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On Passivity and Power-Balance Inequalities of
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Abstract—Arbitrary interconnections of passive (possibly non-
linear) resistors, inductors, and capacitors define passive systems,
with power port variables the external source voltages and cur-
rents, and storage function the total stored energy. In this paper,
we identify a class ofRLCcircuits (with convex energy function and
weak electromagnetic coupling), for which it is possible to “add a
differentiation” to the port terminals preserving passivity—with a
new storage function that is directly related to the circuit power. To
establish our results, we exploit the geometric property that volt-
ages and currents inRLCcircuits live in orthogonal spaces, i.e., Tel-
legen’s theorem, and heavily rely on the seminal paper of Brayton
and Moser published in the early sixties.

Index Terms—Brayton–Moser equations, nonlinear circuits,
passivity, Tellegen’s theorem.

I. INTRODUCTION

PASSIVITY is a fundamental property of dynamical sys-
tems that constitutes a cornerstone for many major devel-

opments in circuit and systems theory, see, e.g., [3], [9], and
the references therein. It is well known that (possibly nonlinear)
RLC circuits consisting of arbitrary interconnections of pas-
sive resistors, inductors, capacitors, and voltage and/or current
sources are also passive with power port variables, the external
source voltages and currents, and storage function of the total
stored energy [2]. Our main contribution in this paper is the
proof that for allRLorRCcircuits, and a class ofRLCcircuits, it
is possible to “add a differentiation” to one of the port variables
(either voltage or current) preserving passivity with a storage
function which is directly related to the circuit power. The new
passivity property is of interest in circuit theory, but also has
applications in control (see [7] for some first results regarding
stabilization).

Since the supply rate (the product of the passive port vari-
ables) of the standard passivity property, as defined in, e.g., [3]
and [9], is voltage current, it is widely known that the dif-
ferential form of the corresponding energy-balance establishes
theactivepower-balance of the circuit. As the new supply rate
is voltage the time derivative of the current (or current
the time derivative of the voltage—quantities which are
sometimes adopted as suitable definitions of the supplied
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reactive power—our result unveils some sort of reactive
power-balance.

The remainder of the paper is organized as follows. In Sec-
tion II, we briefly review some fundamental results in circuits
theory, like the classical definition of passivity and Tellegen’s
Theorem. The new passivity property forRL andRCcircuits is
established in Section III. In Section IV, this result is extended to
a class ofRLCcircuits using the classical Brayton–Moser equa-
tions. Finally, we conclude the paper with some remarks and
comments on future research.

Notation: Throughout the paper we will denote by
the partial derivative of a vector function with

respect to a -dimensional column vector ,
i.e.,

Consequently, denotes the second partial derivative
(Hessian), i.e.,

II. TELLEGEN’S THEOREM AND PASSIVITY

Consider a circuit consisting of inductors, capacitors,
resistors, and voltage and/or current sources, called the

branchesof the circuit. Let and
, with , de-

note the branch currents and voltages of the circuit, respectively.
It is well known that Tellegen’s Theorem [8] states that the set
of branch currents (which satisfy Kirchhoff’s current law), say

, and the set of branch voltages (that sat-
isfy Kirchhoff’s voltage law), say , are orthogonal sub-
spaces. As an immediate consequence of this fact we have

(1)

which states that the total power in the circuit is preserved.
Corollary 1: Voltages and currents in a (possibly nonlinear)

RLCcircuit satisfy

(2)

as well as

(3)
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The proof of this corollary is easily established noting that, if
(respectively, ), then, clearly also

(respectively, ), and then, invoking orthog-
onality of and , see also [1], [8] and the references therein.

Another immediate consequence of Tellegen’s theorem is the
following, slight variation of the classical result in circuit theory,
see, e.g., [2, Sec. 19.3.3], whose proof is provided for the sake
of completeness.

Proposition 1: Arbitrary interconnections of inductors and
capacitors with passive resistors verify the energy-balance in-
equality

(4)

where we have defined the total stored energy
with and the inductor

fluxes and the capacitor charges, respectively. If, furthermore,
the inductors and capacitors are also passive, then, the network
defines a passive system with power port variables
and storage function of the total energy.

Proof: First, notice that ,
where we have used the fact that and

, and the relations
and . Then, by (1) we have that

(notice that we have adopted the
standard sign convention for the supplied power). Hence, noting
that for passive resistors, and integrating the latter
equations form 0 to, we obtain (4). Passivity follows from
positivity of for passive inductors and capacitors.

III. N EW PASSIVITY PROPERTY FORRL AND RCCIRCUITS

In this section, we first consider circuits consisting solely of
inductors and current-controlled resistors and sources, denoted
by , and circuits consisting solely of capacitors and voltage-
controlled resistors and sources, denoted by. Furthermore,
to present the new passivity property, we need to define some
additional concepts that are well known in circuit theory [6],
[8], and will be instrumental to formulate our results.

Definition 1: Thecontentof a current-controlled resistor is
defined as

(5)

while, for a voltage-controlled resistors, the function

(6)

is called the resistorsco-content.
Proposition 2: Arbitrary interconnections of passive induc-

tors with convex energy function , current-controlled
resistors and sources, satisfy the power-balance inequality

(7)

where . If the resistors are passive, the
circuit defines a passive system with power port variables

and storage function of the total resistors con-
tent.

Similarly, arbitrary interconnections of passive capacitors
with the convex energy function , voltage-controlled
resistors, and sources, satisfy the power-balance inequality

(8)

where . If the resistors are passive, the
circuit defines a passive system with power port variables

and storage function the total resistors co-con-
tent.

Proof: The proof of the new passivity property forRLcir-
cuits is established as follows. First, differentiate the resistors
content

(9)

Then, by using the fact that

and by invoking Faraday’s law, i.e., , we ob-
tain

(10)

where the nonnegativity stems from the convexity assumption.
Finally, by substituting (9) and (10) into (2) of Corollary 1, with

and , and integrating form 0 to
yields the result.

The proof forRC circuits follows verbatim, but now using
(3) of Corollary 1 instead of (2), the relation

and the definition of the co-content.
Remark 1: In some cases it is also possible to apply Proposi-

tion 2 toRL (respectively,RC) circuits containing voltage-con-
trolled resistors in (respectively, current-controlled resistor
in ) under the condition that the curves are invert-
ible. If, for example, contains a voltage-controlled resistor,
say , and its constitutive relation is invert-
ible, it should then be possible to rewrite the characteristic equa-
tion in terms of the current, i.e., . In the linear
case, this means that instead of writing (or in
terms of the resistors co-content: ),
we may write (Ohm’s law in its conventional
form), and hence its content reads
and the new passivity property (7) can be established; see also,
Fig. 1.

Remark 2: The new passivity properties of Proposition 2
differ from the standard result of Proposition 1 in the following
respects. First, while Proposition 1 holds for generalRLC cir-
cuits, the new properties are valid only forRL or RC systems.
Using the fact that passivity is invariant with respect to negative
feedback interconnections it is, of course, possible to combine
RLandRCcircuits and establish the new passivity property for
someRLCcircuits. A class ofRLCcircuits for which a similar
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(a)

(b)

Fig. 1. (a) Resistor characteristic with invertible(i ; v ) curve. (b)
Noninvertible resistor characteristic.

property holds will be identified in Section IV. Second, the con-
dition of convexity of the energy functions required for Proposi-
tion 2 is sufficient, but not necessary for passivity of the dynamic
L andC elements. Hence, the class of admissible dynamic ele-
ments is more restrictive.

Remark 3: It is interesting to remark that the supply rate
of the new passive systems defined by either the product

or , relates with an alternative
definition of reactivepower. The interested reader is referred
to, e.g., [5] and [11] for more details on this subject.

IV. PASSIVITY OF BRAYTON–MOSERCIRCUITS

The previous developments show that, using the content and
co-content as storage functions and the reactive power as supply
rate, we can identify new passivity properties ofRLandRCcir-
cuits. In this section, we will establish similar properties forRLC
circuits. Toward this end, we strongly rely on some fundamental
results reported in [1]. Furthermore, we assume that the
current-controlled resistors , with ,
are contained in and the voltage-controlled resistors

, with , are contained in . The
class ofRLC circuits considered here is then composed by an
interconnection of and .

A. Brayton and Moser’s Equations

In the early 1960s, Brayton and Moser [1] have shown that the
dynamic behavior of a topologically complete1 circuit (without
external sources) is governed by the following differential equa-
tions:

(11)

1A circuit is called “topologically complete” if it can be described by an in-
dependent set of inductor currents and capacitor voltages such that Kirchhoff’s
laws are satisfied. For a detailed treatment on topologically completeness, see
[10].

where is the inductance ma-
trix, is the capacitance ma-
trix, is called the mixed-potential and is given
by

(12)

where is a (full-rank) matrix that captures the
interconnection structure between the inductors and capacitors.

If we add external sources2 , (11) can be written as

(13)

where
, and with

.
Remark 4: Notice that the mixed-potential function contains

both the content and co-content which are, due to the topo-
logical completeness assumption, described in terms of the in-
ductor currents and capacitor voltages, respectively. In other
words, for topologically complete circuits there exist a matrix

such that, for the resistors contained in, we
have that , while for the resistors contained in
we have , with .

B. Generation of New StorageFunction Candidates

Let us next see how the Brayton–Moser equations (13), can
be used to generate storage functions forRLCcircuits. Suppose
we multiply (13) by , i.e.,

which, after reorganizing the terms, yields the following equa-
tion:

(14)

That is, consists of the sum of a quadratic term
plus the inner product of the source port variables in the desired
form (compare with the left-hand side
of (7) of Proposition 2). Unfortunately, even under the reason-
able assumption that the inductor and capacitor have convex
energy functions, the presence of the negative sign in the first
main diagonal block of makes the quadratic form sign-in-
definite, and not negative (semi-)definite as desired. Hence, we
cannot establish a power-balance inequality from (14). More-
over, to obtain the passivity property an additional difficulty
stems from the fact that is also not sign-definite.

To overcome these difficulties we borrow inspiration from
[1] and look for other suitable pairs, say and ,
which we calladmissible, that preserve the form of (13). More
precisely, we want to find matrix functions ,
with , verifying

(15)

2Restricting, for simplicity, to circuits having only voltage sources in series
with the inductors.
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and scalar functions (if possible, positive semi-
definite), such that the circuit dynamics (13) can be (re)written
as

(16)

If we multiply (16) by like before, we have that

Hence, if the symmetric part of is negative semi-definite,
that is, if (15) is satisfied and thus , we may state
(noting that ) that

from which we obtain a power-balance inequality with the de-
sired port variables. Furthermore, if is positive semi-def-
inite we are able to establish the required passivity property.

In the proposition below, we will provide a complete char-
acterization of the admissible pairs and . For that,
we find it convenient to use the general form (11), i.e.,

, where for the case considered here
.

Proposition 3: For any and any constant symmetric
matrix

(17)

(18)

Proof: A detailed proof of (17) and (18) can be found in
[1, p.19].

An important observation regarding Proposition 3 is that, for
suitable choices of and , we can now try to generate a ma-
trix with the required negativity property, i.e.,

.
Remark 5: Since has the units of power and

a quadratic term in the gradient of (see (18)),
also has the units of power. A similar discussion holds

for , which is the mixed-potential without the sources.
The difference between and the original mixed-potential

is that we have “swapped” the resistive terms. However,
the solution of the differential equation (13) precisely coincides
with the solution of (16), i.e.,

Remark 6: Some simple calculations show that a change of
coordinate , on the dynam-
ical system (11) acts as a similarity transformation on .
Therefore, this kind of transformation is of no use for our pur-
poses where we want to change the sign of to render the
quadratic form sign-definite.

C. Power-Balance Inequality and the New Passivity Property

Before we present our main result, we first remark that
in order to preserve the port variables , we

must ensure that the transformed dynamics (16) can be ex-
pressed in the form (13), which is equivalent to requiring that

. This naturally restricts the freedom
in the choices for and in Proposition 3.

Theorem 1: Consider a (possibly nonlinear)RLCcircuit sat-
isfying (13). Assume the following.

A.1. The inductors and capacitors are passive and have
strictly convex energy functions.

A.2. The voltage-controlled resistors in are passive,
linear, and time-invariant. Also, , and
thus by taking the sum of (6) we have that

for all .
A.3. Uniformly in , we have

where denotes the spectral norm of a matrix.
Under these conditions, we have the following power-balance

inequality:

(19)
where the transformed mixed-potential function is defined as

If, furthermore

A.4. The current-controlled resistors are passive, i.e.,
.

Then, the circuit defines a passive system with power port
variables and storage function the transformed
mixed-potential .

Proof: The proof consists in first defining the parameters
and of Proposition 3 so that, under the conditions A.1–A.4

of the theorem, the resulting satisfies (15) and is a pos-
itive semi-definite function.

First, notice that under assumption A.2 the co-content is
linear and quadratic. To ensure that is linear in , as is
required to preserve the desired port variables, we may select

and . Now, using (17) we obtain
after some straightforward calculations

Assumption A.1 ensures that and are positive defi-
nite. Hence, a Schur complement analysis [4] proves that, under
Assumption A.3, (19) holds. This proves the power-balance in-
equality. Passivity follows from the fact that, under Assumption
A.2 and A.4, the mixed-potential function is posi-
tive semi-definite for all and . This completes the proof.

Remark 7: Assumption A.3 is satisfied if the voltage-con-
trolled resistances are “small.” Recalling that these
resistors are contained in , this means that the coupling be-
tween and , that is, the coupling between the inductors
and capacitors, is weak.
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Remark 8: We have considered here only voltage sources.
Some preliminary calculations suggest that current sources
can be treated analogously using an alternative definition of
the mixed potential. Furthermore, it is interesting to under-
score that from (14) we can obtain, as a particular case with

, the new passivity property forRL circuits of
Proposition 2, namely

However, the corresponding property forRCcircuits

does not follow directly from (14), as it requires the utilization
of (3) instead of (2), as done above.

V. EXAMPLE

Consider theRLC circuit depicted in Fig. 2. For simplicity,
assume that all the circuit elements are linear and time-invariant,
except for the resistor . The voltage-current relation of
is described by . The interconnection matrix

, the content and the co-content are readily
found to be , and

, respectively, and thus, the mixed-
potential for the circuit is

Hence, the differential equations describing the dynamics of the
circuit are given by

The new passivity property is obtained by selecting and
, yielding that if and only

if

(20)

Under the condition that and , positivity
of is easily checked by calculating (18), i.e.,

In conclusion, if (20) is satisfied, then the circuit of
Fig. 2 defines a passive system with power port variables

and storage function .

Fig. 2. SimpleRLCcircuit with nonlinear current-controlled resistor.

VI. CONCLUDING REMARKS

Our main motivation in this paper was to establish a new pas-
sivity property forRL, RC, and a class ofRLCcircuits. We have
proven that for this class of circuits it is possible to “add a differ-
entiation” to the port variables preserving passivity with respect
to a storage function which is directly related to the circuit’s
power. The new supply rate naturally coincides with the defini-
tion of reactive power.

Instrumental for our developments was the exploitation of
Tellegen’s theorem. Dirac structures, as proposed in [9], pro-
vide a natural generalization to this theorem, characterizing in
an elegant geometrical language the key notion of power pre-
serving interconnections. It seems that this is the right notion to
try to extend our results beyond the realm ofRLCcircuits, e.g.,
to mechanical or electromechanical systems. A related question
is whether we can find Brayton–Moser like models for this class
of systems.

There are close connections of our result and the shrinking
dissipation Theorem of [12], which is extensively used in analog
very large-scale integration circuit design. Exploring the rami-
fications of our research in that direction is a question of signif-
icant practical interest.
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