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This paper describes the problem of designing control laws for path following robots, including two types of nonholonomic
mobile manipulators. Due to a cascade structure of the motion equation, a backstepping procedure is used to achieve motion
along a desired path. The control algorithm consists of two simultaneously working controllers: the kinematic controller,
solving motion constraints, and the dynamic controller, preserving an appropriate coordination between both subsystems
of a mobile manipulator, i.e. the mobile platform and the manipulating arm. A description of the nonholonomic subsystem
relative to the desired path using the Frenet parametrization is the basis for formulating the path following problem and
designing a kinematic control algorithm. In turn, the dynamic control algorithm is a modification of a passivity-based
controller. Theoretical deliberations are illustrated with simulations.
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1. Introduction

In the paper, new control algorithms for a special class
of robotic objects, namely, nonholonomic mobile manip-
ulators, are presented. A mobile manipulator is defined
as a robotic system composed of a mobile platform and a
manipulator mounted on the platform equipped with non-
deformable wheels. Such a combined system is able to
perform manipulation tasks in a much larger workspace
than a fixed-base manipulator. The downside of such de-
sign is more complex modeling and control.

First, the dynamics of the combined system are much
more complicated because they include dynamic interac-
tions between the mobile platform and the manipulator.
This can be observed, e.g., when the movement of the ma-
nipulator implies the movement of the platform, even if
platform actuators do not work. Second, the existence of
nonholonomic constraints implies a nontrivial form of the
kinematics of the mobile manipulator. Third, a particular
point in the workspace can be reached either by moving
the manipulator or the mobile platform, or by coordinated
motion of both. This means that the solution to the track-
ing problem is not unique.

The problem of designing a control law for mobile
manipulators has recently received much attention. There
have appeared many works presenting different methods

of solving this control problem for mobile manipulators.
In the literature, two general groups of mobile manipula-
tor control strategies can be found. Within the first group,
decentralized control strategies have been developed. All
subsystem controllers were designed separately and, sub-
sequently, the interactions between the platform and the
manipulator needed to be considered and compensated
(Chung et al., 1998; Huang et al., 1998). Within the sec-
ond group, a unified control for both parts constituting a
mobile manipulator is developed.

The problem with the definition of the path for a
complete mobile manipulator, without decomposition, is
that the behavior of subsystems is unpredictable, because
the same path defined in global coordinates can be exe-
cuted by separate subsystems or by both of them. Some-
times, it is important to move the platform and simulta-
neously unload a payload—such a task is defined relative
to the base of the manipulator mounted on the platform
(a definition relative to the end-effector is ill conditioned).
In such a situation the decomposition of the task into tasks
defined separately for both subsystems is more natural and
convenient (Mazur, 2004).

The most popular approach to the control of mobile
manipulators explores the idea of input-output decoupling
and linearization. In (Yamamoto and Yun, 1994; 1996),
the authors used the concept of the manipulability ellip-
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soid for a two link planar mobile manipulator. This crite-
rion (kinematic or dynamic) can select motion directions
which are most promising. These directions have more
maneuver possibilities to execute the desired task. The
authors applied input-output decoupling and linearization
to a two-link planar mobile manipulator subject to non-
holonomic constraints in the platform and developed a co-
ordination algorithm based on the concept of a preferred
operating region. The control task was to move the ob-
ject using only the mobile platform and the robotic arm
had to achieve a constant configuration with maximal ma-
nipulability. In (Tan et al., 2003; Khatib, 1999), input-
output decoupling was the point of departure to design a
hybrid strategy preserving motion/force control but only
for mobile manipulators with holonomic platforms. For
the case when some uncertainties in the dynamics of non-
holonomic mobile manipulator appear, in (Dong, 2002)
the author discussed a trajectory and force tracking con-
trol problem subject to unknown inertia parameters and
proposed adaptive controllers based on a suitable reduced
dynamic model. In turn, in (Li et al., 2007), another adap-
tive strategy for parameter uncertainty was presented.

A different approach to centralized control can be
found in (Tchoń et al., 2004; Tchoń and Jakubiak, 2004),
where an endogenous configuration space approach was
presented. In these works, kinematics were treated as a
map from a Hilbert space H∞ of controls and manipula-
tor joint positions into a task-space of the mobile manipu-
lator. Such an approach makes it possible to move a mo-
bile manipulator from a start to an end point, but with-
out specifying desired configurations of both subsystems.
This means that the posture of the platform (forward or
backward motion) is out of control. The limitation of this
method is that it generates control only for a point stabi-
lization task in fixed time.

In real applications, it is necessary to take into con-
sideration the dynamics of the object. The crucial point is
the evaluation of stability, e.g., using the ZMP (zero mo-
ment point) method. ZMP is a special point where resul-
tant moments of gravity, the inertial forces of the mobile
manipulator and the external forces are zero. In (Hatano
and Obara, 2003), the authors studied the stability of tran-
sitional states and formulated criteria for stable motion.
This method can be used to prove the stability of the mo-
bile manipulator’s motion.

In the present paper, we define a path following prob-
lem for the mobile manipulator in a different way, see
(Mazur, 2004). The desired task is decomposed into two
separate subtasks defined for each subsystem indepen-
dently: the end-effector has to follow a desired geometric
path described relative to the base of the robotic arm (i.e.,
relative to the platform), and the task of the platform is to
follow a desired curve lying on a plane. Such a formula-
tion of the task makes it possible to successively unload
the payload transported by the mobile manipulator during

the control process.
Taking into account the type of mobility of com-

ponents, there are four possible configurations: type
(h, h)—both the platform and the manipulator are holo-
nomic, type (h, nh)—a holonomic platform with a
nonholonomic manipulator, type (nh, h)—a nonholo-
nomic platform with a holonomic manipulator, and type
(nh, nh)—both the platform and the manipulator are non-
holonomic. The notion doubly nonholonomic manipula-
tor was introduced in (Tchoń et al., 2004) for the type
(nh, nh). The path following problem formulated for
a doubly nonholonomic mobile manipulator has not been
considered in the literature so far.

2. General model of the nonholonomic
mobile manipulator

2.1. Nonholonomic constraints. A hypothetical mo-
bile manipulator is presented in Fig. 1.
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Fig. 1. RTR manipulator on a mobile platform of the (2,0) class.

2.1.1. Nonholonomic constraints for a wheeled mobile
platform. The motion of the mobile platform can be de-
scribed by generalized coordinates qm ∈ R

n and gener-
alized velocities q̇m ∈ R

n. The wheeled mobile plat-
form should move without the slippage of its wheels. This
is equivalent to the assumption that momentary velocity
at the contact point between each wheel and the motion
plane is equal to zero. This assumption implies the exis-
tence of l (l < n) independent nonholonomic constraints
expressed in the Pfaffian form,

A(qm)q̇m = 0, (1)

where A(qm) is a full rank l × n matrix.
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Since, due to (1), the platform velocity is in the null
space of A(qm), it is always possible to find a vector of
special auxiliary velocities η ∈ R

m, m = n − l, such
that

q̇m = G(qm)η, (2)

where G is a full rank n × m matrix satisfying the rela-
tionship AG = 0. In (Canudas de Wit et al., 1996), it
was shown that all wheeled mobile platforms can be di-
vided, according to the motion possibilities given by (2),
into special classes, defined by the following notions:

• degree of mobility σm—the dimension of the avail-
able space in the contact point between wheels and a
surface,

1 ≤ σm ≤ 3,

• degree of steerability σs—the number of indepen-
dently driven steering wheels of the platform,

0 ≤ σs ≤ 2.

An additional condition, which the parameters σm

and σs have to fulfill, is

2 ≤ σm + σs ≤ 3.

From the above inequalities it results that there exist only
five classes of wheeled mobile platforms, presented in Ta-
ble 1. Defining a class for the platform, the parameters
(σm, σs) have to be pointed out.

Table 1. Possible classes of wheeled mobile platforms.

σm 3 2 2 1 1
σs 0 0 1 2 1

Apart from the (3, 0) class, which is holonomic,
the remaining classes are nonholonomic, i.e., they re-
alize motion with restricted mobility (D’Andréa-Novel
et al., 1991).

2.1.2. Nonholonomic constraints for a manipulator.
A rigid manipulator can be a holonomic or a nonholo-
nomic system—it depends on construction of its drives.
In (Nakamura et al., 2001), the authors presented a new
nonholonomic mechanical gear, which was able to trans-
mit velocities from the inputs to many passive joints, see
Figs. 2 and 3. The nonholonomic constraints in the gear
appear by assumption on rolling contact without slippage
between balls of gear and special supporting wheels in the
robot joints.

The basic components of the gear presented in Fig. 2
are a ball and three wheels—an input wheel IW and two
output wheels OW1 and OW2. The velocity constraints of
the ball are only due to point contact with the wheels. The
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Fig. 2. Schematic of the nonholonomic gear.
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Fig. 3. Nonholonomic gear seen from above.

input wheel IW with the radius rI is located on a pole of
the ball (with the radius R). The input wheel is mounted
in the first joint, and the output wheels are mounted in the
next joint. The wheel IW rotates around the fixed axis αI

with an angular velocity u2, which plays the role of a con-
trol input. The rotating input wheel makes the ball rotate.
The next elements of the gear are two output wheels with
the radii rO1 and rO2 , located in the ball’s equator. The
wheel OW1 rotates around an axis αO, which, together
with the axis of the input wheel, forms a joint angle θ1.
The angular velocity θ̇1 = u1 is the second control input
for the manipulator with nonholonomic gears. The rota-
tion axis of the wheel OW2 is perpendicular to the axis
αO .

In (Nakamura et al., 2001), the following kinematic
equations for a nonholonomic n-pendulum can be found:

θ̇1 = u1, (3)

θ̇i = ai sin θi−1

i−2∏

j=1

cos θju2, i ∈ {2, . . . , n}, (4)

with positive coefficients ai, depending on gear ratios.
It can be noticed that with only two control inputs

u1 and u2 it is possible to control many joints of the non-
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holonomic manipulator equipped with gears designed by
Nakamura et al. (2001).

2.2. Dynamic equations of a nonholonomic mo-
bile manipulator. The mobile manipulator is a system
which consists of a wheeled mobile platform and a rigid
onboard manipulator. In this paper, only two types of
mobile manipulators are considered. In the (nh, h) type,
the mobile platform is nonholonomic and the manipulat-
ing arm is an ordinary rigid manipulator. In the (nh, nh)
type, the wheeled platform and the manipulator are non-
holonomic subsystems. The nonholonomic constraints are
based on the no-slippage assumption in the gear or in the
contact point between each wheel and a surface. To ob-
tain a mathematical description of a nonholonomic con-
trol system, the d’Alembert principle must be used. We
consider the dynamics for each type of mobile manipu-
lator separately, because they are expressed in different
variables.

2.2.1. Dynamic equations of the mobile manipulator
of the (nh, h) type. Let the vector of generalized co-
ordinates of the mobile manipulator be denoted by q =
(qT

m, qT
r )T , where qm defines a vector of mobile platform

coordinates and qr ∈ R
p denotes a vector of joint coordi-

nates of the rigid manipulator with p degrees of freedom,

qr = (θ1, θ2, . . . , θp)T . (5)

Because of the nonholonomy of constraints, for obtain-
ing the dynamic model of the mobile manipulator, the
d’Alembert principle has to be used,

Q(q)q̈ + C(q, q̇)q̇ + D(q) = A1(qm)λ + Bτ, (6)

where Q(q) is the inertia matrix of the mobile manipula-
tor, C(q, q̇) is the matrix of Coriolis and centrifugal forces,
D(q) is the vector of gravitational terms, A1 is the matrix
of nonholonomic constraints, λ ∈ R

l is the vector of La-
grange multipliers, B is the input matrix, τ = (τT

m, τT
r ) is

the vector of controls. The above model of dynamics can
be expressed in a block matrix form as
[

Q11 Q12

Q21 Q22

](
q̈m

q̈r

)
+
[

C11 C12

C21 C22

](
q̇m

q̇r

)
+
(

0
D2

)

=
[

AT

0

]
λ +

[
B1 0
0 I

](
τm

τr

)
,

where A is the Pfaffian matrix given by (1), D2 is a vec-
tor of gravity for the robotic arm, B1 defines coordinates
of the mobile platform directly controllable by the actua-
tors, τm is a vector of input forces or torques applied to
the mobile platform, and τr is a vector of input forces for
the rigid onboard manipulator. Equation (6) will be called
the dynamics of the mobile manipulator expressed in gen-
eralized coordinates.

Now we want to express the model of dynamics using
the auxiliary velocities (2) for the mobile platform. We
compute

q̈m = G(qm)η̇ + Ġ(qm)η

and eliminate the vector of Lagrange multipliers (using
the condition GT AT = 0) by premultiplication of the mo-
bile platform equations by the matrix GT . After substitut-
ing for q̇m and q̈m, we get

Q∗
(

η̇
q̈r

)
+ C∗

(
η
q̇r

)
+ D∗ = B∗τ, (7)

where

Q∗ =
[

GT Q11G GT Q12

Q21G Q22

]
,

C∗ =

[
GT

(
C11G + Q11Ġ

)
GT C12

Q21Ġ + C21G C22

]
,

D∗ =
(

0
D2

)
,

B∗ =
[

GT B1 0
0 I

]
.

The above model of mobile manipulator dynamics
will be the point of departure for designing a dynamic
control algorithm. It should be noted that the complete
system consists of the dynamic model (7) and the purely
kinematic relationship (2).

2.2.2. Dynamic equations of a mobile manipulator of
the (nh, nh) type. In the case of a mobile manipulator
of the (nh, nh) type, both subsystems are nonholonomic.
Therefore, the dynamics expressed in generalized coordi-
nates due to the d’Alembert principle have the form

Q(q)q̈ + C(q, q̇)q̇ + D(q) = A1λ1 + A2λ2 + Bτ, (8)

where A1 is the matrix of nonholonomic constraints for
the wheeled mobile platform, λ1 is the vector of Lagrange
multipliers for the platform, A2 is the matrix of nonholo-
nomic constraints for the manipulator, λ2 is the vector of
Lagrange multipliers for the manipulator, B is the input
matrix, τ = (τT

m, τT
r ) is the vector of controls. The matri-

ces A1, A2 and B are defined as follows:

A1 =
(

AT
11(qm)

0

)
, A2 =

(
0

AT
22(qr)

)
,

B =
[

B11 0
0 B22

]
,

where A11(qm) is the Pfaffian matrix for the mobile plat-
form and A2(qr) is the Pfaffian matrix for the nonholo-
nomic manipulator. The submatrices B11 and B22 de-
scribe which coordinates of the platform and the manip-
ulator are directly driven by actuators.
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For the (nh, nh) mobile manipulator, the nonholo-
nomic constraints hold for each subsystem. These con-
straints can be expressed as driftless control systems and
described as a single kinematic equation,

q̇ =
(

q̇m

q̇r

)
=
[

G1 0
0 G2

](
η
u

)
= Gζ, (9)

where ζ is a vector of auxiliary velocities for both subsys-
tems. Substituting the expression (9) into the dynamics
(8), we obtain

Q∗ζ̇ + C∗ζ + D∗ = B∗τ, (10)

with elements defined in the following way:

Q∗ = GT QG,

C∗ = GT (QĠ + CG),

D∗ = GT D,

B∗ = GT B.

Equation (10) describes the dynamics of the doubly non-
holonomic mobile manipulator expressed in auxiliary ve-
locities.

It is worth mentioning that a mobile manipulator with
a wheeled platform has a special property, which does not
hold for its subsystems (Dulȩba, 2000).

Property 1 . For a mobile manipulator with a wheeled
nonholonomic mobile platform, a skew-symmetry between
the inertia matrix Q∗ and the matrix of Coriolis and the
centrifugal forces C∗ does not hold anymore. To regain
the skew-symmetry, a special nontrivial correction matrix
CK must be added,

d
dt

Q∗ = (C∗ + CK) + (C∗ + CK)T . (11)

Any matrix which fulfills the relation (11) can play the
role of a correction matrix. The following expression de-
scribing the form of a CK matrix:

CK = CT
K =

1
2
{
Q∗ − C∗ − (C∗)T

}

should be calculated before starting the regulation pro-
cess. Arguments of the correction matrix are the gener-
alized coordinates and velocities of a mobile manipulator,
which can be measured in every moment and used during
the control process.

3. Control problem statement

Our goal is to find a control law guaranteeing path follow-
ing for nonholonomic mobile manipulators. As mentioned
in Section 1, the desired task for the mobile manipulator
can be decomposed into two independent parts: the end-
effector of the robotic arm has to follow a geometric path

X
P

�(s)

P

Fig. 4. Desired path for a mobile manipulator: P (s)—desired
path for the platform, Π(s)—desired path for the manip-
ulator.

Π(s) described relative to its base (i.e., relative to the plat-
form), and the task of the platform is to follow a desired
curve P (s) lying on the plane, see Fig. 4.

The problem of path following is defined in different
manner for both types of nonholonomic mobile manipula-
tors considered:

• (nh, h) mobile manipulator—because sizes of
workspaces for each subsystem are considerably dif-
ferent, the manipulator’s end-effector should follow
the geometric path described in Cartesian coordi-
nates, and it should stop at the end of the desired path
Π(s). In turn, the wheeled nonholonomic platform
should move continuously along the desired curve.

• (nh, nh) mobile manipulator—each subsystem
is nonholonomic, therefore the manipulator’s end-
effector should follow the geometric path described
in Cartesian coordinates without stopping at the end
of the desired path and the wheeled mobile platform
should move continuously along desired path P (s).

A goal of this section will be to address the following con-
trol problem for mobile manipulators:

Design a control law τ and a path parametriza-
tion s = s(t) (only for the holonomic robotic
arm) such that a mobile manipulator with fully
known dynamics follows the desired paths de-
fined separately for each subsystem, and track-
ing errors converge asymptotically to zero.

Additionally, we assume that the desired paths are smooth
curves which have two smooth and bounded time deriva-
tives.

Note that a complete model of the nonholonomic sys-
tem has the structure of two cascaded equations: kine-
matics (nonholonomic constraints) and dynamics. For this
reason, the backstepping-like procedure for the designing
of control law should be used (Krstić et al., 1995):
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• Kinematic controller ηr(t) or ζr(t): it represents
an embedded control input, which ensures the real-
izability of path following for nonholonomic con-
straints. The kinematic controller can be treated as
a solution to the kinematics (2) or (9), if the dynam-
ics were not present. Such a controller generates a
‘velocity profile’, which can be executed in practice.
The convergence of the kinematic control algorithm
must be proven.

• Dynamic controller τ : as a consequence of the cas-
caded structure of the model, the system’s auxiliary
velocities η or ζ cannot be commanded directly, as
assumed in the design of kinematic control, and in-
stead they must be realized as the output of the dy-
namics (7) or (10) driven by τ . The dynamic input
τ intends to regulate the real velocities η or ζ toward
the reference control ηr or ζr and, therefore, it at-
tempts to provide control input necessary to achieve
the desired task.

Since there exists a difference between the real velocities
η or ζ of the nonholonomic mobile manipulator and the
reference control ηr or ζr, it is necessary to take into ac-
count the influence of the errors eη = η−ηr or eζ = ζ−ζr

on the behavior of the full mathematical model describing
the nonholonomic mobile manipulator.

4. Path following problem for subsystems of
a mobile manipulator

4.1. Path following problem for a nonholonomic sub-
system. In this section, equations describing the motion
of a nonholonomic system in the task-space relative to
a given curve, which the system should follow, are de-
rived. First, we discuss the path following problem for
nonholonomic mobile platforms and give a detailed solu-
tion for a mobile platform of the (2, 0) class (unicycle)
due to the Samson control algorithm. Next, we adapt the
Frenet parametrization for the nonholonomic manipulator
with gears designed by Nakamura, et al. (2001). We use
such parametrization to obtain a kinematic control algo-
rithm for a nonholonomic manipulation arm.

4.1.1. Path following problem for a nonholonomic
wheeled mobile platform. The mobile platform and the
path to be followed are presented in Fig. 5. The path P is
characterized by a curvature c(s), which is an inversion of
the radius of the circle tangent to the path at a point char-
acterized by the parameter s. Consider a moving point M
and the associated Frenet frame defined on the curve P by
the normal and tangent unit vectors xn and dr/ds. The
point M is the mass center of a mobile platform and M’ is
the orthogonal projection of the point M on the path P .

The point M’ exists and is uniquely defined if the
following conditions are satisfied (Fradkov et al., 1999):
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Fig. 5. Illustration of the path following problem for a nonholo-
nomic platform.

• The radius of any circle tangenting P at two or more
points whose interior does not contain any point of
the curve is lowerbounded by some positive real
number denoted as rmin.

This assumption implies in particular that the curva-
ture c(s) does not exceed 1/rmin.

• Under this assumption, if the distance between the
path P and the point M is smaller than rmin, there is
a unique point on P denoted by M’.

The coordinates of the point M relative to the Frenet
frame are (0, l, 0) and those relative to the basic frame
X0Y0Z0 are equal to (x, y, 0), where l is the distance be-
tween M and M’. A curvilinear abscissa of M’ is equal to
s, where s is a distance along the path from some arbitrar-
ily chosen point.

If we want to express the position of the point M not
in the classical Cartesian coordinates (x, y) relative to the
inertial frame but relative to the given path P , we should
use some geometric relationships (Mazur, 2004),

l̇ = (− sin θr cos θr)
(

ẋ
ẏ

)
, (12)

ṡ =
(cos θr sin θr)

1 − c(s)l

(
ẋ
ẏ

)
, (13)

where ẋ and ẏ are defined by nonholonomic constraints
for each class of wheeled mobile platforms and θr is a
desired orientation of the platform at the point M’ on the
path.
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The posture of the mobile platform is defined not
only by the position of the mass center, but by the ori-
entation, too. For this reason, it is necessary to define the
orientation tracking error equal to θ̃ = θ − θr. Moreover,
at the point M’, the desired orientation of the platform ful-
fills the following condition (Samson, 1995),

θ̇r = c(s)ṡ. (14)

Then the coordinates

ξ = (l, θ̃, s)T , (15)

i.e., the Frenet coordinates (l, s) and the orientation track-
ing error θ̃, constitute path following errors for a nonholo-
nomic mobile platform. It is worth mentioning that the
Frenet parametrization is valid only locally, near the de-
sired path.

If we want to solve the path following problem, it
is necessary to express the kinematics of nonholonomic
mobile platform in the Frenet coordinates (15) instead of
the generalized coordinates qm. After using Eqns. (12)
and (14), the nonholonomic constraints can be represented
by the dynamic driftless system. In our solution to the path
following problem for a nonholonomic wheeled mobile
platform, we have omitted the differential equation for ṡ,
because it does not matter at which point s of the desired
path the mobile platform enters the desired curve P (s),
see (Fradkov et al., 1999) for details.

As we have mentioned earlier, out of the Frenet co-
ordinates it is enough to consider only l and θ̃. Due to the
expressions (12) and (14), the Frenet variables for a mo-
bile platform of the (2, 0) class described by the nonholo-
nomic constraints

⎛

⎝
ẋ
ẏ

θ̇

⎞

⎠ =

⎡

⎣
cos θ 0
sin θ 0

0 1

⎤

⎦
(

v
ω

)
= G(qm)η (16)

can be defined as follows:
⎧
⎨

⎩

l̇ = v sin θ̃,

˙̃
θ = θ̇ − θ̇r = ω − v cos θ̃

c(s)
1 − c(s)l

= w,
(17)

where w is a new control input for the second equation.
In the Samson algorithm, v and w are defined in

such a way that v does not converge to zero in time and
w depends on v directly. In our discussion, we assume
v(t) =const, because we want to preserve a uniform mo-
tion along the desired path. Then the Samson kinematic
controller generates reference signals equal to

⎧
⎨

⎩

v = const

w = −k2lv
sin θ̃

θ̃
− k3θ̃, k2, k3 > 0.

(18)

Proof. For the dynamical system (17) we choose the
following Lyapunov-like function:

V1(ξ) = k2
l2

2
+

θ̃2

2
. (19)

Next we compute a time derivative V̇1 along solutions of
the closed-loop system (17)–(18),

V̇1 = k2ll̇ + θ̃
˙̃
θ = −k3θ̃

2 ≤ 0. (20)

It can be observed that V1 is decreasing along trajectories
of the closed-loop system. This implies that l and θ̃ stay
bounded. Then

V̈1 = −k3θ̃

(
− k2lv

sin θ̃

θ̃
− k3θ̃

)
(21)

is a sum of bounded components, which is equivalent to
the condition that V̇1 is uniformly bounded. Next, from
the Barbalat lemma, we can conclude the convergence of
V̇1 to 0, i.e., θ̃ → 0.

Because θ̃ = 0 is an asymptotically stable equilib-
rium point of the system (17)–(18), it is easy to show that
¨̃
θ is bounded, too. This implies that ˙̃

θ has to go to 0. In

the expression (18) describing ˙̃θ, the elements k2, v and
sin θ̃/θ̃ are different from 0 near θ̃ = 0, therefore the con-
dition l → 0 should hold. In this way, we have proven
that

(l, θ̃) = (0, 0)

is an asymptotically stable equilibrium point of the con-
trol system considered. This completes the proof of the
convergence of the mobile platform of a (2, 0) class to a
desired path. �

The velocities ηr coming from the Samson kinematic
algorithm, which are solutions to pure mathematical con-
straints (ideal case), are equal to
⎧
⎨

⎩

η1r = v = const ,

η2r = ω = −k2lv
sin θ̃

θ̃
− k3θ̃ + v cos θ̃

c(s)
1 − c(s)l

.

(22)

4.1.2. Path following problem for a planar nonholo-
nomic manipulator. In the problem of path following
for a planar manipulator located on the XZ plane with
nonholonomic gears, the Frenet parametrization presented
in Section 4.1.1 can be evoked once again: the role of
the point M in Fig. 5 is played by a point at the end of a
gripper, whereas the orientation of the end-effector θm is
a rotation angle of the frame associated with the gripper
around the −Yb axis, located in the base of the manip-
ulator. The orientation of the end-effector in the planar
nonholonomic n-pendulum is then equal to

θm =
n∑

i=1

θi.
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In the analysed planar nonholonomic manipulator lying in
the XZ-plane, relationships between the velocity of the
working point M expressed in the Cartesian and curvilin-
ear coordinates have the form

l̇m = (− sin θrm cos θrm)
(

ẋ
ż

)
, (23)

ṡ =
(cos θrm sin θrm)

1 − c(s)lm

(
ẋ
ż

)
, (24)

where lm denotes the distance between the point M and
the path Π(s), and θrm is the orientation of the Frenet
frame in the point M’. Subscripts were introduced to dis-
tinguish the Frenet variables for both subsystems of the
(nh, nh) mobile manipulator.

Coordinates of the end-effector in the n-pendulum
relative to its base are equal to

⎧
⎪⎪⎨

⎪⎪⎩

x =
n∑

i=1

li cos
(

i∑
j=1

θj

)
,

z =
n∑

i=1

li sin
(

i∑
j=1

θj

)
.

(25)

After substituting time derivatives of the variables (25)
into the expressions (23), we obtain the following equa-
tions:

l̇m =
n∑

i=1

cos
(

θrm −
i∑

j=1

θj

)
li

i∑

k=1

θ̇k, (26)

˙̃
θm = θ̇m − c(s)ṡ =

n∑

i=1

θ̇i − c(s)
1 − c(s)lm

·
n∑

i=1

sin
(

θrm −
i∑

j=1

θj

)
li

i∑

k=1

θ̇k. (27)

Using the kinematics of the nonholonomic manipulator
given by (3) and (4), Eqns. (26) and (27) can be expressed
in matrix form as follows:

ξ̇m =

(
l̇m
˙̃
θm

)
= H(qr, ξm)

⎛

⎜⎜⎜⎝

θ̇1

θ̇2

...
θ̇n

⎞

⎟⎟⎟⎠

= H(qr, ξm)G2(qr)u = Kl(qr, ξm)u.

(28)

The matrix Kl(qr, ξm) fulfills a regularity condition (i.e.,
it is invertible) if some configurations, which imply matrix
singularity, are excluded from a set of possibly achieved
poses of the nonholonomic manipulator. Singular config-
urations for a nonholonomic 3-pendulum are calculated in
Section 6.1.

For the regular matrix Kl, the following reference
control signals guaranteeing the convergence of tracking

errors to zero in the ideal case (i.e., for pure kinematic
constraints without dynamics), can be proposed:

ur = −K−1
l (qr, ξm)Λξm, Λ = ΛT > 0. (29)

It is easy to observe that the system (28) with closed-loop
of the feedback signal (29) has the form

ξ̇m + Λξm = 0,

i.e., it is asymptotically stable.

4.2. Path following problem for a holonomic subsys-
tem. The desired path of the manipulator can be spec-
ified by the geometric curve Π(s) for the end-effector.
Such the path given in the R

p local workspace is defined
relative to the manipulator local base’s frame XbYb, see
Fig. 1, where ρ ≤ p. The goal of the control process is to
move the end-effector along the path Π(s), and the vec-
tor of tracking errors has to be asymptotically convergent,
i.e.,

ep = k(qr) − Π(s) −→ 0. (30)

Similarly to the Frenet parametrization, s is a current pa-
rameter describing the path, i.e., its curvilinear length.
k(qr) are the kinematics of the manipulator, which de-
scribe position of the end-effector and sometimes its ori-
entation, if some relationship between the orientation and
the parameter s holds (i.e., orientation depends on the pa-
rameter s). We will assume that the mapping ∂k/∂qr =
J , which is, in fact, a Jacobi matrix for the manipulator,
has always full rank ρ (manipulator avoids singular con-
figurations). Moreover, we make the assumption that first
and second derivatives of the path Π(s) exist and they are
bounded.

Due to (Galicki, 2006), where the idea of path fol-
lowing for redundant manipulators was formulated, we as-
sume that at the initial moment, for which s(0) = 0 holds,
the manipulator’s end-effector is located on the path, i.e.,

k(qr(0)) = Π(0),

and that at the initial and the final moment the end-effector
does not move,

ṡ(0) = ṡ(T ) = 0, T −→ ∞.

Moreover, because the workspace of the robotic arm is not
very big and the end-effector should move along the path
with stopping at the end, we expect that the length of the
path is limited to the value smax. This implies that the
next error (curvilinear distance from the end point of the
path) should be defined,

es = s − smax.
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5. Path following for a nonholonomic mobile
manipulator of the (nh, h) type

To obtain path following for a mobile manipulator of the
(nh, h) type, two expressions have to be defined:

• ṡ(t)—path parametrization for the manipulator,

• τ—control algorithm for the dynamics designed for
the full (nh, h) mobile manipulator.

5.1. Path parametrization for the arm. The path
parametrization s = s(t) can be obtained from the scalar
differential equation (Galicki, 2006),

s̈ = −Kdṡ − Kmes

(
1
2

∂γ

∂s
es + γ

)
+ 2K2e

T
p F,

F =
∂Π
∂s

,

(31)

where Kd, Km, K2 > 0 are some regulation parameters
and γ ∈ C2 is assumed to be a strictly positive function of
s (with the first and second derivatives bounded), which
cannot fulfill the differential equation

1
2

∂γ

∂s
es + γ = 0.

This equation has no special physical meaning; it is
similar to a specific restriction on regulation parameters.
On the other hand, it is very easy to fulfill this require-
ment. The function γ can be equal to 1, but if it is in
a more general form, then it is possible to achieve a more
flexible behavior of es near the endpoint of the path.

5.2. Dynamic control. We will formulate the main re-
sult as a theorem.

Theorem 1. Let us consider the model of a mobile ma-
nipulator (7) with the nonholonomic constraints (2). We
assume that the reference kinematic control ηr(t) com-
puted due to the Samson algorithm (22) solves the path
following problem for the mobile platform.

Then we propose a dynamic control law,

τ = (B∗)−1

{
Q∗
(

η̇r

−J̇T ep − JT Jq̇r + JT F ṡ

)

+ C∗
(

ηr

−JT ep

)
+ D∗ − CKEv − KEv

}
,

(32)

where F is defined by (31) and the symbols have the fol-
lowing meaning:

Ev =
(

eη

q̇r + JT ep

)
=
(

η − ηr

q̇r + JT ep

)
,

K =
[
K11 0
0 K12

]
,

K1i = diag{Ki}, Ki > 0, i = 1, 2,

which preserves asymptotic convergence for full kinematic
and dynamic coordinates of the mobile manipulator to
their desired values. This implies path following for each
subsystem of the mobile manipulator.

Proof. To prove proper behavior of the presented dyna-
mic control algorithm, it is necessary to take under con-
sideration not only dynamic algorithm given by (32), but
the kinematic controller, too.

The closed-loop system (7) and (32) is described by
the error equation

Q∗Ėv = −KEv − (C∗ + CK)Ev. (33)

In order to prove the convergence of trajectories of both
subsystems of the mobile manipulator to the desired paths,
we choose the following Lyapunov-like function:

W (ξ, Ev, es, ṡ) = V1(ξ) +
1
2
ET

v Q∗Ev +
1
2
ṡ2

+
1
2
γKme2

s + K2e
T
p ep,

(34)

where V1(ξ) is the Lyapunov function (19) for the kine-
matics (17) expressed in the Frenet variables (transformed
to the path following problem). Now we calculate the time
derivative of W as follows:

Ẇ = V̇1 + ET
v Q∗Ėv +

1
2
ET

v Q̇∗Ev + ṡs̈

+
(

1
2

∂γ

∂s
e2

s + γes

)
Kmṡ + 2K2e

T
p ėp.

Before we start to evaluate Ẇ along trajectories of
the closed-loop system (17), (22), (31) and (33), it is ne-
cessary to describe the influence of the additional errors
eη, defined in Theorem 1, which come from the dynamic
control level and disturb solutions to the kinematic equa-
tions (22). We will treat ηr as kinematic control signals in
the ideal case (i.e., without dynamics), and then, as kine-
matic control for a real case (with dynamics), instead ηir

defined by (22), we should take disturbed controls as fol-
lows:

v = const + eη1, (35)

ω = −k2lv
sin θ̃

θ̃
− k3θ̃

+ v cos θ̃
c(s)

1 − c(s)l
+ eη2.

(36)

Now we evaluate the time derivative of W along tra-
jectories of the closed-loop system (17)–(36) in the fol-



570 A. Mazur and D. Szakiel

lowing way:

Ẇ = −k3θ̃
2 + θ̃eη2 − eT

η K11eη − K2q̇
T
r q̇r − Kdṡ

2

− K2e
T
p JJT ep

= −
(

k3 − 1
2

)
θ̃2 − 1

2

(
θ̃ − eη2

)2

− K1e
2
η1 − Kdṡ

2

−
(

K1 − 1
2

)
e2

η2 − K2q̇
T
r q̇r − K2e

T
p JJT ep

≤ −
(

k3 − 1
2

)
θ̃2 − K1e

2
η1 −

(
K1 − 1

2

)
e2

η2

− K2q̇
T
r q̇r − Kdṡ

2 − K2e
T
p JJT ep

≤ 0.

(37)

It is easy to see that the Lyapunov function W is de-
creasing along any trajectory of the closed-loop system, if
control parameters are greater than properly chosen num-
bers, i.e., K1, k3 > 1/2.

The matrix JJT is a matrix of manipulability of the
rigid manipulator and it is always positive definite as a
consequence of the assumption about avoiding singulari-
ties by the manipulator. From LaSalle’s invariance princi-
ple, we conclude that

(θ̃, eη1, eη2, q̇r, ṡ, ep) = (0, 0, 0, 0, 0, 0)

is an asymptotically stable equilibrium point. The con-
vergence of l is a consequence of the deliberations and
arguments presented in Section 4.1.1.

Now we want to prove the convergence of es to
zero. The function W is decreasing along trajectories of
the closed-loop system, therefore all signals defining this
function (i.e., ξ, Ev , ṡ, es and ep) are bounded. Using
properties of the functions γ and Π and the boundedness
of the above-mentioned variables, it is easy to prove that
s̈, which is a sum of products of bounded variables, is
bounded and, consequently, so is

s(3) = −Kds̈ − 2Kmesṡ
∂γ

∂s
− 1

2
Kme2

s

∂2γ

∂s2
ṡ − Kmṡγ

+ 2K2(q̇T
r JT − FT ṡ)F + 2K2e

T
p

∂2Π
∂s2

ṡ.

Applying above arguments to the function ṡ, due to
the Barbalat lemma, we conclude that s̈(T ) → 0 for T →
∞. From the equation of path parametrization (31), we
can see that the following equation is fulfilled:

s̈(∞) = 0 −→ 1
2

∂γ

∂s
e2

s(∞) + γes(∞) = 0.

This means that either es(∞) = 0 or 1
2

∂γ
∂s es(∞) + γ =

0. However, from the properties of the γ(s) function,
we know that the second option does not hold. Thus,
es(∞) = 0. This completes the proof. �

5.3. Simulation study for an (nh, h) mobile manip-
ulator. The simulations were run with the MATLAB
package and the SIMULINK toolbox. As an object of
simulations we chose a rigid RTR manipulator mounted
on the unicycle, depicted in Fig. 1. The kinematics of the
platform are given by (16). The dynamics are omitted in
the text for the sake of conciseness, but they can be found
in (Mazur, 2000).

The goal of the simulations was to investigate the
behavior of a mobile manipulator with the dynamic con-
troller (31), (32) and the kinematic controller (22). The
desired path for the manipulator (straight line) was se-
lected as

Π1(s) = 0.4 [m],
Π2(s) = 0.866s [m],
Π3(s) = 0.5s + 0.5 [m],
smax = 0.2 [m],
γ(s) = 1,

and the desired path for the mobile platform was the other
straight line,

x(s) =
√

2
2

s [m], y(s) =
√

2
2

[m].

The initial configuration of the manipulator was equal
to (θ1, θ2, θ3)(0)= (0, 0.6732,−π/3), and the initial pos-
ture of the platform was selected as (x, y, θ)(0) =
(0, 2, 3π/4).

0 200 400 600−0.015

−0.01

−0.005

0

time [s]

e 1 [m
]

Fig. 6. Error of the x coordinate for the RTR manipulator.

The tracking of the desired path by the end-effector
of the RTR manipulator is depicted in Figs. 6–8. The
tracking of the desired path for the mobile platform is
presented in Figs. 9–11. The parameters of the dynamic
controller were equal to Kd = Km = 1, K1 = 1 and
K2 = 0.01. In turn, the parameters of the kinematic
Samson algorithm were selected as v = 1, k2 = 0.1 and
k3 = 1.
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0 200 400 600−0.05

0

0.05

0.1

0.15

time [s]

e 2 [m
]

Fig. 7. Error of the y coordinate for the RTR manipulator.

0 200 400 600

−1

−0.5

0x 10−3

time [s]

e 3 [m
]

Fig. 8. Error of z coordinate for the RTR manipulator.
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Fig. 9. Path tracking for the mobile platform—XY plot.

It is easy to observe that the convergence of coordi-
nate errors, especially for the x and z coordinates, is very
slow. The convergence ratio depends on the gains K1,
K2 in the dynamic controller in such a way that bigger
values of regulation parameters imply faster convergence.

0 200 400 600

0

1

2

time [s]

l [
m

]

Fig. 10. Path tracking for the mobile platform—distance error l.

0 200 400 600−0.5

0

0.5

1

1.5

2

time [s]

θ−
θ r [r

ad
]

Fig. 11. Path tracking for the mobile platform—orientation er-
ror θ̃.

On the other side, the performance of the dynamic con-
trol algorithm depends on the specific construction of the
holonomic rigid manipulator. The RTR manipulator can
move in the R

3 space, and therefore its displacement is
more difficult to control than in the case of any planar ma-
nipulator.

From the plots presented in Figs. 9–11 we can see
that in the Samson algorithm fast convergence is easy to
notice.

6. Path following for a nonholonomic mobile
manipulator of the (nh, nh) type

Similarly to the (nh, h) mobile manipulator, we will for-
mulate the main result as a theorem.

Theorem 2. Let us consider the model of a mobile
manipulator (10) with the nonholonomic constraints (9).
We assume that the reference kinematic controls ζr(t) =
(ηT

r (t), uT
r (t)) solve the path following problem for both

nonholonomic subsystems, where ηr(t) was computed due
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to the Samson algorithm (22) for the mobile platform and
ur(t) for the nonholonomic manipulator is given by (29).

Then we propose a dynamic control law,

τ = (B∗)−1

{
Q∗
(

η̇r

u̇r

)
+C∗

(
ηr

ur

)
+D∗−(K + CK)Eζ

}
,

(38)
with the symbols defined as follows:

Eζ =
(

eη

eu

)
=
(

η − ηr

u − ur

)
, K =

[
K1I2 0

0 K2I2

]
,

and K1, K2 > 0, which preserves asymptotic conver-
gence for full kinematic and dynamic coordinates of the
(nh, nh) mobile manipulator to their desired values.

Proof. In order to prove the convergence of trajectories of
both subsystems of the mobile manipulator to the desired
paths, we choose the following Lyapunov-like function:

V (ξ, ξm, Eζ) = k2
l2

2
+

θ̃2

2
+ ξT

mξm +
1
2
ET

ζ Q∗Eζ . (39)

Similarly to the case of the (nh, h) mobile manipulator,
it is necessary to take into consideration the influence of
the additional errors Eζ , which come from the dynamic
control level and disturb kinematic reference signals. We
will treat ζr = (ηr , ur) as kinematic control signals in
the ideal case. Then, as kinematic control for a real case,
instead of ηir we should take the disturbed controls (35),
(36), and instead of ur it is necessary to take the disturbed
signals

u = −K−1
l (qr, ξm)Λξm + eu. (40)

Putting to the expression for the time derivative of V

V̇ = k2ll̇ + θ̃
˙̃
θ + ξT

mξ̇m +
1
2
ET

ζ Q̇∗Eζ + ET
ζ Q∗Ėζ

the equation of the closed-loop system (10), (38),

Q∗Ėζ + (C∗ + CK)Eζ + KEζ = 0,

and the equation of the disturbed kinematic controls (35),
(36) and (40), we obtain

V̇ = −k3θ̃
2 + θ̃eη2 − ξT

mΛξm + ξT
mKleu − ET

ζ KEζ

= −k3θ̃
2 + θ̃eη2 − ξT

mΛξm + ξT
mKleu − eT

η K1eη

− eT
u K2eu

= −(k3 − 1
2
)θ̃2 − 1

2
(θ̃ − eη2)2 − (K1 − 1

2
)e2

η2

− K1e
2
η1 − ξT

m(Λ − I2

2
)ξm +

1
2
eT

u KT
l Kleu

− 1
2
(ξm − Kleu)T (ξm − Kleu) − eT

u K2eu.

From the definition of the Frenet variables ξm it is
known that a norm of the matrix Kl(qr, ξm) is bounded
and there holds

‖ Kl(qr, ξm) ‖≤ Kmax < ∞.

Then the time derivative of the Lyapunov function can be
evaluated as follows:

V̇ = −(k3 − 1
2
)θ̃2 − 1

2
(θ̃ − eη2)2 − (K1 − 1

2
)e2

η2

− K1e
2
η1 − ξT

m(Λ − I2

2
)ξm +

1
2
eT

u KT
l Kleu

− 1
2
(ξm − Kleu)T (ξm − Kleu) − eT

u K2eu

≤ −(k3 − 1
2
)θ̃2 − (K1 − 1

2
)e2

η2 − K1e
2
η1

− ξT
m(Λ − I2

2
)ξm − eT

u (K2 − K2
max

2
)eu

≤ −W (θ̃, Eζ , ξm) ≤ 0.

It can be seen that if regulation parameters are properly
chosen, i.e.,

k3 >
1
2
, K1 >

1
2
, Λ >

I2

2
, K2 >

K2
max

2
,

then the above evaluation fulfills the assumptions of the
LaSalle theorem (Krstić et al., 1995). This means that the
point

(θ̃, eη, eu, ξ) = (0, 0, 0, 0)

is a locally asymptotically stable equilibrium point of tra-
jectories of the mobile manipulator with the control sig-
nals (35), (36) and (38). This completes the proof. �

6.1. Simulation study for an (nh, nh) mobile ma-
nipulator. As an object of simulations we chose a non-
holonomic vertical 3-pendulum mounted on the unicycle.
The nonholonomic constraints for the mobile platform are
given by (16) and for the nonholonomic robotic arm they
are defined as (3)–(4). The dynamics of the mobile ma-
nipulator considered are omitted for the sake of clarity,
but they can be found in (Mazur, 2000).

For a nonholonomic 3-pendulum, the matrix
Kl(qr, ξm) has the form

Kl(qr, ξm) =
[

Kl11 Kl12

Kl21 Kl22

]
,

with the elements defined below:

Kl11 =
3∑

i=1

li cos(θrm −
i∑

j=1

θi),

Kl12 = a2s1

3∑

i=2

li cos(θrm −
i∑

j=1

θi)

+ a3s2c1l3 cos(θrm −
3∑

j=1

θi),

Kl21 = 1 − c(s)
1 − c(s)lm

3∑

i=1

li sin(θrm −
i∑

j=1

θi),
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Kl22 = a2s1[1 − c(s)
1 − c(s)lm

3∑

i=2

li sin(θrm −
i∑

j=1

θi)]

+ a3s2c1[1 − c(s)
1 − c(s)lm

l3 sin(θrm −
3∑

j=1

θi)].

It is worth mentioning that the Frenet transformation
is valid only locally, i.e., lm(0) < rmin, where rmin is
an inversion of the maximal curvature cmax of the ma-
nipulator path Π(s), and therefore nominators of all frac-
tions are well defined. In turn, the nonholonomic pla-
nar 3-pendulum cannot achieve angles equal to θ1, θ2 =
0,±π. Moreover, singularities in the Kl matrix occur for
cos(θrm − θ1) = cos(θrm − θ1 − θ2) = cos(θrm − θ1 −
θ2 − θ3) = 0.
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Fig. 12. Path tracking for the 3-pendulum: an error of the x co-
ordinate.
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Fig. 13. Path tracking for the 3-pendulum: an error of the z co-
ordinate.

The desired path for the manipulator (circle) was selected
as

Π1(s) = 0.25 cos4s + 1 [m],
Π2(s) = −0.25 sin4s + 0.6 [m],

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

TIME   [s]

Fig. 14. Path tracking for the 3-pendulum: an error of orienta-
tion θ̃.

and the desired path for the mobile platform was the same
straight line as for the (nh, h) mobile manipulator.

The initial configuration of the manipulator was
equal to (θ1, θ2, θ3)(0)= (0, π/2,−π/2+0.1) and the ini-
tial posture of the platform was selected as (x, y, θ)(0) =
(0, 2, 3π/4).

The tracking of the desired path by the end-effector
of the 3-pendulum is depicted in Figs. 12–14. The pa-
rameters of the dynamical controller were equal to K1 =
K2 = 100. In turn, the parameters of the kinematic Sam-
son algorithm for the platform were selected as v = 1,
k2 = 0.1 and k3 = 1. The matrix Λ in the kinematic
algorithm dedicated the nonholonomic manipulator was a
diagonal matrix with 2 on the diagonal.

From the plots presented in Figs. 12–14, it is easy
to observe that the convergence of the coordinate errors of
x and z is rather fast. Such good convergence is a result
of big values for dynamic controller gains. On the other
hand, big gains in the dynamic control algorithm are nec-
essary, because the gear ratios a2 = 0.1 and a3 = 0.2
appearing in the equations of nonholonomic constraints
for a planar 3-pendulum are small.

7. Conclusions

The most important result obtained in this work shows
clearly that the path following problem for nonholonomic
mobile manipulators can be solved using the control laws
introduced in this paper. These dynamic control algo-
rithms are locally asymptotically stable. Simulation re-
sults confirm good behavior of the mobile manipulator—
nonholonomic platform moves along a desired contour
without the slippage of its wheels and the onboard manip-
ulator executes some tasks defined relative to the platform,
which makes it possible to unload a payload during the
transportation. Moreover, in the paper, the kinematic con-
troller guaranteeing path following for a nonholonomic
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manipulator was designed.
It is worth emphasising that the presented dynami-

cal controllers can be applied only to a mobile manipu-
lator with full knowledge about its dynamics. However,
for holonomic manipulators, it has been shown in the lit-
erature that it is possible to move the robotic arm along
the prescribed path without any knowledge about its dy-
namics. For this reason, future works could focus on ex-
tending the existing controllers to adaptive versions, i.e.,
for a nonholonomic mobile manipulator with parametric
uncertainty in the dynamics.
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D’Andréa-Novel, B., Bastin, G. and Campion, G. (1991).
Modelling and control of nonholonomic wheeled mobile
robots, Proceedings of the IEEE International Confer-
ence on Robotics and Automation, Sacramento, CA, USA,
pp. 1130–1135.

Dong, W. (2002). On trajectory and force tracking control
of constrained mobile manipulators with parameter uncer-
tainty, Automatica 38(9): 1475–1484.
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linear and Adaptive Control Design, J. Wiley and Sons,
New York, NY.

Li, Z., Ge, S. and Ming, A. (2007). Adaptive robust mo-
tion/force control of holonomic-constrained nonholonomic
mobile manipulator, IEEE Transactions on System, Man
and Cybernetics, Part B: Cybernetics 37(3): 607–617.

Mazur, A. (2000). Comparative study of control al-
gorithms for nonholonomic mobile manipulators,
Technical Report SPR 38/00, Institute of Engineer-
ing Cybernetics, Wrocław University of Technology,
http://sequoia.ict.pwr.wroc.pl/˜alicja,
(in Polish).

Mazur, A. (2004). Hybrid adaptive control laws solving a path
following problem for nonholonomic mobile manipulators,
International Journal of Control 77(15): 1297–1306.

Nakamura, Y., Chung, W. and Sørdalen, O. J. (2001). Design and
control of the nonholonomic manipulator, IEEE Transac-
tions on Robotics and Automation 17(1): 48–59.

Samson, C. (1995). Control of chained systems—Application
to path following and time-varying point-stabilization of
mobile robots, IEEE Transactions on Automatic Control
40(1): 147–158.

Tan, J., Xi, N. and Wang, Y. (2003). Integrated task planning
and control for mobile manipulators, International Journal
of Robotics Research 22(5): 337–354.
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