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ON PATTERN CLASSIFICATION ALGORITHMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
INTRODUCTION AND SURVEY * 

BY 

Yu-Chi Ho and Ashok K. Agrawala 

Division of Engineering and Applied Physics 

Harvard University Cambridge, Massachusetts 

ABSTRACT 

This paper attempts to lay bare  the underlying ideas used in  

various pattern classification algorithms reported in  the l i terature.  

It is shown that these algorithms can be classif ied according to the 

type of input information required and that the techniques of estimation, 

decision, and optimization theory can be used to effectively derive 

known as well as new resul ts .  

The research  reported in this work represents  an expanded version 
of a talk of the same tit le given by the f i r s t  author at the Tenth 
Anniversary Seminar of the Statistical Department, Harvard University, 
Apr i l  1967. 
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I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I. Introduction 

Pat tern classification o r  recognition covers an  extremely broad 

spectrum of problems. 

of these a t  any given t ime. For example, there is the engineering 

aspect of the pattern classification problem which is mainly concerned 

with the implementation and design of actual recognition devices. 

the other extreme, there i s  the art i f ic ia l  intelligence aspect of the 

problem which is concerned with the philosophical question of learning 

and intelligence. 

Similarly, the study of recognition mechanisms in biological systems 

is another accepted field of study zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 0 ] .  

touch on any of the above mentioned a reas .  

centrated on what might be called the analytical aspects of the pattern 

classif icat ion problem. 

as one of making decisions under uncertainty and the mathematical 

techniques of decision, estimation, and optimization theory a r e  

brought to bear  on the problem. 

Most of us a r e  only concerned with one or two 

At 

It is both stimulating and controversial [32,19]. 

In this paper, we shall not 

Our survey will be con- 

By this we mean that the problem is viewed 

As it is usually understood, there a r e  two fundamental problems 

associated with this aspect of pattern classification. 

(i) Characterization Problem. Given a pattern, signal o r  waveform, 

before any decision can be made concerning the pattern, i t  is often 

convenient as well as necessary to convert the pattern, signal, o r  

waveform into a set of features o r  attr ibutes which character ize the 

pattern under consideration. These features a r e  usually denoted by 

the real variables x l ,  . . * ,  xm and the vector x i s  called the pat tern 

vector. If we represent the original scanned pattern o r  sampled 
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waveform as a vector z, then the characterization or  feature selection 

problem can be simply but vaguely stated a s  finding a map f rom z to X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. e . )  

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

such that x "adequately characterizesrl  the original z for purposes of 

classification but the dimension of x i s  much smal le r  than that of z .  

(ii) Abstraction and Generalization Problem. Once a set  of features 

has been selected, and certain data concerning the patterns and their  

features a r e  given, the next problem is the determination of a decision 

function of these features based on the data given such that 

1 
x E c lass H 

x E: c lass  HO 

f (x)  = (1-2)" 

The problem of abstracting the necessary information f rom the given 

data to produce the decision function f(x)"<'" is cal led abstraction. 

Often t imes, i t  is convenient but not absolutely necessary  to p rocess  

the given data sequentially o r  i terat ively in o rde r  to determine f (x ) .  

This i terat ive procedure for calculating f(x) i s  known as ' t ra in ing 

procedure I ,  'adaptation', o r  ' learning. Once a decision function 

f (x)  has been found, the general izat ion problem attempts to a s s e s s  

the goodness of the f (x)  through the determination of var ious e r r o r  

probabil it ies. Fundamental to this assessment  is the knowledge (given 

In the main, we shal l  res t r i c t  ourselves to  two-class problems.  In 
section IX, we shall d iscuss the extension to mul t i -c lass problems. 

'w Sometimes f(x) i s  a lso re fe r red  to as a decis ion sur face  in  n 
dimensional x space. 

-f In the context of this paper, they simply represent  entrenched 
terminology. 
be attached to  these words. 

NO philosophical o r  metamathemat ica l  meaning should 
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1 

or calculated) of the quantity P ( H  /x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 - P(Ho/x). 

generalization problem can be viewed simply a s  that of the deter-  

mination of P(H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/x). 

In fact, the 

1 

The distinction between problems (i) and (ii), of course, is 

not always c lear  cut; nor can their solutions always be separately 

considered. 

solved clear ly affects the success of an abstraction algorithm and the 

ability of the resultant decision function to generalize. 

generally recognized that (i) is really the principal problem in pattern 

r e  c o gniti on. 

Fo r  example, how well the characterization problem is 

In fact, it is 

The present paper is devoted to a survey of the various algo- 

rithms for the solution of the abstraction problem of pattern c lassi-  

fication only. 

and generalization problems will be discussed only to the extent that 

they a r e  related to  the abstraction problem. 

Without minimizing their importance, the characterization 

11. Types of Input Data 

The various abstraction algorithms to be discussed require 

different types of input data. 

and establ ish a common notation to  be used in  the res t  of the paper. 

In this section we shal l  l is t  these 

1 
There a r e  two pattern classes, H and Ho. The probability 

of occurence of patterns from the ith c lass  is  denoted by P(Hi). 

If this probability i s  not explicitly given, then we shal l  assume it to 

be equal to 1/2, i. e . ,  both c lasses occur equally often. 

vectors will be denoted by x with the understanding that the compo- 

nents x. are features determined as a resul t  of the solution of the 

character izat ion problem. 

considered. 

The pattern 

1 

Four types of data concerning x will be 
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(i) Functional form of the condition density p(x/Hi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ) .  

By this we mean that the fo rm of the conditional density func- 

tions of x for both c lasses is given to within the specification of a 

set  of parameters 8. 

vectors f rom both c lasses a r e  gaussianly distributed with unknown 

mean and covariances. 

(ii) Parameters  of p ( x / ~ ~ ,  e) ,  

For  example, we may be given that the pattern 

By this it i s  meant that the values of the parameters  8 in ( i)  

a r e  a lso known. 

(iii) Sample patterns with known classif icat ion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As par t  of the given data for the abstraction problem, one is 

often supplied with a set of training sample patterns of known c lass i -  

fication. We denote the two sets  

1 1 1 a 1  
{x (11, x (2 ) ,  . . . , x (n,))  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (n , )  

0 A o  
{ x O ( l ) ,  x0W,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 " , x (no)) = x (no) " 

1 
In this case  we have two se ts  of n and n 

and Ho, respectively. 

often joined to make a matr ix ,  each row of which is a sample pat tern 

f rom one of the two c lasses  as shown below: 

samples for c lasses  H 
1 0 

For  notational compactness, the two se ts  are 

A =  

1 x l ( l ) T  - 

1 x1 (2IT 

-1 -xo( l )T  

T 
-1 -xo(n) 

(nl t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ) x ( l  t m) mat r i x  
0 
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The f i rst  column of ones and minus ones is used to indicate the known 

classification of the patterns. 

( iv) Samples of unknown classification. 

In so-called problems of training without a teacher,  sample 

patterns of unknown classification a r e  given. 

simply indicated as 

In this case they a r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

x(n) = W), x ( 4 ,  - - * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 x(n)) 

In connection with (iii) and ( iv) it is always assumed that the samples 

are independently chosen. The order  of appearance of these patterns 

is of no significance. 

Depending on the combinations of ( i ) - ( iv)  that a r e  supplied, 

different abstraction algorithms resul t .  

classify and discuss the various algori thms on the basis of these 

input data and the natural mathematical techniques used in each case. 

The following sections will 

111. Case A - Data Type (i) And (ii) Are Given 

When the conditional density functions p(x/Hi, 6) including the 

values of 8 a r e  given, the problem reduces to that of simple hypothesis 

test ing in stat ist ics. 

likelihood rat io defined as 

The basic quantity of in terest  here is the 

p ( x/Hi) 
L(x) = 

P(X/HO) 
(111-1) 

A decision function formed by comparing L(x) against a threshold 

value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq , i. e. 

f(x) = L(x) - q (111- 2 )  

is known to be optimal for a variety of c r i te r ia  depending on the 

specific value of q. For  example, (Selin Ch. 2, 1965 [43] ) .  
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(i) Neyman-pear son Criterion. 

Let X1 {x I f(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 o} , and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXo {x I f(x) < o} and 

a s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj' p(x/Ho)dx = e r r o r  probability of type 1 

X1 

(111- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) 

(III-4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
p 2 p(x/H )dx = e r r o r  probability of type 2 

X0 

If we selected the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ in (111-2) to yield a fixed value of a, then 

the decision function f(x) has the property that it minimizes the value 

of p as compared t o  any other f(x) yielding the same o r  smal ler  a .  

(ii) Bayes Criterion. 

If the prior probabil it ies of occurence of the two c lasses ,  P(Hi), 

as well a s  the cost of wrong decision C 

types, a r e  given, then selecting 

and C2 for the two e r r o r  
1 

(111- 5) 

will minimize the average r i sk  of making wrong decisions. 

(iii) Minimax Criterion. 

i 
If the prior probabil it ies, P (H  ), a r e  unknown, then we may 

wish to  choose the value of q so as to minimize the average r i sk  

against the worst value of P ( H  ). 
i 

This is given implicit ly by 

C1a = c2p (111- 6 )  

Special Case of the Gaussian p(x/Hi, e ) .  
i 

In the case when p(x/H , e )  a r e  gaussian, the likelihood rat io 

can be explicitly writ ten in  t e r m s  of the means,  pi, and covariances 
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Z i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  

customary to  write f (x)  = lnL(x)  - l n q  and we have 

Since the logarithm function is monotone, i t  is also 

1 I =, I 
131 

t z l n  - - Inq (111- 7) 

i. e .  the optimal decision functions a r e  quadratic. 

assume that 2 = Z = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  then Eq. (111-7) simplif ies to 

If we furthermore 

1 0 

T -1 
f (x)  = x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(pl  - p ) t constant t e rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

I 

d 

I 

A T  
= a  x t a  

0 
( 111- 8 ) 

:;: 
a l inear decision function. In communication terminology, we let 

components of x represent the successive samples of an  input wave- 

fo rm which may be a known signal plus noise o r  noise only. 

components of r'arr a r e  then the impulse response of a l inear d iscrete 

"matched f i l ter 

decision function f(x). 

tecting the presence of a known signal in gaussian noise. 

The 

whose output at a given time is the value of the 

This is  the solution to the problem of de- 

A l inear decision function of the type of Eq. (111-8) a lso a r i ses  

natural ly in other pattern classification approaches to be described 

later. 

popularity. 

t ion of the best l inear decision function based on the given input data. 

For  the gaussian case discussed here,  this question has been re -  

Their ease of implementation is a major  factor of their 

In fact, one is often led to  consider only the determina- 

solved by Anderson and Bahadur (1 962).  P I  

'; "a" here  is not to be confused with the a of Eq. (111-3). 
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Other Optimal Quadratic f(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A quadratic f(x) of the type of Eq. (111-7) is actually optimal’k for  

the more  general type of distributions than gaussian. 

generalizations have been studied by Cooper [14,13]. 

case where p(x/Hi) is given by 

Some of these 

Consider the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

(In-9) 

where h is a function integrable in n-space and monotone, i. e. h(a) 

decreases monotonically for increasing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, o d a < Q’ , and Ai i s  a 

constant adjusted to insure 1 p(x/Hi)dx = 1.  It can be shown that pi 

i 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. a r e  the mean and covariance matr ices respectively of p(x/H ) and 

that the c lass encompasses a wide range of distr ibutions including the 

1 

normal, Laplace, and rectangular distr ibutions. In the special  case 

when the determinants I Z I = I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL; I ,  then the optimal f(x) is the opti- 

m a l  separating surface for spher ical  normal, Pearson  I1 and VI1 types 

of distributions [ 131. 

Se que ntial De c i s i  on P roc e dur e s 

1 0 

In many classif icat ion problems, the features or  at t r ibutes of a 

sample pattern, x 

the x.’s a r e  the sampled value of a waveform in  t ime. 

it may be advantageous to ar range to examine the features in  de- 

a r e  received sequentially in  a natural  way, e .  g. i’ 

In other cases ,  
1 

creasing order of significance with the hope that a c lassi f icat ion can 

be rel iably made without having to go through all the features of a 

pattern most  of the t ime.  In either case,  one is led to the considera- 

tion of sequential decision functions, 

’k In the sense of Bayes cr i ter ion with equal cost  of misclassi f icat ion.  
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The main tool used here  is the sequential probability rat io test  

(SPRT) developed by Wald zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[49]. 

(111-1). Let 

This i s  a natural extension of Eq. 

1 
P b 1 ,  - * - , Xi/H 1 

L.(x)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA L ( x l , .  . . , x . )  = (111- 10) 
J p(x l ,  . . , x./Ho) 

J 

Instead of a binary choice of decisions af ter  j features, we use the 

following analog of Eq. (111-2). 

L j ( X )  - qA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
x e H  

Lj(X) - qB =s 0 x E Ho (111-11) 

It i s  well known that i f  we set 

j t l  
Observe the next feature x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-P - 

'B 1 - a  (111- 12) 

then the decision function of (111- 11) has the property that among all 

sequential tests  with the same specified a and p this SPRT wi l l  

requi re  the smal lest  number of features to reach a classif icat ion 

decision on the average 
.L 

Computationally, the main problem in the use of SPRT i s  the 

recurs ive evaluation of the likelihood function. In general, for rea l  

t ime application one would like a formula of the type 

L j t l (x )  = L.(x)  J ( t e rm involving x j t l  only) (111-13) 

': The above statement is t rue to  within the accuracy of the so-called 

"excess over boundary" represented by L . (x )  - qA or  L . (x )  - qB [49I*  
J J 
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o r  

I ~ [ L ~ + ~ ( X ) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I ~ [ L . ( x ) ]  t In[xjtl term]  (111-13') 
J 

This turns out to be possible i f  the x.Is belong to a fa i r ly  general c lass 

of gaussian sequences. In part icular, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

x . = H y  t v  
J j j  

(111- 14) 

where v .  and w .  a r e  independent white gaussian sequences with 
J J 

T E(v.) = 0 E(v.v. ) = R.6 
J J 1  J iJ 

T - W.) ] = Qj6ij - 
1 

E(w.) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW E[(w - w.)(wi 
J j j J 

(111- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  

i .  e .  the features a re  noise corrupted l inear combinations of the state 

of a vector gauss-markov sequence. 

sufficient stat ist ics of the features exist in the form of conditional 

mean and covariances of the state y, (9,P ), that is 

Thena set of finite dimensional 

Y 

P(Xj/X1, * * * , x j - l ;  H i ) <=' P(Xj/?, py; H i ) (111-16) 

These statistics can be recursively updated in t e r m s  of the IIKalman 

F i l te r "  well known in control theory [26]. 

The relationship (III-16) and the observation 

(111- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 )  

immediately leads to Eq. (111- 13). 

has not been exploited to any great extent in the pattern classif icat ion 

l i terature.  

This powerful technique apparently 



-11- 

Fu and his associates have studied various aspects of sequential 

methods as applied to pattern recognition. 

reorder ing of the unobserved features so as to next observe the feature 

containing most  significant information about the pattern. 

forward SPRT i s  then applied to the features selected. 

with two paral le l  stopping boundaries a s  in  Eq. (111-11) one can easi ly 

compute the average number of features required for a decision. 

Chen [IO] considered the 

A straight- 

F o r  a SPRT 

This, 

however, does not guarantee that the decision process will terminate 

in every case.  In pract ice it may not be possible to observe more  than 

a f inite number of features.  Chien [ l l ,  121 has suggested using a t ime 

varying stopping boundary to assure a termination in a finite t ime. 

Consider the features x 19x2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * - ' X n  approximated by a continuous 

t ime function x( t ) .  

samples f rom one of the two stochastic p rocesses  H o r  H . Again 

the likelihood rat io can be formed and a continuous analog of a SPRT 

Our two hypotheses now involve determining x(t) as 

0 1 

used for decision purposes: 

The modified SPRT is stated by the following inequalit ies 

(111 - 18) 

(111-19) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ ( t )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ ( t )  are nondecreasing and nonincreasing (respectively) 

functions of t ime. The decision is made as to c lass  H o r  H when 

left o r  right inequality is violated. 

functions of observation t ime i t  is possible to insure that a decision 

is reached in  a finite time. 

B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
0 1 

By making zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr)  ( t )  and qg(t) A 
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The expected t ime of reaching a decision and the probabilities 

of e r r o r ,  of course, wi l l  be different 

they may be calculated and controlled 

One form for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqA and qB may  be 

lnqA(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -a( l  - t /T) 
r 
a 

'b 
lnqB(t) = b( l  - t/T) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G 
a' 'b 

where o ~ t ~ T ,  o < r  

from the usual SPRT. But 

in advance. 

the following 

(I I I-20) 

1, a > o ,  b > o .  

T is the preassigned time at  which the test is truncated. 

the expected termination t ime for MSPRT"' by E ' ( tT)  and E(tT) for  a 

standard SPRT, and by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! and PI the misclassif icat ion probabil it ies of 

a MSPRT. 

test and the MSPRT begin a t  the same point then 

Let us denote 

If a and (3 a r e  very smal l  and the boundaries of the Wald 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I brbE(tT) 

' T t rbE(tT) 
at= a 

Therefore the expected t ime of termination is reduced and is 

controlled by the parameter r 

creased. 

while the e r r o r  probability has in- 
b' 

If i t  is desired that the same e r r o r  probabil it ies be 

achieved in both tests ,  the boundaries of a MSPRT should begin at a 

higher value than those in Wald's SPRT. 

-~ 

'k Modified Sequential Probabil ity Ratio Tes t .  
.. 
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By arbi t rar i ly  assuming the form for the stopping boundary with 

undetermined parameters,  e.g. Eq. (111-ZO) ,  an optimal MSPRT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. r .  t .  

the assumed structure can be designed. If we know the costs of 

continuing the observations and the cost of making a wrong decision, 

using available information at every instant the idea of dynamic pro- 

gramming can be used to ar r ive at the best stopping boundary using 

the standard idea of backward sweep and the principle of optimality. 

In a practical situation, this may resul t  in excessively large amounts 

of data that cannot be handled. Chien [ I l l  has suggested some proce- 

dures  to reduce the total data to be handled a t  any stage. 

Summarizing, we may say that case A is characterized by direct 

Because application of decision-theoretic ideas to pattern recognition. 

of the assumed availability of prior data, usually no i terat ion is in- 

volved in the determination of the decision function o r  separating 

sur  fac e.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IV. Case B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Data Type (i) and (iii) Are Given 

When the functional form of conditional density function p(x/Hi, e)  

is given but 8 a r e  unknown parameters,  the obvious modification 

involves the use of the given sample patterns with known classification 

to  estimate these parameters before performing hypothesis testing. 

The basic quantity 

defined as: 

L(x) = 

of interest  st i l l  is the likelihood rat io which i s  now 

( IV- 1 )  
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We may write 

Assuming the computation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( IV-2)  is straightforward though it may 

be laborious, the determination of the conditional density p(8/x (n), H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
i i 

becomes the principal problem. We have by Bayes Rule, 

where the simplification in the second step comes about due to the 

assumed "conditional independence I t  of the sample patterns. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA::C 

We have also dropped the explicit dependence of p[e/xi(n)] in Hi 

for  notational simplicity. It i s  understood that ( I V - 3 )  has to be car r ied  

out for each class.  

Equation ( I V - 3 )  i s  a recursive computational procedure which 

The computational is often refer red to as "learning with teacher.  

feasibility of (IV-3) depends cri t ical ly on the existence of a fixed 

dimensional sufficient stat ist ic for the relevant p r io r  and poster ior  

density functions. 

pute recursively a vector, Oi 

In other words, one would l ike to be able to com- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

with the property that n '  

i 
'iC By conditional independence we mean p(xi(n)/e) = p[xi(n)/6, x (n - 1) .  . . , 
x i ( l ) ] .  
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Then instead of doing recursion on functions which is the case for  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Eq. (IV-3), one is only concerned with updating a set of numbers, 

gi P r i o r  and posterior density functions which satisfy this require- 
n' 

ment a r e  called conjugate or  reproducing pai rs .  They have been 

extensively studied by Raiffa and Schlaifer (1 960)[401 and Spragin 

(1963)[459461. It can be shown that in the l imit of an  infinite number 

of learning samples, the reproducing densities have the property that 

(IV-5) 

in some appropriate sense. Thus, this learning scheme used with any 

of the decision functions of case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is at  least  asymptotically optimal 

and in the l imit produces results as good a s  if 8 were known. In 

fact, i f  one interprets the a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp as average e r r o r  probabilities with 

( IV-6) 

then optimality for  a finite number of learning samples can a lso be 

claimed. In general, however, the relationship between system per -  

formance and this learning scheme for finite samples is only quali- 

tative and has not been investigated thoroughly. Putting it less  

precisely, we have the question: 

as a function of 8 and the best estimate of 8, does the over-al l  optimal 

decision function simply involve the replacement of 8 by i t s  est imate?" 

"Given the optimal decision function 
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Special case of Gaussian p(x/Hi. 61 
i 

Consider the case where p(x/Hi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 )  is N(e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, Z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC given, and let 

p(ei) be N(Gi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP). An easy way to  t reat  this problem will be to consider 

xi = ei t 

where v i s  N(0, C) . 
Then 

where 

i 
p(el/x (n) i s  gaussian with mean 8 n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ' i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 

n n-1 

(IV-7) 

n and covariance P 

gi (IV-8) 

i 

The numbers en and Pn constitute a set of 

This reduces p(x/xi, Hi) t o  a gaussian distribution with mean en and 

covariance P t Z. 

finite dimensional sufficient stat ist ics for  x (n). 

n 
"i 

n 
i If C is the same fo r  

the two categories, we have the l inear decision function as 

T f(x) = a  x t a 
0 

Note that equations (IV-8) and ( IV-9) a r e  a special  case of the 

"Kalman Filter mentioned i n  Eqs,  (111- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14) and (111- 15) (with @ = 0 

and w = 0) .  
i This was first worked out independently by Abramson 

and Braverman. P I  

If Z is also unknown then the conjugate density is gauss-wishart 

(Keehn, 1963)[281. If Ci a r e  known but dif ferent or  i f  ei a r e  time 

varying and can be represented by a gauss-Markov process,  then 

the theory of "Kalman F i l te r "  can again be direct ly used to develop 

decision functions ( o r  equivalently est imates for 8 ) that " t racks 'I the i 

va r iat  ion s . 
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Special Case of Discrete Distribution 

In the discussion so far ,  the learning of L(x), Eq. (IV-1-IV-3) 

and the determination of f (x) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (111-2) a r e  two separate problems. 

In certain simplif ied cases  it i s  possible to devise a "learning" 

procedure for f (x)  direct ly. Sklansky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[44] has considered the classi-  

f ication of a sequence of independent binary signals transmitted over 

a noisy channel. 

function 

Let x(j) be the channel outputs, weconsider a decision 

f(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x - r) (IV-10) 

If the distribution of x a s  well as the choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq values is discrete,  

then for a given procedure of changing r) values af ter  each wrong 

decision, the probabil it ies of r) at the various permissible values 

form a markov chain. 

chain can be straightforwardly calculated once the transit ion proba- 

bil i t ies (i. e. the learning procedures) a r e  given. 

e r r o r  probabil it ies of f(x) follows. 

The property and convergence of this markov 

F rom this, the 

The performance of a scheme of this type depends to a large 

Kaplan and Sklansky [27] have extent on the type of updating f o r  q. 

analyzed the propert ies of markov chains result ing f rom some typical 

learning procedures specified on an  intuitive basis.  

V. Case C - Data Type (i) and (iv) Are Given 

In this case again the given set of sample patterns will be used 

to learn the parameters  8. 

unclassif ied, bringing in additional uncertainty. 

type of learning is often called "Learning Without Teacher.  

(1 962)[ l  73 suggested a scheme which works in  this case but the 

But now the given learning samples a r e  

Appropriately this 

Daly 
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computation grows exponentially. 

scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[22' 211 which was further extended by Patr ick  and Hancock 

Later Fra l ic  suggested a bounded 

C371 . 

The basic ideas in section IV st i l l  apply here. W e  may rewri te 

Eq. (IV-3) as 

* p(O/x(n - 1) 

The only difference occurs in  the way we compute the rat io between 

"prior and "posterior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf density. The added te rm essentially represents 

a form of "hedging. It 

Heuristically, we can see the effect as follows. 

1 

Consider the 

case where x(n) came from H . 
right-hand side of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (V-1)  is of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB+C A while with the addi- 

A 
tional knowledge about i t s  c lass,  it will only be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 , F o r  x(n) actually 

f rom H - . This 

tends to indicate that the process of learning will be slower in the 

case of "Learning Without Teacher. 1' Essential ly we are paying for 

the uncertainty about the classification of learning samples in  te rms  

of slower learning. 

learning IfWith" or "Without 

Another example i l lustrates this point. 

problem shown in Figure 1. 

Now the multiplying factor on the 

1 A , A t C  
B B t C  we generally have A > B and in  this case - 

Viewed in this light, the difference between 

teacher is conceptually minimal. 

Consider the classif icat ion 



n A P ( H ' / x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

FIGURE 4 
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Suppose 

(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA set of samples X(n) was taken and correct  classification was  

attached to these. 

(ii) A set of samples x(n) w a s  taken and classifications were assigned 

according to the probability P(Hi/x). 

It i s  c lear  that for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ con0 dif ference in  learning behavior can be ob- 

served from using samples f rom (i) or  (ii) through the schemes of 

section IV. 

Computationally, Eq. (V-1)  is much more  difficult than i ts  

counterpart, Eq. ( IV-3).  With the presence of the additional t e rms  

the "reproducing property" is lost. 

Interpretation of Eq. (V -1 )  also requi res some care .  Since 

learning samples a r e  unclassified, Eq. (V-1)  cannot be car r ied  out 

separately fo r  each c lass  in  general. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 represent  the unknown 

parameters in  both c lasses,  and 8'. If, in  addition, we assume 

p(e , e0/x(n)) = p(6 /X(n) ) p(eo/x(n)) then we can separate Eq. (V-1)  
1 1 

into (V -2 ) .  

i = 0 , l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

j = O  

i j Furthermore, we can usually unite p(x(n)/6 , X(n - l ) ,  HJ) = p(x(n)/x(n - 11, H 

j # i. Note if p(ei/X(n)) is 

identical for  i = 0 , 1  and P(Ho) = P(H ) then no learning can take place. 

Eq. (V-2)  is essential ly Fra l ick 's  scheme. 

1 
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In the work of Patr ick  and H a n c ~ c k [ ~ ~ ]  the independence assumption 

1 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6' and 8 

single Eq. (V-1)  with the resultant added complexity. The only 

is not made and computation must take place via the 

simplification is to note that p(x(n)/8, X(n - l ) ,  HJ) = p(x(n)/x(n - l ) ,  Hj) 

for j = 0, 1. 

The main advantage of learning without a teacher resul ts f rom 

the fact that when actual processing of data is in progress (after 

init ial learning from the sample patterns with classification) learning 

can st i l l  continue and eventually a machine learning this way may do 

much better than a machine which is trained only by init ial learning 

with classified samples. 

Very l itt le computational result has been reported in the l i tera-  

tu re  although our society seems to  abound with rea l  life examples of 

"learning without teacher" o r  even "learning in spite of the teacher. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf 

VI. Case D - Data Type (iii) Given Only (Deterministic Methods) 

The previous three sections had dealt with algorithms which 

requi re knowledge of the structural  forms of the underlying distr ibu- 

t ions of the pattern c lasses. Crit icism has often been raised that in  

pract ice information concerning data type (i) is seldom available. 

has prompted development of algorithms for the construction of 

decision functions which do not require (i). 

find a n  f(x) which 'works well '  at least  on the given samples of known 

classif icat ion. 

This 

Basically the idea is to 

Two implicit assumptions of this approach are :  

(a) A sufficient number of samples f rom both c lasses a r e  available to 

constitute two representative groups. 
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( b )  The character ist ic problem (i. e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ( z ) )  has been solved using a 

sufficiently r ich c lass of + ( z ) ' s  so that it i s  only necessary to examine 

the c lass of l inear f(x) to solve the abstract ion problem. 

Assumption (ii) i s  often justified on the basis of the Weiers t rass 

approximation theorem. 

culty to the characterization problem since one is st i l l  faced with the 

problem of finding a c lass of complete + ( z ) ' s  which can efficiently 

repre  sent the pattern. Fur thermore,  relat ively little work has been 

done on rendering the adjectives l'sufficient, representat ive,  and 

eff icient" quantity i n  the above assumptions. 

Allais (1965)[41 and Watanabe (1965)L5O] bear  on this aspect of the 

problem. 

However, this mere ly  t ransfers  the diffi- 

c151 The works of Cover (1964) 

We shall  d iscuss them separat ly la ter .  

Accepting (\a) and ( b ) ,  one can now restate the problem of abs t rac-  

tion more  succinctly. 

1 
c lass H , n in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo, no t nl = N)  and consider the l inear decision 

function 

Let there be a total of N patterns given (nl i n  

0 

T 
f (x)  = a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 0 (VI-1) 

The problem of determining a f(x) which c lassi f ies all the given patterns 

correct ly  i s  equivalent to the problem of finding a solution to the vector 

inequality 

Aw > o 

where 

A =  
1 

1 - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 - 
T 

-1 -x (i) 0 

(VI- 2)  

i = 1, ... , n l  ; c lass  1 samples 

i = 1, . . . , no ; c lass  o samples 

(VI- 3) 
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a 

a 
0 w =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (VI -4)  

A common procedure for solving l inear inequalit ies is to t rans form 

i t  into an optimization problem the solution of which a lso guarantees 

a solution for (VI-2).  For  example, consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 2 

Mir, J(w) = Min 1 1  [Awl  - AW 1 1  
W W 

(VI-  5) 

The solution for  (VI -2) ,  if i t  exists, must correspond to the minimum 

of (VI-5) which is zero.  If we try a gradient descent procedure for 

minimizing (VI-5),  then we a r e  led immediately to 

o r  

w(j t 1) = w(j) t p-  
w=w(j) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

w(j t 1 )  = w(j) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 7 x(i)[ Ix(i)Tw(j) I - xT(i)w(j)]  (V1-6l)'k 
L/ 

i = l  

Algorithms of the type of Eq. ( V I - 6 )  a r e  often re fe r red  to as  "many 

pat tern adaptation" i n  the sense that a l l  given pattern samples a r e  

used in  one i terat ion of the weighting vector rtwlt. The corresponding 

single pattern adaptation of (VI-6) i s  

F o r  P = 2, Eq. (VI-7) is simply the well-known peceptron algori thm 

(Novikoff (1 962))[361 which was originally developed on the simple idea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'k In (VI-6) we have abused our notation to let x(i) represent the vector 

" 
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of reward and punishment and which is known to converge in  a finite 

number of steps. 

The idea of viewing a learning algori thm as a n  i terat ive and 

determinist ic optimization procedure for some cr i ter ion function 

can be used to interpret other algor i thms and to discover new ones. 

In fact, our ability to crea te  new algori thms is  only l imited by our 

abil ity to find meaningful new cr i ter ia .  Table I identif ies a set  of 

algori thms as gradient procedures for a corresponding set  of cr i ter ion 

functions. 

The Generalization Question 

One of the basic problems of the algori thms of this type is the 

question of generalization. 

mation, the only resul t  along this line seems to be the important 

resul t  of Cover (1q64)[l5’. Cover shows that in  general  the number 

of samples,  N, must be a t  least  equal to o r  la rger  than twice the 

number of attr ibutes, m ,  for the algori thm of this case  to yield 

meaningful resul ts.  

x. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI s ,  then Allais demonstrates a m o r e  explicit relat ionship between 

N, m and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALMS algorithm of Table I. [41 Another interest ing pro-  

perty of the LMS algorithm is pointed out by Groner [23]. 

out that the w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {ao, a} which minimizes IIAw - Po 11 
expressed as 

In the absence of any probabil ist ic infor- 

If we allow ourselves the luxury of gaussian zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

It turns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 2 

can a lso  be 

where 

(VI-8) 
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i i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sample mean of c lass H 

i zi = sample covariance of c lass H . 
S 

Furthermore, the Ita zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII in Eq. (VI-8) also maximizes the Maholanobis 

[ 51 distance cri terion 

(VI-9) 

which has the simple interpretat ion of maximizing interclass distance 

and minimizing total dispersionof the projections of the patterns onto 

the decision surface f(x). 

Eq. (VI-8) can be further generalized. Peterson and Mattson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 3 8 1  

have shown that for a l inear decision function of the type of Eq. (VI-1) 

and a cr i ter ion function J which depends only on sample means and 

covariances of the two classes, the optimal Itatt i s  given via 

(VI- 10) 

* 
where k and kl a r e  constants that can be determined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

While these connections of the l inear decision function and the 

stat ist ical parameters of the sample patterns a r e  interesting, they do 

not completely answer the generalization question in t e r m s  of the 

e r r o r  probabilities a and p of (111-3) and (111-4). 

A recent important resul t  of Cover and Hart  (1 967)11 61 is an  

They show that if we classi fy a sample by exception to this point. 

the classification of i t s  nearest  (according to some distance measure)  

* The validity of (VI-10) is,  of course, still good if we replace sample 
means and covariances by t rue mean and covar iances. 
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neighboring sample of known classification, the e r r o r  probability of 

such a decision is bounded from above by twice the optimal Bayes e r r o r  

probabilities of section III(ii) when all the underlying probabilities a r e  

known. This Nearest Neighbor decision function is originally due to 

Fix and Hodges [531 . 

Two other stat ist ical techniques commonly used in data analysis 

called "jacknife zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf and "leaving-one-out ft[33J may be useful to shed 

further light on this question. This technique consists of successively 

solving a se r ies  of optimization problems each time leaving out a 

different sample pattern. Variation in  the solutions of these problems 

will then indirectly provide a quantitative answer to the adequateness 

of assumption (i). This approach apparently has not been exploited in 

the usual pattern classification l i terature. 

The Characterization Problem 

Although we conveniently avoided the question of how to choose 

a mapping 4 : z + x  the question is nevertheless an  important one. 

There do not seem to be many generally applicable schemes which 

possess  noteworthy propert ies that a r e  independent of the part icular 

type of recognition problems in  question. 

Watanabe (1 965) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[503 does, however, f i l l  the requirement. Consider 

An important resul t  due to 

the (sample) covariance matr ices of each class,  .Z 1 and Z 

l inear combination 

and the 
Z Z 

Z =  P(H1)Z 1 t P(Ho)Z 
Z Z 

(VI-1 1) 

Let the dim. (z)  = p which is usually very  large compared to the desired 

dimension fo r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, m. Let the vectors t l ,  t2, . . . , t be the normalized 
P 



- 2 8 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
eigenvectors of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ ordered according to k l (Z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX2(Z) 3 . . . 
The t. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs form a basis in p space. 

k (Z).  
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

>k We may write 
1 

T 
i 

z = x.t.  with x. = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz t 
1 1  1 

i= 1 

(VI- 12) 

1 1 2  0 2 & ,  The magnitude of x. 1 o r  more  accurately P(H )(x. 1 ) t P(Ho)(xi)  

can be considered a s  a good measure  of the extent to which the coordi- 

i 

nate vector t. i s  useful in representing the members  of the two c lasses .  

It turns out in  this set  up that the following propert ies a r e  t rue:  

1 

m 
2 - x . t . )  t P(Ho)(zo - 

1 1  xiti)\ = 
i= 1 J i= 1 

2 
1 1  

i=l  i= 1 S i 

(VI- 13) 

i . e .  the t l  coordinate system has the least  square approximation 

property . 
(ii) The t. coordinate system minimizes the entropy function 

1 

i= 1 

(VI- 14) 

among all possible coordinate systems,  where e. 1s a r e  as defined 

above. 

and (VI-14)) characterization of the at t r ibutes in  t e r m s  of the large 

1 

(i) and (ii) imply that there exists a natural  (according to (VI-13) 

eigenvectors of the composite covariance matrix of the problem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
';c They constitute the Karhunen-Loeve coordinate system. 
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This phenomenon is related to the method of factor analysis and which 

we shal l  encounter again in section VIII. 

Extension to Nonlinear f(x1 

Once the approach for  the l inear case is clear,  the extension to the 

nonlinear case i s  conceptually straightforward. 

equalities, we deal with nonlinear inequalities o r  piecewise l inear 

inequalities. 

Instead of l inear in- 

Various established o r  ad hoc techniques in non-linear 

programming can be brought to  bear on the abstraction problem [421 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Arkadev and B r a ~ e r m a n ' ~ ]  have suggested an  algorithm which 

t r i es  to a r r i ve  at a piecewise l inear f (x)  f rom the given set of c lassi-  

fied X I S .  

separate the given samples. 

fails to classify them, more  hyperplanes are connected to i t  until all 

given samples a r e  correct ly classified. 

of the planes are deleted giving a piecewise l inear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(x). 

The algorithm proceeds to  find the best hyperplane to 

As more  samples come and this plane 

Finally all redundant portions 

VII. Case E. Data Type (iii) Only Given (Stochastic Methods) 

The algori thms described in section VI with the exception of 

the NN algorithm, despite their simplicity and practical usefulness, 

suf fer  one general drawback i n  te rms of relating the decision func- 

tions obtained to a quantitative evaluation of its generalization capa- 

bi l i t ies. Since the latter question i s  best answered in  t e r m s  of e r r o r  

probabil it ies, o r  equivalently the knowledge of P (H  x), some pro- 

babil istic structure will have to be put back into the formulation of 

the problem, implicitly o r  explicitly. 

i 
One approach to  this problem i s  to consider that P ( H  /x) as a 

function of x can be expanded i n  a ser ies .  Let us consider 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 
f(x) = P(H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/x) - P(Ho/x)  2P(H /x) - 1 

(VII-1) 

where o.(x)  is some c lass  of complete (possibly orthonormal) function 

which one conveniently assumes to be given as a resul t  of solving the 

1 

characterization problem. F o r  every given sample pattern, there 

corresponds a +[x(i)] o r  d(i ) .  The problem is then simply reduced 

to the determination of the parameters ,  a 

the values of the function a r e  measured a t  randomly selected points. 

of a function f(x) when 
j '  

This is essentially the approach taken by Aizerman, Baverman and 

R ~ z o n o e r [ ~ ] ,  T ~ y p k i n ' ~ ~ ] ,  Blaydon and Hor8], Kashyap and Blaydon [291 , 

Patterson, Wagner and W ~ m a c k [ ~ ~ ] ,  and Nicolic and Fu  [351*. Define 

a classif icat ion variable f[x( i) ]  by 

1 x(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE H 

-1 x(i) H' 

1 

(VII- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) t [ X ( i ) l  = 

One may visualize f ( i )  as a noisy measurement  of the value of the 

function f(x) at the sample point (pat tern) t( i). 

where v(i)  are independent random var iables with 

E[v(i)] = [ I  - f( i ) ]P[Hl/x( i) ]  4- [ - I  - f(i)][l - P(H 1 /X( i ) )1  

1 1 1 
= 2[1 - P ( H  /x(i) ]P(H /x( i ) )  - 2P(H1/x(i))(1 - P ( H  /x(i))] = 0 

(VII- 4) 

'k These methods a r e  a lso cal led '!Potential Function" methods['l], in 
the Russian l i terature.  
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Now consider the minimization of the regress ion function 

T 2  J = Min E{ - a 411 } (VII- 5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

which in view of Eqs. (VU-3-VU-4) can be shown to be equivalent to 

1 T 2  J = Min E{ IIf(x) - a } 
a 

(VII- 6) 

Thus i f  one finds a finite dinxzisional a which m-inimizes J i n  Eq. (VII-5) 

then one has a lso found the optimal mean square approximation to f(x). 

A well known method for  minimization of regress ion functions is via 

stochastic approximation using the given noisy sample values of the 

function. We have 

(VII- 7) 

(V I1 - 8) 

With mild assumptions on 4, the algori thm of Eq. (VII-7) is known to 

converge w. p. 1. to a'" where 

T 2  
Hence = a r g  min  E{ IIf(x) - a 411 } 

This constitutes a learning scheme with teacher which is asympto- 

tically optimal in a mean square sense w. r.  t. the classification 

probabil it ies. Another way of visualizing (VII-7) is to note that 

and (VII-7) is simply the stochastic analog of the gradient method for 

minimization. In fact, i f  one considers instead 
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where 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = [ E  

one has the analog 

converges faster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
may substitute ins 

9oT)I- (VU- 10) 

of the second order  descent method which generally 

Since S in Eq. (VII-10) is not given in general,  one 

ead 

(VU-11) 

j=  1 

Not surprisingly, the recurs ive computation of P(i) is governed by 

(VII-12) 

which is  a special case of Eq. (IV-9). Fur thermore,  a(i t 1) from 

Eq. (VII-7) has the property that 

i t 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

a(i t 1)  = arg .  min. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 [c( j )  - aT+( j ) l  

j = l  

In other words, it is also the solution of the LMS algorithm of section V I .  

Using the method of stochastic approximation, one can showi8] that 

Eq. ( V U - 7 ' )  a lso  converges w. p. 1. to a*, thus, furnishing additional 

rationalization f o r  the LMS algorithm. 

The choice of the base function set  4 has been so far left open. 

[91 A part icular approach to  the problem has been suggested by Br ick . 
i Instead of expending f(x)  in  a ser ies ,  p(x/H ) may be expended in a 

se r ies  of orthonormal functions, the normalized Hermi te  functions. 

Br ick has shown that these coefficients appear as some ensemble 

average which, given cer ta in  a pr ior i  information, can  be precomputed. 
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In case of ergodic processes, 

be replaced by t ime averages 

however, these ensamble averages can 

and can be easi ly determined experi- 

mentally given a set of classif ied samples for ini t ial  learning. 

Furthermore, if the system parameters a r e  known to change gra-  

dually a bootstrap updating of these coefficients is possible during 

the run, improving continuously on the "Learnedf' coefficients. 

The main advantage of this scheme is the possibility of imple- 

mentation in circuit  form for ergodic processes, where the coefficients 

appear only as amplif ier gains which can be easi ly preadjusted or  

changed automatically. 

sion depends, however, on the complexity of the form of p(x/H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) .  

pract ical  situations the implementation may not be feasible for any 

moderately complex system. 

VIII. 

The number of t e r m s  to be used in the expan- 

i 
In 

Case F - Data Type (iv) Given Only 

This is the extreme case in pattern classil ication where minimal 

information is available for the design of f (x) .  Not much has been 

reported in the l i terature about the approaches fo r  this case which 

are often heuristic o r  experimental, justified only by the fact that 

they "work" in  some sense according to the author. Analytically, 

the problem can be resolved in either one of two ways: 

(a) Reintroduce, explicitly or  implicitly, some cr i ter ion of separa- 

t ion onto the set of unclassified sample patterns. This i s  used in 

conjunction with the same algorithms of the case D in a bootstrap 

fashion, i. e .  one uses the result of classif icat ion at one i terat ion to 

produce the "classified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf learning sample for the learning cycle. 

example a bootstrap algorithm results i f  we t r y  to rewrite Eq. (VII-5) as 

For  
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(VIII-3) 

has examined this cr i ter ion function for a l inear f(x) i .  e.  Miller [311 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is only x.  F o r  this case J becomes 

T T 2  
J '  = Min E{ [la x - Sgn(a x) 11 } 

a 
(V111-3I) 

and an  algorithm paral le l  to Eq. (VII-7) may be given a s  

(VIII-4) 

with 

Miller found that the J '  surface, in general, has saddle points and 

local minimums. In the case of gaussian distributions with the same 

covariance matr ix and p 

mums with the same minimum value and the algorithm of Eq. (VIII-4) 

- - the J' surface has two local mini- 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP o ,  

converges to one of the two minima w. p. 1. However, in this case 

the value of a at one minimum i s  the negative of the value a t  the 

other. As the decision takes place according to aTx 0 the decision 

surface using either value mere ly  resul ts in the relabell ing of the 

c lasses .  

It should be pointed out that i f  this external ly imposed cr i ter ion 

of separation happens to resemble the natural  cr i ter ion of separation 

then a l l  is well. Fo r  example, consider the two-dimensional 

examples shown in Fig. 2 where the actual identity of the sample 

points is unknown to the c lassi f ier .  One can nevertheless require 

that a separating plane ( l inear decision function) be constructed with 
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the normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIta." coincide with the direction of the maximal eigenvector 

of the covariance matr ix  of the sample points, i .  e .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a paral lel to the max eigenvector of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A A) (VIII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5) T 

where 

If this eigenvector direction is determined via the usual i terat ive 

power method then one has derived a "learning" scheme which "works. 

However, it i s  equally obvious that had the two c lasses  been d is t r i -  

buted a s  in F i g .  3 the learning scheme would have failed. The above 

approach actually formed the essence of a very successful bootstrap 

self-correction scheme by Nagy and S h e l t ~ n [ ~ ~ ]  for character 

recognition and is closely related to the method of principal compo- 

nent in factor analysis. 

A slightly difference approach in introducing a cr i ter ion has 

been taken by Rogers and T a n i m ~ t o [ ~ ] .  A distance measure  dij for  

Assuming there a r e  only two c lasses,  we define a homogeneity 

function for each c lass .  

tances of the various sample patterns a s  i ts  arguments.  

The function has dij, the interpair  d is-  

The 

assignment of a given sample pattern to a part icular c lass  changes 

the value of the homogeneity function of that class. The cr i ter ion 

of classification is that the two homogeneity functions have minimal 

A =  
(VIII- 6) 

x. and x .  may be defined a s  
1 J 

di j  = g(xi ,x.)  
J 

(VIII-7) 
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difference in  their value. 

follows : 

Analytically we may visualize this as 

Let 

ul(d12,d13,. . . . . . . . . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 dn- 1, n; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArl)  

. . . . . . . . . . .  uO(dl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,  d l  3, 9 dn- 1, n; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11) 

be the homogeneity functions involved. 

assigns the usage of a part icular d to the evaluation of uo o r  u1 . 

Classification then involves the choice of q such that the difference 

u1 - uo is minimized. 

q is a parameter which 

* 
i j  

This scheme can be very easi ly generalized to a mult ic lass 

case where the number of c lasses is not known a prior i .  

light we shal l  encounter it again in the next section. 

( b )  Attempt a more o r  less  brute force computation of the learning 

equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V-1) in section V. The pertinent probability density func- 

tions a r e  approximated by histograms using the given data. 

In this 

Patr ick  

WI and Hancock claim convergence of this computational procedure . 

However, l i tt le o r  no actual experiences have been reported. 

to the lack of sufficient stat ist ics and the large amount of data 

usually required for histograms to yield good approximations, the 

feasibility of such a scheme remains to  be demonstrated. 

Due 

’:‘ For  example: Roger and Tanimoto will successively include m o r e  
and m o r e  d in the evaluation of uo o r  u1 unti l they exceed a value. 

The assumption here i s  that each c lass  should be homogeneously 
s imi lar .  then some member of c lass  1 

should be c lass 0 and vice versa .  

i j  

If for a given q ,  u1 >> u 
0 ’  
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. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IX. Multiclass Problem 

So far we have concerned ourselves only with two-class problems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A few words about mult iclass problems a r e  i n  o rder .  

In a mult ic lass problem we have to decide to which of m 

H" the given pattern vector x belongs. c lasses H , H , H , . .  ., 

For  problems having a probabilistic s t ructure i .  e .  f rom case A, B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C and E,  the extension to a mult iclass case is straightforward. In- 

1 2 3  

stead of considering the likelihood rat io formed by the two conditional 

probabil it ies and testing i t  against a threshold for a two-class case,  

we may direct ly consider p(x/Hi) o r  P(Hi/x) and pick the largest  

of these. This procedure is optimal in the sense that i t  minimizes 

the e r r o r  probability. 

i 
More generally, we may define a set of decision functions f (x) 

i 
and take decisions as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx belonging to H i f  

> fJ(x) 

for the problems of case A, B, C and E 

for all j # i (IX-1) 

= p ( x / ~ ~ )  o r  P(H~[X) (IX-2) 

In the case of determinist ic algor i thms (nonprobabilistic 

s t ruc tu re)  the extension to mult i-class problems is not a s  natural.  

A mult ic lass problem i s  usually reduced to a collection of two-class 

problems.  This reduction depends on the separabi l i ty which exists 

in  the mult ic lass problem and may be of three types. 

(i) Each c lass  may be separable f rom all the r e s t  by a single decision 

sur face.  Then we may take the decision according to 

> O  i f x  E H ~  

< O  othe rw i  s e 
fi(x, 

Th is  reduces the mult ic lass problem to m - 1 two-class problems 
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(ii) Each c lass may be separable f rom each other c lass.  

have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1) two-class problems and a s  many decision functions 

such that 

Now we 

m m  

i j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> o  i f x  a~~ 
fiJ (x) given x belongs to H o r  H 

< o  i f x  ~ H J  (XI- 3) 

The unknown x is classif ied as Hi only if" 
. .  

?J(x)  > o for all j # i 
i (iii) There exist m fi(x) such that x belongs to H only if 

fi(x) > fJ(x) for all j + i 
Note that this is  a special case of (ii) as we may define 

(XI-4) 

fiJ(x) = h(x )  - rj(x) for  a l l  j # i (XI- 5) 

In cases  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, B, C and E, as we noted ea r l i e r ,  f l (x) of Eq. (XI-4) 

a r e  the conditional probabil i t ies. F o r  determinist ic case  D a 

cr i ter ion of separation is introduced. For  example one may consider 

the inverse of distance cr i ter ion which is the extension of the Nearest  

Neighbor approach to this case.  

The way we may t ry  to reduce a mult ic lass problem to a set  

of two-class problems depends on the individual problem. 

be pointed out that i f  we a r e  not rest r ic t ing f (x) to be of a par t i -  

cular f o rm (l inear o r  quadratic etc)  then the distinction of these 

three types is art i f ic ia l  as we can always find suitable f (x) to  use 

It should 

i 

i 

with any of the desired three types. 

':' 
cases  where x coming f rom Hk, k # i, j i s  being t r ied.  

Some irrelevant resul ts  w i l l  be obtained in the process  f rom the 
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Though we have presented all the algori thms as they a r e  

applicable to two-class problems, often the authors have extended 

i t  to the mult iclass case. The number of c lasses i s  assumed 

known in all these schemes. 

and Tanimoto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[421 mentioned under case F. 

use is independent of the knowledge of the number of c lasses.  

computing an auxil iary index of fftypicality'l they permit  the proce - 

dure to adjust i tself  to produce automatically the number of c lasses 

in order  to satisfy a homogeneity cri ter ion. 

One exception is the paper by Rogers 

The procedure they 

By 

X. Conclusion 

Based on the above survey and analysis, a few remarks 

(perhaps controversial) seem in order :  

(i) Roughly speaking, classification algori thms can be broadly divided 

into two groups; probabilistically o r  nonprobabilistically based. The 

fo rmer  group, comprising cases A-C, enjoys the obvious advantage 

of being easy to assess  the generalization ability of the resul ts.  On 

the other hand, it is often difficult to justify the availability of the 

required input data. 

just  the reverse.  

ments i t  made precise quantitative evaluation of performance much 

m o r e  involved and difficult. 

assume that as our analytical abil ity advances this difficulty will 

gradually ease.  

the recursive application of the Bayes Rule while that of the lat ter  

is the i terat ive solution of an optimization cri terion. 

a r e  fundamental to  stochastic and determinist ic control theory. 

The latter group representing cases  D - F  is 

By being more real ist ic on input data require- 

Although i t  seems reasonable to 

The main "learning" tool for the f i rs t  group is 

Both techniques 

It 
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is expected that further c ross  ferti l ization will take place between 

these two fields. 

(ii) "Characterization" remains to be a major open problem. 

(iii) Relatively l i t t le experimentation with these algori thms have 

been car r ied  out with rea l  l i fe classification problems compared 

to the number of proposed approaches. 

general cr i t ic ism of the papers but a comment on the difficulties of 

obtaining rea l  data .  

is that of converting or  generating enough samples of x( i )  f rom or i -  

ginal data in  r e a l  problems. 

specially designed data processing machines a r e  needed. 

it is the authors' belief that this often represents  the major  cost  of 

a pattern classification project. Once this is done, the solution of 

the abstraction problem tends to be straightforward. 

This is not so much a 

An often overlooked and unappreciated problem 

Enormous data processing t ime or  

In fact ,  

In this paper we have attempted a classification of the various 

pattern classification techniques that have been reported in  the 

l i terature.  The purpose has been to t r y  to lay bare  the underlying 

stat ist ical and mathematical principles used in the development of 

these algorithms. 

can meaningful comparisons among the numerous approaches be made. 

Furthermore, deficiencies as well as advantages of the various 

schemes hopefully can be made obvious and progress  of the field 

a s  a whole can be sped up. 

Only when such a classification is complete then 

A complete coverage of the l i terature in this field is neither 

possible nor desirable. 

fication is reasonably complete and workable, and future approaches 

It is nevertheless believed that our c lass i -  
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can be fitted into this framework, i .  e. our scheme possesses the 

generalization property. 

appeared in l i terature. 

to find their  case classifications. 

to their  bibliography for the various cases.  

There a r e  many other papers which have 

We leave i t  as  an excerc ise for  the reader  

The authors welcome additions 
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