Short communications

On partitions of N into summands coprime to N

P. Erdös and B. Richmond

Let $R(n)$ and $R^{\prime}(n)$ denote the number of partitions of n into summands and distinct summands respectively that are relatively prime to n. Erdös obtained the first results concerning the asymptotic behaviour of these functions showing that

$$
\begin{array}{r}
\log R(n) \sim \pi \sqrt{\frac{2}{3}} \phi^{1 / 2}(n) \\
\log R^{\prime}(n) \sim \pi \sqrt{\frac{1}{3}} \phi^{1 / 2}(n)
\end{array}
$$

where $\phi(n)$ denotes Euler's function. Richmond showed that the error terms in the above result are $0\{\exp ((1+\epsilon) \log 2 \log n / \log \log n)\}$ by showing that the asymptotic results of Roth and Szekeres hold for this problem. In this note previous results are improved and a certain set of integers is exhibited for which asymptotic expansions in terms of standard number-theoretic functions may be obtained.

Received July 5, 1976 and, in revised form, November 7, 1976.

About orthogonal permutations of the group $G=G(2) X G(k)$

J-C. Panayiotopoulos

Let the group $G=G(2) X G(k)$ of order $n=2 k, k$ even, such that:

$$
G=\{(0,0),(0,1), \ldots,(0, k-1),(1,0),(1,1), \ldots,(1, k-1)\}[1]
$$

with

$$
a \pm b=\left(a_{1}, a_{2}\right) \pm\left(b_{1}, b_{2}\right)=\left(\left(a_{1} \pm b_{1}\right)(\bmod 2),\left(\mathrm{a}_{2} \pm \mathrm{b}_{2}\right)(\bmod k)\right), a, b \in G
$$

