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On path-quasar Ramsey numbers

Abstract. Let G1 and G2 be two given graphs. The Ramsey number
R(G1, G2) is the least integer r such that for every graph G on r vertices,
either G contains a G1 or G contains a G2. Parsons gave a recursive formula
to determine the values of R(Pn,K1,m), where Pn is a path on n vertices and
K1,m is a star on m+1 vertices. In this note, we study the Ramsey numbers
R(Pn,K1 ∨Fm), where Fm is a linear forest on m vertices. We determine the
exact values of R(Pn,K1 ∨ Fm) for the cases m ≤ n and m ≥ 2n, and for the
case that Fm has no odd component. Moreover, we give a lower bound and
an upper bound for the case n+1 ≤ m ≤ 2n− 1 and Fm has at least one odd
component.

1. Introduction. We use Bondy and Murty [1] for terminology and nota-
tion not defined here, and consider finite simple graphs only.
Let G be a graph. We denote by ν(G) the order of G, by δ(G) the
minimum degree of G, by ω(G) the number of components of G, and by
o(G) the number of components of G with an odd order.
Let G1 and G2 be two graphs. The Ramsey number R(G1, G2), is defined
as the least integer r such that for every graph G on r vertices, either G
contains a G1 or G contains a G2, where G is the complement of G. If G1

and G2 are both complete, then R(G1, G2) is the classical Ramsey num-
ber r(ν(G1), ν(G2)). Otherwise, R(G1, G2) is usually called the generalized
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Ramsey number. We refer the reader to Graham et al. [5] for an introduction
to the area of Ramsey theory.
We denote by Pn the path on n vertices. The graph K1,m, m ≥ 2, is
called a star. The only vertex of degree m is called the center of the star.
In 1974, Parsons [7] determined R(Pn,K1,m) for all n,m. We list Parsons’
result as below.

Theorem 1 (Parsons [7]).

R(Pn,K1,m) =

⎧⎪⎪⎨
⎪⎪⎩

n, 2 ≤ m ≤ �n/2�;
2m− 1, �n/2�+ 1 ≤ m ≤ n;
max{R(Pn−1,K1,m), R(Pn,K1,m−n+1) + n− 1}, n ≥ 3

and m ≥ n+ 1.

It is trivial that R(P2,K1,m) = m + 1. So the above recursive formula
can be used to determine all path-star Ramsey numbers.
In 1978, Rousseau and Sheehan [8] gave an explicit formula for the Ram-
sey numbers of paths versus stars. Let t(n,m), n,m ≥ 2, be the values
defined as

t(n,m) =

{
(n− 1) · β + 1, α ≤ γ;
�(m− 1)/β�+m, α > γ,

where

α =
m− 1

n− 1
, β = �α� and γ =

β2

β + 1
.

Theorem 2 (Rousseau and Sheehan [8]). R(Pn,K1,m) = t(n,m) for all
n,m ≥ 2.

The interested reader can compare the above two formulae. We will give
an independent and short proof of Theorem 2 in Section 3.
A linear forest is a forest each component of which is a path. We call
the graph obtained by joining a vertex to every vertex of a nontrivial linear
forest a quasar. Thus a star is a quasar, and we call a quasar a proper one
if it is not a star.
It may be interesting to consider the Ramsey numbers of paths versus
proper quasars. Some results of this area were obtained. Salman and
Broersma [9, 10] studied the Ramsey numbers of Pn versus K1 ∨mK2 (this
graph is called a fan in [9]), and of Pn versus K1 ∨ Pm (this graph is called
a kipas in [10]). Both cases have not been completely solved in [9, 10]. Note
that fans and kipases are special cases of quasars. In the following, we will
consider the Ramsey numbers of paths versus proper quasars. As an ap-
plication of our results, we will give a complete solution to the problem of
determining the Ramsey numbers of paths versus fans.
We first determine the exact values of R(Pn,K1 ∨ F ) when m ≤ n or

m ≥ 2n, where F is a non-empty linear forest on m vertices.
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Theorem 3. Let F be a non-empty linear forest on m vertices. Then

R(Pn,K1 ∨ F ) =

{
2n− 1, 2 ≤ m ≤ n;
t(n,m), n ≥ 2 and m ≥ 2n.

So we have an open problem for the case n + 1 ≤ m ≤ 2n − 1. For this
case we have the following upper and lower bounds. By par(m) we denote
the parity of m.

Theorem 4. If n ≥ 2 and n + 1 ≤ m ≤ 2n − 1, and F is a non-empty
linear forest on m vertices, then
(1) R(Pn,K1 ∨ F ) ≤ m+ n− 2 + par(m); and
(2) R(Pn,K1 ∨ F ) ≥ max {2n− 1, �3m/2� − 1,m+ n− o(F )− 2}.
If F contains no odd component, then the upper bound and the lower
bound in Theorem 4 are equal. Thus we conclude the following.

Corollary 1. If n ≥ 2 and n + 1 ≤ m ≤ 2n − 1, and F is a linear forest
on m vertices such that each component of F has an even order, then

R(Pn,K1 ∨ F ) = m+ n− 2.

Note that Theorem 3 and Corollary 1 give all the path-quasar Ramsey
numbers R(Pn,K1 ∨ F ) when o(F ) = 0, including all the Ramsey numbers
of paths versus fans.

Corollary 2.

R(Pn,K1 ∨mK2) =

⎧⎨
⎩

2n− 1, 1 ≤ m ≤ �n/2�;
2m+ n− 2, �n/2�+ 1 ≤ m ≤ n− 1;
t(n, 2m), n ≥ 2 and m ≥ n.

We propose the following conjecture to complete this section.

Conjecture 1. If n ≥ 2 and n + 1 ≤ m ≤ 2n − 1, and F is a non-empty
linear forest on m vertices, then

R(Pn,K1 ∨ F ) = max

{
2n− 1,

⌈
3m

2

⌉
− 1,m+ n− o(F )− 2

}
.

2. Preliminaries. The following useful result is deduced from Dirac [3].
We present it here without a proof.

Theorem 5. Every connected graph G contains a path of order at least
min{ν(G), 2δ(G) + 1}.
We follow the notation in [6]. For integers s, t, the interval [s, t] is the
set of integers i with s ≤ i ≤ t. Note that if s > t, then [s, t] = ∅. Let X
be a subset of N. We set L(X) = {∑k

i=1 xi : xi ∈ X, k ∈ N}, and suppose
0 ∈ L(X) for any set X. Note that if 1 ∈ X, then L(X) = N. For an
interval [s, t], we use L[s, t] instead of L([s, t]).
The following lemma was proved by the authors in [6]. We include the
proof here for the completeness of our discussion.
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Lemma 1. t(n,m) = min{t : t /∈ L[t−m+ 1, n− 1]}.
Proof. Set T = {t : t ∈ L[t − m + 1, n − 1]}. Note that if t ∈ T , then
t− 1 ∈ T . So it is sufficient to prove that t(n,m) = max(T ) + 1.
Note that

t ∈ T ⇔ t ∈ L[t−m+ 1, n− 1]

⇔ t ∈ [k(t−m+ 1), k(n− 1)], for some integer k

⇔ t ≤ k

k − 1
(m− 1) and t ≤ k(n− 1), for some integer k

⇔ t ≤ k(n− 1) for some integer k < α+ 1, or

t ≤
⌊
m− 1

k − 1

⌋
+m− 1, for some integer k ≥ α+ 1.

This implies that

T = {t : t ≤ k(n− 1), k ≤ β} ∪
{
t : t ≤

⌊
m− 1

k − 1

⌋
+m− 1, k ≥ β + 1

}
.

Thus

max(T ) = max

{
(n− 1)β,

⌊
m− 1

β

⌋
+m− 1

}

=

{
(n− 1) · β, α ≤ γ;
�(m− 1)/β�+m− 1, α > γ.

We conclude that t(n,m) = max(T ) + 1. �
We use Cm to denote the cycle on m vertices, and Wm to denote the
wheel on m+1 vertices, i.e., the graph obtained by joining a vertex to every
vertex of a Cm. We will use the following formulas for path-cycle Ramsey
numbers and for path-wheel Ramsey numbers.

Theorem 6 (Faudree et al. [4]). If n ≥ 2 and m ≥ 3, then

R(Pn, Cm) =

⎧⎪⎪⎨
⎪⎪⎩

2n− 1, for n ≥ m and m is odd;
n+m/2− 1, for n ≥ m and m is even;
max{m+ �n/2� − 1, 2n− 1}, for m > n and m is odd;
m+ �n/2� − 1, for m > n and m is even.

Theorem 7.
(1) (Chen et al. [2]) If 3 ≤ m ≤ n+ 1, then

R(Pn,Wm) =

{
3n− 2, m is odd;
2n− 1, m is even.

(2) (Zhang [11]) If n+ 2 ≤ m ≤ 2n, then

R(Pn,Wm) =

{
3n− 2, m is odd;
m+ n− 2, m is even.
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(3) (Li and Ning [6]) If n ≥ 2 and m ≥ 2n+ 1, then

R(Pn,Wm) = t(n,m).

3. Proofs of the theorems. Proof of Theorem 2. Let r = t(n,m).
By Lemma 1, t(n,m) = min{t : t /∈ L[t − m + 1, n − 1]}. Thus r − 1 ∈
L[r −m,n − 1]. Let r − 1 =

∑k
i=1 ri, where ri ∈ [r −m,n − 1], 1 ≤ i ≤ k.

Let G be a graph with k components H1, . . . , Hk such that Hi is a clique
on ri vertices. Note that G contains no Pn since every component of G has
less than n vertices; and G contains no K1,m since every vertex of G has less
thanm nonadjacent vertices. This implies that R(Pn,K1,m) ≥ ν(G)+1 = r.
Now we will prove that R(Pn,K1,m) ≤ r. Let us assume that this in-
equality does not hold. Let G be a graph on r vertices such that G contains
no Pn and G contains no K1,m.

Claim 1. m+ �n/2� ≤ r ≤ m+ n− 1, i.e., 1 ≤ m+ n− r ≤ �n/2�.
Proof. Let r′ = m + n − 1. Since r′ −m + 1 = n, [r′ −m + 1, n − 1] = ∅,
and r′ /∈ L(∅) = {0}, we have r ≤ r′ = m+ n− 1 and hence m+ n− r ≥ 1.
Now we prove that m + n − r ≤ (n + 1)/2. By Lemma 1, r /∈ L[r −

m + 1, n − 1]. Thus r /∈ [k(r − m + 1), k(n − 1)], for every k. That is,
r ∈ [k(n− 1) + 1, (k + 1)(r −m+ 1)− 1], for some k. This implies that

r ≥ k(n− 1) + 1 and r ≥ k + 1

k
m− 1,

for some k ≥ 1.
If m ≤ (k2n− k2 + 2k)/(k + 1), then

m+ n− r ≤ k2n− k2 + 2k

k + 1
+ n− (k(n− 1) + 1)

=
n+ 2k − 1

k + 1
≤ n+ 1

2
.

If m > (k2n− k2 + 2k)/(k + 1), then

m+ n− r ≤ m+ n−
(
k + 1

k
m− 1

)

= n− m

k
+ 1 < n− k2n− k2 + 2k

k(k + 1)
+ 1

=
n+ 2k − 1

k + 1
≤ n+ 1

2
.

Thus we have m+ n− r ≤ �(n+ 1)/2� = �n/2�. �

Case 1. Every component of G has order less than n.

Let Hi, 1 ≤ i ≤ k = ω(G), be the components of G. Since r /∈ L[r−m+
1, n − 1], there is a component, say H1, with order at most r − m. Thus
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∑k
i=2 ν(Hi) ≥ m. Let v be a vertex in H1. Since v is nonadjacent to every
vertex in G−H1, G contains a K1,m with the center v, a contradiction.

Case 2. There is a component of G with order at least n.

Let H be a component of G with ν(H) ≥ n. If every vertex of H has
degree at least �n/2�, then by Theorem 5, H contains a Pn, a contradiction.
Thus there is a vertex v in H with d(v) ≤ �n/2�−1. Let G′ = G−v−N(v).
Then by Claim 1,

ν(G′) = ν(G)− 1− d(v) ≥ r −
⌊n
2

⌋
≥ m.

Since v is nonadjacent to every vertex in G′, G contains a K1,m with the
center v, a contradiction.
The proof is complete. �

Proof of Theorem 3. If m = 2, then K1 ∨ F is a triangle (recall that F
is non-empty). From Theorem 6, we get that R(Pn, C3) = 2n− 1.
If 3 ≤ m ≤ n, then K1 ∨ F is a supergraph of C3 and a subgraph of

Wm+par(m), we have

R(Pn, C3) ≤ R(Pn,K1 ∨ F ) ≤ R(Pn,Wm+par(m)).

By Theorems 6 and 7, R(Pn, C3) = R(Pn,Wm+par(m)) = 2n − 1. We con-
clude that R(Pn,K1 ∨ F ) = 2n− 1.
Now we deal with the case m ≥ 2n. Note that K1 ∨F is a supergraph of

K1,m and a subgraph of Wm. We have

R(Pn,K1,m) ≤ R(Pn,K1 ∨ F ) ≤ R(Pn,Wm).

By Theorems 2 and 7, R(Pn,K1,m) = R(Pn,Wm) = t(n,m) (we remark that
if m = 2n, then m+ n− 2 = t(n,m)). We conclude that R(Pn,K1 ∨ F ) =
t(n,m).
The proof is complete. �

Proof of Theorem 4. Since K1 ∨ F is a subgraph of Wm+par(m), by The-
orem 7, we have

R(Pn,K1 ∨ F ) ≤ m+ n− 2 + par(m).

Now we construct three graphs. Let

G1 = 2Kn−1,
G2 = K�m/2� ∪ 2K�m/2�−1 and
G3 = Kn−1 ∪ 2K(m−o(F ))/2−1.

One can check that all the three graphs contain no Pn and their complements
contain no K1 ∨ F . This implies that R(Pn,K1 ∨ F ) ≥ max{ν(Gi) + 1 :
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i = 1, 2, 3}. Since ν(G1) = 2n − 2, ν(G2) = �3m/2� − 2 and ν(G3) =
m+ n− o(F )− 3, we get that

R(Pn,K1 ∨ F ) ≥ max

{
2n− 1,

⌈
3m

2

⌉
− 1,m+ n− o(F )− 2

}
.

The proof is complete. �
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