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Abstract. In this paper, we introduce a partitioning subsemimodule of a semimodule

over a semiring which is useful to develop the quotient structure of semimodule. Indeed

we prove : 1) The quotient semimodule M/N(Q) is essentially independent of choice of Q.

2) If f : M → M
′
is a maximal R-semimodule homomorphism, then M/kerf(Q)

∼= M
′
. 3)

Every partitioning subsemimodule is subtractive. 4) Let N be a Q-subsemimodule of an

R-semimodule M . Then A is a subtractive subsemimodule of M with N ⊆ A if and only

if A/N(Q∩A) = {q +N : q ∈ Q ∩A} is a subtractive subsemimodule of M/N(Q).

1. Introduction

For the definitions of monoid and semiring we refer [ 5 ]. All semirings in this
paper are commutative with identity element. Z+

0 will denote the set of all non-
negative integers. An element a of a monoid (M, ∗) is called idempotent if a∗a = a.
An ideal I of a semiring R is called a subtractive ideal (k-ideal) if a, a+b ∈ I, b ∈ R,
then b ∈ I. An ideal I of a semiring R is called a partitioning ideal (=Q-ideal) if
there exist a subset Q of R such that:

1) R = ∪{q + I : q ∈ Q}.

2) If q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) ̸= ∅ ⇔ q1 = q2.

Definition 1.1. Let R be a semiring. A left R-semimodule is a commutative
monoid (M,+) with additive identity 0M for which we have a function R×M → M ,
defined by (r, x) 7→ rx called scalar multiplication, which satisfies the following
conditions for all elements r and r

′
of R and all elements x and y of M :

1) (rr
′
)x = r(r

′
x);

2) r(x+ y) = rx+ ry;

3) (r + r
′
)x = rx+ r

′
x;

4) 1Rx = x;
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5) r0M = 0M = 0Rx.

A nonempty subset N of a left R-semimodule M is called subsemimodule of M if
N is closed under addition and closed under scalar multiplication.

Throughout this paper by an R-semimodule we mean a left semimodule over a
semiring R. Every semiring R is (Z+

0 ,+, ·)-semimodule ([5], P.151).

Definition 1.2. If R is a semiring and M and M
′
are R-semimodules, then a

function f from M to M
′
is an R-semimodule homomorphism if and only if the

following conditions are satisfied:

1) f(x+ y) = f(x) + f(y) for all x, y ∈ M ;

2) f(rx) = rf(x) for all x ∈ M and r ∈ R.

An R-semimodule homomorphism f from an R-semimodule M to an R-semimodule
M

′
is called isomorphism if f is one to one and onto.

The following lemma which is similar to lemma([6], Lemma 1) is easy to prove.

Lemma 1.3. Let N be a subsemimodule of an R-semimodule M and x, y ∈ M
such that x + N ⊆ y + N . Then x + z + N ⊆ y + z + N and rx + N ⊆ ry +
N for all z ∈ M , r ∈ R.

2. Partitioning Subsemimodules

In this section we extend some definitions and results of Allen [1], [2] and Atani
[3] to semimodules over semirings.

Definition 2.1. A subsemimodule N of an R-semimodule M will be called a
partitioning subsemimodule (= Q-subsemimodule) if there exists a subset Q of M
such that

1) M = ∪{q +N : q ∈ Q}.

2) if q1, q2 ∈ Q, then (q1 +N) ∩ (q2 +N) ̸= ∅ ⇔ q1 = q2.

Clearly, every semiring is semimodule over itself. Hence every partitioning ideal
of a semiring R is partitioning subsemimodule of an R-semimodule R.

Lemma 2.2. Let N be a partitioning subsemimodule of an R-semimodule M . If
x ∈ M , then there exists a unique q ∈ Q such that x+N ⊆ q +N . Hence x = q +
a for some a ∈ N .

Proof. Trivial. 2

Now we extend a result of P. J. Allen ([2], Lemma 36) for semirings to semi-
modules over semirings.

Lemma 2.3. If N is a partitioning subsemimodule of an R-semimodule M , then
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there exists a unique q0 ∈ Q such that N = q0 + N .

Proof. Since N is a partitioning subsemimodule, by Lemma 2.2, there exists a
unique q0 ∈ Q such that 0 = q0 + a0 for some a0 ∈ N . If b ∈ N , then by Lemma
2.2, there exists a unique q ∈ Q such that b = q + a for some a ∈ N . Therefore, q
+ a = b = b + 0 = b + q0 + a0 ∈ q0 + N . Hence N ⊆ q0 + N . Again by Lemma
2.2, there exists a unique q

′ ∈ Q such that q0 + q0 = q
′
+ c for some c ∈ N . Now

q0 = q0 + 0 = q0 + q0 + a0 = q
′
+ c + a0 ∈ q

′
+ N . Also q0 ∈ q0 + N . Hence (q

′

+ N) ∩ (q0 + N) ̸= ∅ and so q0 = q
′
. Thus, q0 + N = q

′
+ c + a0 + N = q0 + c

+ a0 + N = c+ q0 + a0 +N = c+N ⊆ N . Now N = q0 + N where q0 ∈ Q is a
unique element. 2

Let N be a partitioning subsemimodule of an R-semimodule M . Then M/N(Q)

= {q + N : q ∈ Q} forms an R-semimodule under the following addition “⊕”and
scalar multiplication “⊙”, (q1 + N) ⊕ (q2 + N) = q3 + N where q3 ∈ Q is a unique
element such that q1 + q2 + N ⊆ q3 + N and r ⊙ (q1 + N) = q4 + N where q4 ∈
Q is a unique element such that rq1 + N ⊆ q4 + N . This R-semimodule M/N(Q)

will be called a quotient semimodule of M by N and denoted by (M/N(Q) , ⊕ , ⊙)
or just M/N(Q). By Lemma 2.3, there exists a unique q0 ∈ Q such that q0 + N
= N . This q0 + N is the zero element of M/N(Q). If N is a subsemimodule of an
R-semimodule M , then it is possible that N can be considered to be a partitioning
subsemimodule with respet to many different subsets Q of M . However, the next
theorem proves that the structure (M/N(Q) , ⊕ , ⊙) is essentially independent of
Q.

Theorem 2.4. If N is a partitioning subsemimodule with respect to two subsets Q1

and Q2 of an R-semimodule M , then M/N(Q1)
∼= M/N(Q2).

Proof. Define f : M/N(Q1) → M/N(Q2) by f(q1 +N) = q2 + N where q2 ∈ Q2 is a
unique such that q1 + N ⊆ q2 + N . Clearly, f is well defined.
1) Let q1 + N , q

′

1 + N ∈ M/N(Q1) and r ∈ R. Therefore,

(i) f
(
(q1 +N)⊕ (q1

′
+N)

)
= f(q1

′′
+N) = q2 +N

where q1
′′ ∈ Q1 is a unique such that q1 + q1

′
+ N ⊆ q1

′′
+ N and q2 ∈ Q2 is a

unique such that q1
′′
+ N ⊆ q2 + N . Also

(ii) f(q1 +N)⊕ f(q1
′
+N) = (q2

′
+N)⊕ (q2

′′
+N) = q2

′′′
+N

where q2
′
, q2

′′ ∈ Q2 are unique such that q1 + N ⊆ q2
′
+ N and q1

′
+ N ⊆ q2

′′
+

N and q2
′′′ ∈ Q2 is a unique such that q2

′
+ q2

′′
+ N ⊆ q2

′′′
+ N . Now

(iii) q1 + q1
′
∈ q1 + q1

′
+N ⊆ q1

′′
+N ⊆ q2 +N.

Also by Lemma 1.3,

q1 +N ⊆ q2
′
+Nand q

′

1 +N ⊆ q
′′

2 +N ⇒ q1 + q1
′
+N ⊆ q2

′
+ q1

′
+N

⊆ q2
′
+ q2

′′
+N

⊆ q2
′′′
+N.
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Therefore,

(iv) q1 + q1
′
∈ q1 + q1

′
+N ⊆ q2

′′′
+N.

From (iii) and (iv), q2 = q2
′′′
. Hence by (i) and (ii), f

(
(q1 + N) ⊕ (q1

′
+ N)

)
= f(q1 + N) ⊕ f(q1

′
+ N). Similarly, it can be shown that f

(
r ⊙ (q1 + N)

)
=

r ⊙ f(q1 +N).
2) Let q2 + N ∈ M/N(Q2). Since q2 ∈ M , there exists a unique q1 ∈ Q1 such that

q2 + N ⊆ q1 + N . But then there exists a unique q2
′ ∈ Q2 such that q1 + N ⊆

q2
′
+ N . Now q2 = q2

′
implies q2 + N = q2

′
+ N and hence f(q1 +N) = q2 + N .

So f is onto.
3) Suppose that f(q1 +N) = f(q1

′
+N) = q2 + N say, where q2 ∈ Q2 is a unique

such that q1 + N ⊆ q2 + N and q1
′
+ N ⊆ q2 + N . Choose t1 ∈ Q1 such

that q2 + N ⊆ t1 + N . But then q1 = t1 = q1
′
. So q1 + N = q1

′
+ N . Thus

f : M/N(Q1) → M/N(Q2) is an isomorphism. 2

Theorem 2.5. If N is a partitioning subsemimodule with respect to two subsets Q1

and Q2 of an R-semimodule M , then M/N(Q1) and M/N(Q2) are equal as sets.

Proof. Let q1 + N ∈ M/N(Q1). Then q1 ∈ Q1 ⊆ M and hence by Lemma 2.2, there
exists a unique q2 ∈ Q2 such that q1 + N ⊆ q2 + N . Again there exists a unique
q3 ∈ Q1 such that q2 + N ⊆ q3+N . Now q1 + N = q3 + N = q2 + N ∈ M/N(Q2).
So M/N(Q1) ⊆ M/N(Q2). Similarly, M/N(Q2) ⊆ M/N(Q1). 2

Example 2.6. The monoid M = (Z6,+6) is semimodule over (Z+
0 ,+, ·), ([5],

P.151). Then clearly N = {0, 2, 4} is a partitioning subsemimodule of M with
respect to three sets Q1 = {0, 1}, Q2 = {0, 3}, Q3 = {0, 5} where M/N(Q1) = {0+
N, 1 +N} = {{0, 2, 4}, {1, 3, 5}}, M/N(Q2) = {0 +N, 3 +N} = {{0, 2, 4}, {1, 3, 5}}
and M/N(Q3) = {0 + N, 5 + N} = {{0, 2, 4}, {1, 3, 5}}. Here M/N(Q1), M/N(Q2)

and M/N(Q3) are equal as sets. But M/N(Q1), M/N(Q2) and M/N(Q3) considered

as (Z+
0 ,+, ·)-semimodules are not equal because 1 + N ∈ M/N(Q1) but 1 + N /∈

M/N(Q2) and 1 +N /∈ M/N(Q3) as 1 /∈ Q2 and 1 /∈ Q3.

Definition 2.7. An onto R-semimodule homomorphism f : M → M
′
will be called

maximal if for each a ∈ M
′
there exists a unique qa ∈ f−1({a}) such that x + kerf

⊆ qa + kerf , for each x ∈ f−1({a}) where kerf = {x ∈ M : f(x) = 0M ′}.

Clearly every R-module homomorphism is a maximal R-semimodule homomor-
phism.
P. J. Allen ([1], Lemma 14, Lemma 15 and Theorem 16) has proved the results for
semirings. However, we extend the following Lemma 2.8, Lemma 2.11 and Theorem
2.12 for semimodules over semirings.

Lemma 2.8. If f : M → M
′
is a maximal R-semimodule homomorphism, then

kerf is a partitioning subsemimodule of M .

Proof. Since f is maximal, for each a ∈ M
′
there exists a unique qa ∈ f−1({a})
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such that x + kerf ⊆ qa + kerf for all x ∈ f−1({a}). Take Q = {qa : a ∈ M
′}.

Clearly ∪{qa + kerf : qa ∈ Q} ⊆ M . On the other hand, if m ∈ M , then f(m) ∈
M

′
. Now m ∈ f−1({f(m)}) implies m ∈ m + kerf ⊆ qf(m) + kerf . Hence M ⊆

∪ {qa+kerf : qa ∈ Q}. Now for qa, qb ∈ Q, suppose that (qa+kerf) ∩ (qb+kerf)
̸= ∅. Let qa + k = qb+k

′
for some k, k

′ ∈ kerf . Now a = f(qa)+ f(k) = f(qa+k)
= f(qb + k

′
) = f(qb) + f(k

′
) = b. Hence qa = qb. Thus, kerf is a partitioning

subsemimodule of M . 2

The converse of Lemma 2.8 is not true.

Example 2.9. Let M = (Z0
+,max), M

′
= ({0, 1},max) and R = (Z+

0 ,+, ·). Then
M , M

′
are R-semimodules. Define f : M → M

′
by

f(x) =

{
0 if x ≤ 5

1 if x > 5

Clearly, f is an onto R-semimodule homomorphism. Also kerf = {0, 1, 2, 3, 4, 5} is
a partitioning subsemimodule of M with Q = {0, 6, 7, . . . }. For 1 ∈ M

′
there cannot

exists any q1 ∈ f−1({1}) such that x + kerf ⊆ q1 + kerf for all x ∈ f−1({1}). So
f is not a maximal R-semimodule homomorphism.

Example 2.10. Let M = (Z+
0 ,+), M

′
= (Z6,+6) and R = (Z+

0 ,+, ·). Then M ,

M
′
are R-semimodules. Define f : M → M

′
by f(x) = r where x ≡ r (mod

6), 0 ≤ r ≤ 5. Clearly, f is onto R-semimodule homomorphism. Also kerf =
{0, 6, 12, 18, . . . }. For any a ∈ M

′
there exists a unique qa = a ∈ f−1({a}) such that

x + kerf ⊆ qa + kerf for all x ∈ f−1({a}). Hence f is a maximal R-semimodule
homomorphism.

Lemma 2.11. Let M , M
′
, f and Q be as stated in Lemma 2.8. Let qa, qb, qc ∈ Q

and r ∈ R, then

(i) If qa + qb + kerf ⊆ qc + kerf , then a+ b = c.

(ii) If rqa + kerf ⊆ rqc + kerf , then ra = rc.

Proof. (i) Since qa + qb ∈ qa + qb + kerf ⊆ qc + kerf , qa + qb = qc + k for some
k ∈ kerf . Now a + b = f(qa)+ f(qb) = f(qa+ qb) = f(qc+ k) = f(qc) + f(k) = c.
(ii) Since rqa ∈ rqa + kerf ⊆ rqc + kerf , rqa = rqc + k

′
for some k

′ ∈ kerf . Now
ra = rf(qa) = f(rqa) = f(rqc + k

′
) = f(rqc) + f(k

′
) = rf(qc) = rc 2

Theorem 2.12. If f : M → M
′
is a maximal R-semimodule homomorphism, then

M/kerf(Q)
∼= M

′
where Q is as stated in Lemma 2.8.

Proof. By Lemma 2.8, kerf is a partitioning subsemimodule of M . Define f :
M/kerf(Q) → M

′
by f(qa+ kerf) = f(qa) = a for each qa ∈ Q. If qa + kerf , qb +

kerf ∈ M/kerf(Q), then f(qa + kerf) = f(qb + kerf) ⇔ a = b ⇔ qa + kerf = qb
+ kerf . Hence f is well defined and one-one. Since f is maximal, f is onto. For qa
+ kerf , qb + kerf ∈ M/kerf(Q), r ∈ R, consider (i) f

(
(qa + kerf)⊕ (qb + kerf)

)
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= f(qc + kerf) = c where qc is a unique element in Q such that qa + qb + kerf ⊆
qc + kerf . By Lemma 2.11, a + b = c. Now f(qa + kerf) + f(qb + kerf) = a +
b = c = f

(
(qa + kerf)⊕ (qb + kerf)

)
. (ii) f(r ⊙ (qa + kerf)) = f(qd + kerf) = d

where qd is a unique element in Q such that rqa + kerf ⊆ qd + kerf . By Lemma
2.11, ra = d. Therefore, rf(qa + kerf) = ra = d = f

(
r⊙ (qa + kerf)

)
. Hence f is

an R-semimodule isomorphism. Thus, M/kerf(Q)
∼= M

′
. 2

3. Subtractive subsemimodules

In this section we extend some results of S. E. Atani [4] to semimodules over
semirings.

Definition 3.1. A subsemimodule N of an R-semimodule M is called a subtractive
subsemimodule (= k-subsemimodule) if x, x+ y ∈ N , y ∈ M then y ∈ N .

Theorem 3.2. Every partitioning subsemimodule N of an R-semimodule M is
subtractive.

Proof. Since N is a partitioning subsemimodule, by Lemma 2.3, N = q0 + N for
some q0 ∈ Q. Let x, x + y ∈ N where y ∈ M . Therefore x = q0 + α, x + y = q0 +
β for some α, β ∈ N . By Lemma 2.2, there exists a unique q

′ ∈ Q such that y = q
′

+ λ for some λ ∈ N . Now y + x = q
′
+ λ + x ∈ q

′
+ N and x+ y ∈ N = q0 +N .

Hence (q0 + N) ∩ (q
′
+ N) ̸= ∅ and so q0 = q

′
. Thus, y = q

′
+ λ ∈ q

′
+ N = q0

+ N = N . 2

If (M,+) is an idempotent commutative monoid, then M is (Z+
0 , +, ·)-

semimodule with scalar multiplication defined by rm = 0 if r = 0 and rm = m
if r > 0 for all r ∈ Z+

0 and m ∈ M ([5] , P.151). In a semiring R = (Z+
0 , gcd, lcm),

the ideal 2Z+
0 = {0, 2, 4, 6, . . . } of R is subtractive but not partitioning ([7]).

The converse of Theorem 3.2 is not true.

Example 3.3. Let M = (Z+
0 , gcd) and R = (Z+

0 ,+ , ·). Clearly, M is a
commutative monoid in which every element is idempotent. Hence M is an R-
semimodule in which N = {0, 2, 4, 6, . . . } is a subtractive subsemimodule of M but
not a partitioning subsemimodule.

S. E. Atani ([4], Lemma 2.1, Proposition 2.2 and Theorem 2.3) has proved the
results for semirings. However, we extend the following Lemma 3.4, Theorem 3.5
and Theorem 3.6 for semimodules over semirings.

Lemma 3.4. Let N be a Q-subsemimodule of an R-semimodule M . If A is a
subtractive subsemimodule of M such that N ⊆ A, then N is a Q∩A-subsemimodule
of A.

Proof. It is sufficient to show that A = ∪{q +N : q ∈ Q ∩ A}. Clearly, ∪{q +N :
q ∈ Q∩A} ⊆ A. On the other hand, let x ∈ A. Since N is a Q-subsemimodule, by
Lemma 2.2, x = q + a for some q ∈ Q, a ∈ N ⊆ A. Then q ∈ Q ∩ A, since A is a
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subtractive subsemimodule. So we have an equality. 2

Theorem 3.5. Let N be a Q-subsemimodule, A be a subtractive subsemimodule of
an R-semimodule M with N ⊆ A. Then A/N(Q∩A) = {q + N : q ∈ Q ∩ A} is a
subtractive subsemimodule of M/N(Q).

Proof. By Lemma 2.3, let q0 ∈ Q be unique such that q0 + N is the zero element
of M/N(Q). First, we show that q0 + N ∈ A/N(Q∩A). Let a + N ∈ A/N(Q∩A)

⊆ M/N(Q) where a ∈ Q ∩ A.Then (a +N) ⊕ (q0 +N) = a +N where a ∈ Q is a
unique such that a+q0+N ⊆ a+N . So a+q0 = a+b for some b ∈ N ⊆ A. Since A
is a subtractive subsemimodule, q0 ∈ A. Thus, q0 +N ∈ A/N(Q∩A). Next suppose
that q1+N , q2+N ∈ A/N(Q∩A) where q1, q2 ∈ Q∩A. Then (q1+N) ⊕ (q2+N) =
q3+N where q3 ∈ Q is a unique such that q1+q2+N ⊆ q3+N . So q1+q2 = q3+c for
some c ∈ N ⊆ A. Hence q3 ∈ Q ∩ A, since A is a subtractive subsemimodule. Now
(q1+N)⊕ (q2+N) = q3+N ∈ A/N(Q∩A). Now let r ∈ R, q+N ∈ A/N(Q∩A). Then r
⊙ (q+N) = q4+N where q4 ∈ Q is a unique such that rq+N ⊆ q4+N . So rq = q4+d
for some d ∈ N ⊆ A. Hence q4 ∈ Q ∩ A, since A is a subtractive subsemimodule.
Thus, r ⊙ (q +N) = q4 +N ∈ A/N(Q∩A). Thus A/N(Q∩A) is a subsemimodule of
M/N(Q). Finally, assume that x+N, (x+N)⊕ (y+N) = z+N ∈ A/N(Q∩A) where
x, z ∈ Q∩A, y ∈ Q and x+y+N ⊆ z+N . Then x+y = z+e for some e ∈ N ⊆ A.
Now y ∈ Q ∩A, since A is a subtractive subsemimodule. Thus y +N ∈ A/N(Q∩A)

as needed. 2

Theorem 3.6. Let N be a Q-subsemimodule of an R-semimodule M and L be a
subtractive subsemimodule of M/N(Q). Then L = P/N(Q∩P ) for some subtractive
subsemimodule P of M with N ⊆ P .

Proof. By Lemma 2.2, let q0 + N = N be the zero element of M/N(Q) where q0 ∈ Q.
Denote P = {x ∈ M : there exists a unique q ∈ Q such that x + N ⊆
q + N ∈ L}. We show that P is a subtractive subsemimodule of M with N ⊆ P
and L = P/N(Q∩P ).
(1) Let x ∈ N . Then x + N ⊆ N = q0 + N ∈ L, so x ∈ P . Thus, N ⊆ P .
(2) Let x, y ∈ P . Then there are unique elements q1, q2 ∈ Q such that x + N ⊆
q1 +N ∈ L and y +N ⊆ q2 +N ∈ L. Now ( q1 + N ) ⊕ ( q2 + N ) = q3 + N ∈
L where q3 ∈ Q is a unique such that q1 + q2 + N ⊆ q3 + N . By Lemma 1.3, x +
N ⊆ q1 + N and y + N ⊆ q2 +N implies x+ y +N ⊆ q1 + y +N ⊆ q1 + q2 +N
⊆ q3 +N ∈ L. Hence x+ y ∈ P . Similarly, if r ∈ R, x ∈ P then rx ∈ P . Thus, P
is a subsemimodule of M .
(3) Let x, x+ y ∈ P where y ∈ M . Then there are unique elements q1, q2, q3 ∈ Q
such that x+N ⊆ q1+N ∈ L, x+y+N ⊆ q2+N ∈ L, y+N ⊆ q3+N ∈ M/N(Q).
Since q1 + N , q3 + N ∈ M/N(Q), there exists a unique element q4 ∈ Q such that
(q1+N)⊕ (q3+N) = q4+N where q1+ q3+N ⊆ q4+N . By Lemma 1.3, x+N ⊆
q1+N and y+N ⊆ q3+N implies x+ y+N ⊆ q1+ y+N ⊆ q1+ q3+N ⊆ q4+N .
Hence x+y ∈ (q2+N)∩ (q4+N). So q4+N = q2+N ∈ L. Since L is a subtractive
subsemimodule, q3 + N ∈ L. Now y + N ⊆ q3 + N ∈ L. So y ∈ P . Hence P is a
subtractive subsemimodule of M .
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(4) By Lemma 3.4, N is a Q ∩ P -subsemimodule of P . If q +N ∈ L where q ∈ Q
then q ∈ P . So q ∈ Q ∩ P , hence q + N ∈ P/N(Q∩P ). Thus, L ⊆ P/N(Q∩P ). On

the other hand, if q+N ∈ P/N(Q∩P ), then q ∈ Q∩P ⊆ P . So q+N ⊆ q
′
+N ∈ L

for some unique q
′ ∈ Q. Therefore, q+N = q

′
+ N ∈ L. Thus, P/N(Q∩P ) ⊆ L 2

The authors are thankful to the referee for his helpful suggestions.

References

[1] Paul J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer.
Math. Soc., 21(1969), 412-416.

[2] Paul J. Allen, J. Neggers and H. S. Kim, Ideal theory in commutative A-semirings,
Kyungpook. Math. Journal, 46(2006), 261-271.

[3] R. E. Atani and S. E. Atani, On subsemimodules of semimodules, Buletinul Acad.
Sci. Republ. Moldova, ser. Math., to appear (2010).

[4] Shahabaddin Ebrahimi Atani, The ideal theory in quotient of commutative semirings,
Glasnik Matematicki, Vol. 42(62)(2007), 301-308.

[5] J. S. Golan, Semiring and their Applications, Kluwer Academic publisher Dordrecht,
1999.

[6] Vishnu Gupta and J. N. Chaudhari, On Right π-Regular Semirings, Sarajevo Journal
of Mathematics. Vol 2(14)(2006), 3-9.

[7] Vishnu Gupta and J. N. Chaudhari, On Partitioning ideals of Semirings, Kyungpook.
Math. Journal, 46(2006), 181-184.

[8] Vishnu Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Matematicki,
12(2003), 13-18.


