − 1 1 + ε t − ε + z − 1 0

Table 3: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2, 3 3 − ε t + z − 2 + ε a
αε: ε � 4, 5 ε − 3 t + z + 2 0
αε: ε � 6, 7 3 t + z − ε + 7 0
βε: 1≤ ε≤ t z + ε + 1 t − ε b
βε: t + 1≤ ε≤y 2t + z − ε + 3 ε − t 0
cε: 1≤ ε≤ z − 1 ε + 2 t − ε + z − 1 0

Table 4: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: 1≤ ε≤ s s − ε t + z − 2 + ε a
αε: ε � s + 1, s + 2 ε − s s + t + z − 1 0
αε: s + 3≤ ε≤ 2s − 1 ε − s 2s + t + z − ε + 1 0
αε: 2s≤ ε≤x s 2s + t + z − ε + 1 0
βε: 1≤ ε≤ t s + z + ε − 2 t − ε b
βε: t + 1≤ ε≤y 2t + s + z − ε ε − t 0
cε: 1≤ ε≤ z − 1 ε + s − 1 t − ε + z − 1 0

Table 5: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε z + ε a
αε: ε � 3 1 z + 2 0
βε: ε � 1, 2 z + ε 2 − ε b
βε: ε � y � 3 z + 2 1 0
βε: ε � 3, 4, y � 5 z + 3 ε − 2 0
βε: ε � y � 5 z + 2 2 0
cε: 1≤ ε≤ z − 1 ε + 1 1 − ε + z 0

Table 6: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε z + ε + 1 a
αε: ε � 3 1 z + 3 0
βε: ε � 1, 2, 3 z + ε 3 − ε b
βε: ε � 4, 5 z + 4 ε − 3 0
βε: ε � 6, 7 z + 9 − ε 3 0
cε: 1≤ ε≤ z − 1 ε + 1 2 − ε + z 0
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where a � b � 1 when ε � 2 and otherwise a, b are
0.
Subcase 3.5: for x � 5 and y � 7 and t≥ 4, we claim
Δ � Δ1,Δ2,Δ3{ } is a resolving partition, where
Δ1 � α2{ }, Δ2 � β3{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,{
Δ2}. )en, Table 9 shows different representation
of αε, βε, and cε with respect to the partition Δ,
where a � 1 when ε � 2, b � 1 when ε � 3, and
a, b � 0, otherwise.
Subcase 3.6: for x � 5 and y � 2t + 1 and t≥ 4, we
claim Δ � Δ1,Δ2,Δ3{ } is a resolving partition,
where Δ1 � α2{ }, Δ2 � βt{ }, and Δ3 � q ∈ V(G)|{
q ∉ Δ1,Δ2}. )en, Table 10 shows different rep-
resentation of αε, βε, and cε with respect to the
partition Δ, where a � 1 when ε � 2, b � 1 when
ε � t, and a, b � 0, otherwise.
Subcase 3.7: for x � 7 and y � 7, we claim Δ �
Δ1,Δ2,Δ3{ } is a resolving partition, where
Δ1 � α3{ }, Δ2 � β3{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,{
Δ2}.)en, Table 11 shows different representations
of αε, βε, and cε with respect to the partition Δ,
where a � b � 1 when ε � 3 and a, b � 0,
otherwise.
Subcase 3.8: for x � 7 and y � 2t + 1 and t≥ 4, we
claim Δ � Δ1,Δ2,Δ3{ } is a resolving with
Δ1 � α3{ }, Δ2 � βt{ }, and Δ3 � q ∈ V(G)|q ∉ Δ1,{
Δ2}.)en, Table 12 shows different representations
of αε, βε, and cε with respect to the partition Δ,
where a � 1 when ε � 3, b � 1 when ε � t, and
a, b � 0, otherwise.
Subcase 3.9: for x � 2s + 1 and y � 2t + 1 and
s, t≥ 4, we claim Δ � Δ1,Δ2,Δ3{ } is a resolving 3-
partition with Δ1 � αs{ }, Δ2 � βt{ }, and
Δ3 � q ∈ V(G)|q ∉ Δ1,Δ2{ }. )en, Table 13 shows
different representation of αε, βε, and cε with re-
spect to the partition Δ, where a � 1 when ε � s,
b � 1 when ε � t, and a, b � 0, otherwise.

Table 7: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε t + z + ε − 2 a
αε: ε � 3 1 t + z 0
βε: 1≤ ε≤ t z + ε t − ε b
βε: ε � t + 1, t + 2 t + z + 1 ε − t 0
βε: t + 3≤ ε≤ 2t − 1 2t + z − ε + 3 ε − t 0
βε: 2t≤ ε≤y 2t + z − ε + 3 t 0
cε: 1≤ ε≤ z − 1 1 + ε t − ε + z − 1 0

Table 8: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε z + ε a
αε: ε � 3, 4 ε − 1 z + 3 0
αε: ε � 5 2 z + 2 0
βε: ε � 1, 2 z + ε 2 − ε b
βε: ε � 3, 4 z + 3 ε − 2 0
βε: ε � 5 2 + z 2 0
cε: 1≤ ε≤ z − 1 1 + ε z − ε + 1 0

Table 9: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε z + ε + 1 a
αε: ε � 3, 4 ε − 1 z + 4 0
αε: ε � 5 2 z + 3 0
βε: ε � 1, 2, 3 z + ε 3 − ε b
βε: ε � 4, 5 z + 4 ε − 3 0
βε: ε � 5 z + 9 − ε 3 0
cε: 1≤ ε≤ z − 1 1 + ε z − ε + 2 0

Table 10: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2 2 − ε t + z + ε − 2 a
αε: ε � 3, 4 ε − 1 t + z + 1 0
αε: ε � 5 2 z + t 0
βε: 1≤ ε≤ t z + ε t − ε b
βε: ε � t + 1, t + 2 t + z + 1 ε − t 0
βε: t + 3≤ ε≤ 2t − 1 2t + z − ε + 3 t 0
cε: 1≤ ε≤ z − 1 1 + ε z − ε + 1 0

Table 11: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2, 3 3 − ε z + ε + 1 a
αε: ε � 4, 5 ε − 3 z + 5 0
αε: ε � 6, 7 3 z + 10 − ε 0
βε: ε � 1, 2, 3 z + 1 + ε 3 − ε b
βε: ε � 4, 5 z + 5 ε − 3 0
βε: ε � 6, 7 z + 10 − ε 3 0
cε: 1≤ ε≤ z − 1 2 + ε z − ε + 2 0

Table 12: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: ε � 1, 2, 3 3 − ε t + z + ε − 2 a
αε: ε � 4, 5 ε − 3 t + z + 2 0
αε: ε � 6, 7 3 t + z − ε + 7 0
βε: 1≤ ε≤ t z + 1 + ε t − ε b
βε: ε � t + 1, t + 2 t + z + 2 ε − t 0
βε: t + 3≤ ε≤ 2t − 1 2t + z − ε + 4 ε − t 0
βε: 2t≤ ε≤y 2t + z − ε + 4 t 0
cε: 1≤ ε≤ z − 1 2 + ε t + z − ε − 1 0

Table 13: Distance codes for the vertices of KP(x, y, z) w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
αε: 1≤ ε≤ s s − ε t + z + ε − 2 a
αε: ε � s + 1, s + 2 ε − s t + s + z − 1 0
αε: s + 3≤ ε≤ 2s − 1 ε − s 2s + t + z − ε + 1 0
αε: 2s≤ ε≤x s 2s + t + z − ε + 1 0
βε: 1≤ ε≤ t s + z − 1 + ε t − ε b
βε: ε � t + 1, t + 2 s + 2t + z − ε + 1 ε − t 0
βε: t + 3≤ ε≤ 2t − 1 s + 2t + z − ε + 1 ε − t 0
βε: 2t≤ ε≤y s + 2t + z − ε + 1 t 0
cε: 1≤ ε≤ z − 1 s − 1 + ε t + z − ε − 1 0
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Since all the vertices αε, βε, and cε have different rep-
resentations with respect to the partition Δ, we obtain

pd(KP(x, y, z))≤ 3. (2)

Conversely. To prove that pd(KP(x, y, z))≥ 3, suppose, on
contrary, pd(KP(x, y, z)) � 2. It is not possible because
pd(G) � 2 if and only G is a path graph. Our assumption is
wrong. )erefore,

pd(KP(x, y, z))≥ 3. (3)

Hence, from inequalities (2) and (3), we conclude that

pd(KP(x, y, z)) � 3. (4)
□

3. Partition Dimension of Cycle with
Chord Graph

In this section, we consider a cycle with chord graph,
denoted by Cmn . )is graph is constructed by joining any two
nonadjacent vertices of the cycle. A graph of cycle with
chord with vertex set V(Cmn ) � v1, v2, . . . , vn{ } and E(Cmn ) �
vivi+1: 1≤ i≤ n{ }∪ v1vm+1{ } is shown in Figure 2. To find the
partition dimension of cycle with chord graph Cmn , it suffices
to consider t≤ ⌊(n/2)⌋ for given value of n.

)e partition dimension of the cycle with chord graph is
given in the following result.

Theorem 4. Let Cmn be a cycle with chord graph, n≥ 4 and
2≤m≤ n − 2. 9en, pd(Cmn ) � 3.

Proof. To show that pd(Cmn ) � 3, first, we will prove
pd(Cmn )≤ 3 by constructing a resolving partition having 3
elements. For this, we split n and m into the following two
cases:

(i) Case 1: for n � 2t and m � 2s, we claim
Δ � Δ1,Δ2,Δ3{ } is a resolving partition with
Δ1 � vt+s{ }, Δ2 � vt+s+1{ }, and
Δ3 � vε ∈ V(G)|vε ∉ Δ1,Δ2{ }. )en, Table 14 shows
different representations of vε with respect to the
partition Δ, where a � 1 when ε � t + s and t + s + 1
and 0, otherwise.

(iii) Case 2: when n � 2t + 1 and m � 2s + 1, we claim
that Δ � Δ1,Δ2,Δ3{ } is a resolving partition with
Δ1 � vt+s+1{ }, Δ2 � vt+s+2{ }, and
Δ3 � vε ∈ V(G)|vε ∉ Δ1,Δ2{ }. )en, Table 15 shows
different representations of vε with respect to the
partition Δ, where a � 1 when ε � t + s + 1 and t +
s + 2 and 0, otherwise.

Case 2.1: when n � 2t and m � 2s + 1, where a � 1
when ε � t + s + 1 and t + s + 2 and 0, otherwise.
Table 16 shows different representations of vε with
respect to the partition Δ.

Case 2.2: when n � 2t + 1 and m � 2s, where a � 1
when ε � t + s + 1 and t + s + 2 and 0, otherwise.
Table 17 shows different representations of vε with
respect to the partition Δ.

Since all the vertices of Cmn have different representations
with respect to the partition Δ, therefore,

pd Cmn( )≤ 3. (5)

Conversely. To prove that pd(Cmn )≥ 3, suppose, on the
contrary, pd(Cmn ) � 2. It is not possible because pd(G) � 2 if
and only G is a path graph. )erefore,

pd Cmn( )≥ 3. (6)

Hence, from inequalities (5) and (6), we can conclude
that

v1
v2

v3

v4

v5

v6

v7

v8v9
v10

v11

v12

v13

v14

v15

v16

Figure 2: A cycle with chord graph C4
16.

Table 14: Distance codes for the vertices of Cmn w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
vε: 1≤ ε≤ s t − s − 1 + ε t − s + ε − 1 0
vε: s + 1≤ ε≤ t + s t + s − ε t + s − ε + 1 a
vε: t + s + 1≤ ε≤ n ε − t − s ε − t − s − 1 a

Table 15: Distance codes for the vertices of Cmn w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
vε: 1≤ ε≤ s + 1 t − s − 1 + ε t − s + ε − 1 0
vε: s + 2≤ ε≤ t + s + 1 t + s − ε + 1 t + s − ε + 2 a
vε: t + s + 2≤ ε≤ n ε − t − s − 1 ε − t − s − 2 a

Table 16: Distance codes for the vertices of Cmn w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
vε: 1≤ ε≤ s + 1 t − s − 1 + ε t − s + ε − 2 0
vε: s + 2≤ ε≤ t + s + 1 t + s − ε + 1 t + s − ε + 2 a
vε: t + s + 2≤ ε≤ n ε − t − s − 1 ε − t − s − 2 a
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pd Cmn( ) � 3. (7)
□

4. Cycles’ Chain Graph

)is section deals with the graph generated by taking and
joiningm copies of cycles andm − 1 copies of path of length
1 alternately. )is graph is denoted by CCmn with vertex set
V(G) � a1, a2, . . . , amn{ } and edge set E(G) � aia{
i+1: 1≤ i≤ n}∪ a(m−1)n+{
ia(m−1)n+i+1: m≥ 2}∪ a(j−1)n+2a(j+1)n: 1≤ j≤m − 1{ }, where

m represents the number of cycles and n represents the
number of vertices in a cycle, and for each cycle,
amn+1 � a(m−1)n+1, i.e., for m � 1 and an+1 � a1 and for
m � 2a2n+1 � an+1. )e order and size of the chain graph is
κ � |V(CCmn )| � nm and |E(CCmn )| � m(n + 1) − 1, respec-
tively. Figure 3 shows chain of cycles’ graph CCmn .

4.1. Partition Dimension of Chain of Cycles’ Graph CCmn .
In this section, we study the partition dimension of graph
generated by chain of cycles CCmn . )e following theorem
presents the partition dimension of the graph CCmn .

1 2 m

a1

a2

an

an–1

an–2

a3

a4

a5

an+1

an+2

an+3

an+4

an+5

a2n–2

a2n–1

a2n

a

a

a

a

a

a

a

a

a

a

a

a

a

aκ–2

aκ–1

aκ

κ–n–2

κ–n–1

κ–n

κ–n+2

κ–n+1

κ–2n+2

κ–2n+3

κ–2n+4

κ–n+5

κ–n+4

κ–n+3

κ–2n+5

m–1

κ–2n+1

Figure 3: Chain of cycles’ graph CCmn .

Table 18: Distance codes for ak w.r.t Δ1.
d(·, ·) Δ1
ak: k � 1, 2, 3, . . . , ⌈(n + 1/2)⌉ k − 1
ak: k � ⌈(n + 1/2)⌉ + 1, ⌈(n + 1/2)⌉ + 2, . . . , n n − k + 1
ak: k ≡ 1, 2, 3, . . . , ⌊(n − 1/2)⌋(modn) and k≥ n + 1 3⌊(k/n)⌋ + k − 1 − n⌊(k/n)⌋
ak: k ≡ 0, ⌊(n − 1/2)⌋ + 1, ⌊(n − 1/2)⌋ + 2, . . . , n − 1(modn) and
n + 1≤ k≤ 2n n⌊(k/n)⌋ + 2 − k

ak: k ≡ 0, ⌊(n − 1/2)⌋ + 1, ⌊(n − 1/2)⌋ + 2, . . . , n − 1(modn) and
k> 2n n⌊(k + ⌊(n − 1/2)⌋ + 1/n)⌋ − k + 2 + 3(⌊(k + ⌊(n − 1/2)⌋ + 1/n)⌋ − 2)

Table 19: Distance codes for ak w.r.t Δ2, m � 2.

d(·, ·) Δ1
ak: k � 1 3
ak: k � 2, 3, . . . , ⌊(n + 2/2)⌋ k
ak: k � ⌊(n + 2/2)⌋ + 1, . . . , n n − k + 4

Table 20: Distance codes for ak w.r.t Δ2, m≥ 3.
d(·, ·) Δ2
ak: k � 1 3(⌊(n(m − 1) + 1/n)⌋ − 1) + k
ak: k � 2, 3, . . . , ⌊(n + 2/2)⌋ 3(⌊(k/n)⌋ − 1) + k
ak: k � ⌊(n + 2/2)⌋ + 1, . . . , n and k≥ n + 1 n − k + 4 + 3(⌊(n(m − 1) + 1/n)⌋ − 1)

Table 17: Distance codes for the vertices of Cmn w.r.t Δ.
d(·, ·) Δ1 Δ2 Δ3
vε: 1≤ ε≤ s t − s + ε t − s + ε − 1 0
vε: ε � s + 1 t t 0
vε: s + 2≤ ε≤ t + s + 1 t + s − ε + 1 t + s − ε + 2 a
vε: t + s + 2≤ ε≤ n ε − t − s − 1 ε − t − s − 2 a
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Theorem 5. If n≥ 5 and m≥ 2, then pd(CCmn ) � 3.

Proof. First, we prove pd(CCmn )≤ 3 by constructing a re-
solving partition set Δ � Δ1,Δ2,Δ3{ }Δ1 � a1{ },
Δ2 � aκ−n+1{ }, and Δ3 � ak ∈ V(G)|ak ∉ Δ1,Δ2{ } from the
vertex set of CCmn . We assume the following cases on the
vertex set of G � CCmn and on the copies of cycle graph, i.e.,
m.

Table 18 shows different representations of ak with re-
spect to the partition Δ1.

Tables 19–21 show different representations of ak with
respect to the partition Δ2.

)ird vector representations are

r ak|Δ3( ) � 1, k � 1, κ − n + 1,

0, otherwise.
{ (8)

Hence, it follows from the above discussion that
pd(CCmn )≤ 3 because all the vertices of CCmn have unique
representations with respect to resolving partition set Δ.

)e reverse inequality pd(CCmn )≥ 3 can be easily fol-
lowed from the fact that partition dimension of the graph G
is 2 if and only if G is a path graph. )us, we conclude that,
for n≥ 5 and m≥ 2,

pd CCmn( ) � 3. (9)
□

5. Conclusion and Discussion

In this paper, we computed partition dimension of cycle-related
graph such as paddle graph and cycle graph with chord and
chain of cycles’ graph. It has been shown that partition di-
mension of the aforementioned graph is 3. It was proved that
the partition dimension of the cycle graph [1] is 3. We conclude
that, by making small or significant changes in the cycle graph,
do not affect its partition dimension.
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“On the partition dimension of trees,” Discrete Applied
Mathematics, vol. 166, pp. 204–209, 2014.
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