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Abstract

In this paper, it is argued that the prima facie conflict between special relativity and the

quantum-mechanical collapse postulate is only apparent, and that the seemingly incompatible

accounts of entangled systems undergoing collapse yielded by different reference frames can be

regarded as no more than differing accounts of the same processes and events. Attention to the

transformation properties of quantum-mechanical states undergoing unitary, non-collapse

evolution points the way to a treatment of collapse evolution consistent with the demands of

relativity. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is a strong prima facie case for a claim that the reduction of the quantum-
mechanical state vector upon measurement, construed as a physical process, is
incompatible with the special theory of relativity. Suppose, for example, that a
position measurement is performed on a particle whose wave function extends
throughout a large region of space. The collapse postulate holds that, after the
measurement, the particle is located in the region in which it is found, and hence that
the value of the wave function everywhere else has instantaneously gone to zero. If
such a process is regarded as a physical event, and not as a mere shift in perspective
or change in some observer’s knowledge of the state of the system, then such a
process seems to require a preferred notion of distant simultaneity—when the wave
function collapses, it does so everywhere at once.
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Many writers have come to the conclusion that state vector collapse is
fundamentally at odds with relativity. Cushing (1994, p. 189), for example, writes,

At the level of the state vector, all Lorentz frames are not equivalent, although
all predictions for observables are. If one takes the wave function as being
merely a mathematical device for calculation, then he need not see a conflict
with Lorentz invariance (i.e., with ‘‘relativity’’, loosely speaking). However, if
one takes the wave function as representing a physical realityy; then all
Lorentz frames are not equivalent at the level of individual processes.

In a similar vein, Maudlin (1996) has suggested that a successful account of EPR-
Bell correlations may require adding a preferred foliation to relativistic spacetime,
and that, with respect to this foliation, ‘‘the best one could do would be for the wave
function to evolve sometimes relativistically and sometimes (during collapse) non-
relativistically’’ (p. 297).

The purpose of this paper is to examine some arguments that purport to
demonstrate the incompatibility of the collapse postulate with relativity theory, and
to argue that they do not succeed. Attention to the transformation properties of
quantum mechanical states undergoing unitary, non-collapse evolution points the
way to a treatment of collapse evolution consistent with the demands of relativity.

As suggested above, the account of quantum-mechanical measurement processes
that will be adopted here will be one that takes the ‘‘collapse’’ suggested by von
Neumann (1932/1955) to be a real physical process. In spite of some promising work
that has been done in the direction of providing a theory of what occurs during a
measurement (see, e.g., Percival, 1998; Pearle, 1997, 1999a, and references therein), it
is not thought that a fully satisfactory account of the measurement process can yet be
provided. Nevertheless, if a measurement does indeed yield a definite result, and if
ideal, repeatable measurements yield the same result upon repetition, and if the state
vector is a complete description of the quantum-mechanical system, then the state of
the system must, as von Neumann realized, end up in an eigenstate of the operator
corresponding to the observable measured. I will assume that this is the case.

A few words are in order about what relativity will be taken to require, and what is
entailed by a claim of ‘‘peaceful coexistence’’ between a theory and special relativity.1

Clearly, Lorentz invariance of predictions regarding experimental outcomes is
required. Lorentz invariance at the phenomenal level, however, is not sufficient; the
processes that underline the observable phenomena must not pick out a preferred
reference frame. Special relativity, is, simply, the theory that the structure of
spacetime is that of Minkowski spacetime, whose invariance group is the Poincar!e
group. A theory that introduces additional structure, such as a preferred notion of
distant simultaneity, even if it is formulated in a manifestly covariant way, will not,
for the purposes of this paper, be regarded as being properly relativistic. This holds
even if, according to the theory, in-principle limitations on the accuracy of
measurement or on control of certain parameters render it impossible to determine

1 The phrase ‘‘peaceful coexistence’’ was introduced by Shimony (1978).
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the preferred hyperplanes of simultaneity or to exploit the nonlocality in the theory
for the purposes of superluminal signalling.

There is a tendency, in the literature on relativity, to refer to quantities that are not
invariant with respect to reference frame as ‘‘observer-dependent’’. This carries with
it the unfortunate suggestion that there is something subjective about such
quantities. Where ‘‘observer’’ is not being used as a misleading synonym for
‘‘coordinate system’’ (as it is in Schutz, 1990), the assumption seems to be that every
observer is associated with a particular reference frame, presumably the observer’s
rest frame, and that accompanying every observer is an infinitely extended
hyperplane of simultaneity that is that observer’s extended present—an assumption
that Stein (1991) has cogently criticized. Anyone is free to employ a reference frame
and coordinate system of his or her choosing; the lesson of special relativity is that all
inertial reference frames can be employed interchangeably.

Unlike Fleming (1989), I will not assume that each detector is associated with a
particular foliation of spacetime. I will also refrain from invoking observables that
exhibit irreducible dependence on reference frames or on spacelike hyperplanes. In
formulating the special theory of relativity, Einstein was able to show that quantities
that vary between reference frames—such as the length of an object, or the temporal
interval between events—can be regarded as supervening on invariant facts, such as
local coincidences of measuring rods and clock-readings. The differing accounts
given by differing reference frames, for this reason, can be regarded as nothing more
than different descriptions of the same reality. There can therefore be no question as
to which of these accounts is correct, as there is no disagreement among them over
matters of fact; what differs is only the choice of coordinates used. The goal of this
paper is to argue that the differing state histories yielded by different foliations can
be regarded also as differing only with respect to the coordinates used—nonlocal
observables are definable in terms of local observables, and state vectors, even
entangled ones, are superpositions of state vectors that factor into local parts. A
theory, such as Fleming’s, that introduces irreducibly extended quantities faces an
additional burden of reconciling these with the notion that different reference frames
merely yield differing accounts of the same processes and events.2

The term ‘‘quantum mechanics’’ is usually taken to refer to a quantum theory of
systems with a finite number of degrees of freedom—for example, a system
consisting of a fixed, finite number of particles. It is contrasted with quantum field
theory, which is the quantum theory of systems with an infinite number of degrees of
freedom, or, in other words, the quantum theory of fields. There are well-known
difficulties associated with an attempt to formulate a relativistic quantum mechanics
(e.g., see Malament, 1996 for a lucid presentation of the impossibility of a well-
defined relativistic quantum-mechanical position operator), and the consensus seems
to be that ‘‘there is no acceptable middle ground between ordinary, non-relativistic
quantum (particle) mechanics and relativistic quantum field theory’’ (Malament,
1996, p. 2; for a dissenting view, see Fleming & Butterfield, 2000). These difficulties

2 In spite of some differences in outlook, it should be stressed that the present paper is indebted to

Fleming’s (1989, 1996) discussions of foliation-relative collapse.
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become less acute when the distance scales involved are large compared to the
Compton wavelength lC ¼ _=m0c of the system in question, and one can introduce
an approximate notion of localization that is valid at such distance scales. The sorts
of arguments against peaceful coexistence with which this paper is concerned seem to
be independent of these issues. They concern themselves with measurements
performed on entangled systems whose separation can be made arbitrarily large,
and avail themselves freely of the notion of the locations of the subsystems in
question. Aharonov and Albert, who will be the source of two of the arguments to be
considered, make this qualification explicitly:

Throughout this work, particles are taken to be localized only within regions
larger than the Compton wavelengths; the phenomenon of pair creation then
can, to any desired accuracy, be ignored, and we will not need to have recourse
to the various mathematical devices (Newton–Wigner operators and the like)
which become indispensable to any discussion of the localization of particles to
within regions smaller than that. The length scales which are of interest for our
present consideration (the separations between the boxes in Sec. I, say [see
Example 2, below]) can always be made as large as we like, and we shall take
them here to be sufficiently large that, on such scales, the Compton
wavelengths of the particles involved can be neglected altogether. On such
scales, the full field theory can always accommodate the notion of a single,
relativistic, quantum-mechanical particle, such as occupies us in this
investigation, and wherein considerations of relativistic covariance, as the
reader shall discover, continue to play an essential and problematic role. (1984,
p. 233).

In this paper, we will concern ourselves with silver atoms, Stern–Gerlach apparati,
and the like, systems that, at least to a high degree of approximation, can be
regarded as confined to bounded regions of space, and we will assume that the
systems are confined to regions of space that are large compared to the Compton
wavelengths of the systems in question but small compared to the distances between
them. If Aharonov and Albert’s arguments, and the other arguments to be
considered here, are successful, they exhibit problems associated with the relativistic
covariance of quantum states that would persist when the approximation within
which they work is lifted. A defense of the compatibility of quantum theory with
special relativity must, therefore, address these arguments.

The conclusions of this paper must therefore be regarded as limited to the scope of
the approximation invoked. A thorough treatment, beyond the scope of this paper,
of the relations between quantum theory and relativity will have to face foursquare
the problems associated with relativistic localization.

2. Arguments against a covariant account of collapse

Three examples will be considered to focus attention on the reasons why a
relativistic account of collapse is thought by some to be impossible.
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2.1. Example 1

The first example to be considered involves the familiar EPR-Bohm thought
experiment. A pair of spin-1

2
particles is prepared in the singlet state:

jcSsinglet ¼
1ffiffiffi
2

p ðjz þS1#jz �S2 � jz �S1#jz þS2Þ;

¼
1ffiffiffi
2

p ðjx þS1#jx �S2 � jx �S1#jx þS2Þ: ð1Þ

The particles are permitted to fly apart, and some time after preparation spin
measurements are performed, at spacelike separation, on the two particles. Let us
suppose that the two measurements are simultaneous with respect to the laboratory
frame K ; and let A and B be the regions in which measurements are performed on
particles 1 and 2, respectively. Suppose that a spin-x measurement is performed on
particle 1 and a spin-z measurement is performed on particle 2, and suppose that the
result is +1 for each measurement. Let S be a reference frame with respect to which
the measurement at A occurs before the measurement at B; and let S0 be a reference
frame with respect to which the temporal order of the two measurements is reversed.

The history of the two-particle system, with respect to S; runs: particle 1 reaches
the apparatus at A in an entangled state with particle 2. The measurement of s1x at A

collapses the state to jx þS1#jx �S2: Particle 2, therefore, reaches the apparatus at
B disentangled from particle 1, in the state jx �S2: The measurement of s2z at B

projects this state into jz þS2:
With respect to S0; we have: particle 2 reaches the apparatus at B in an entangled

state with particle 1. The measurement of s2z at B collapses the state to
jz �S1#jz þS2: Particle 1, therefore, reaches the apparatus at A disentangled from
particle 2, in the state jz �S1: The measurement of s1x at A projects this state into
jx þS1:

The two accounts, therefore, disagree as to which measurement collapses the
singlet state into a factorizable state. Moreover, on the account according to S;
particle 2 arrives at B in the state jx �S2; a state which, on the account given by S0; it
is never in, whereas, according to S0; particle 1 arrives at A in the state jz �S1; a state
which, on the account given by S; it is never in.

If the example is modified so that the same direction of spin is measured on both
particles, then the result of the second measurement is predetermined by the result of
the first, and hence the two frames will disagree on which measurements are chance
events and which have predetermined outcomes. With respect to S; the result of the
measurement at A is a chance event, with equal probabilities for each of the two
possible outcomes, whereas the measurement at B can have only one possible
outcome, namely, a spin opposite to the outcome of the A-measurement. The
account given by S0; on the other hand, has it the other way around: the
measurement result at B is a chance event, and the result at A predetermined by the
result of the previous measurement at B:
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Despite these differences, the probability for any pair of outcomes of any pair of
measurements is, as a simple calculation shows, independent of the reference frame
used to evaluate it. This circumstance is quite general. In the absence of explicitly
non-local interaction terms in the Hamiltonian, probabilities for outcomes of
measurements of local observables do not depend on whether a measurement has
taken place at spacelike separation; this is the content of the ‘‘no-signalling’’
theorems (Eberhard, 1978, Ghirardi, Rimini, & Weber, 1980). Thus, so long as the
local evolutions are Lorentz invariant (governed, say, by the Dirac equation), we
have Lorentz invariance at the phenomenal level. Peaceful coexistence between
special relativity and quantum mechanics, realistically construed, requires more;
what is needed is ‘‘a conceptually coherent reconciliation of the descriptions from the
standpoints of S and S0’’ (Shimony, 1986, p. 195; Shimony, 1993, p. 153). It is just
such a reconciliation that Cushing and Maudlin declare to be impossible in the
quotations that open this paper.

2.2. Example 2

The second example, stemming from Aharonov and Albert (1984), is conceptually
similar, except that it involves only a single particle. Initially the particle may be
located in one of three boxes, located at x1; x2; and x3; with equal probability for
each box. Boxes 1 and 2 are opened at space-like separation, and the particle is found
in neither. Let jx1S be a state in which the particle is localized in box i; and let S be a
frame with respect to which box 1 is opened first. With respect to this frame, the
(unnormalized) initial state of the particle is

jaS ¼ jx1Sþ jx2Sþ jx3S: ð2Þ

After box 1 is opened and before box 2 is opened, the state is

jbS ¼ jx2Sþ jx3S: ð3Þ

After box 2 is opened, the state is jx3S:
Now consider a reference frame, S0; with respect to which box 2 is opened first. Let

jx0iS be the Lorentz transform of the state jxiS: According to S0 the intermediate
state, between openings, is

jgS ¼ jx01Sþ jx03S: ð4Þ

In connection with this example, Aharonov and Albert (1984, p. 228) remark,

The first observer will judge that the system is for a certain time ðt1otot2Þ in
the state jbS (more precisely, he will judge that, within that interval, any
measurement of B; where BjbS ¼ bjbS; will with certainty yield B ¼ bÞ; the
second will judge that it is never in that state (nor in its Lorentz transform jb0SÞ
but, rather, is for a certain time in the state jgS albeit that these two states and
the two histories y of which they form parts are patently not Lorentz
transforms of one another.
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2.3. Example 3

The third example to be considered also stems from Aharonov and Albert (1980,
1981). Consider a pair of spin-1

2
particles, located at positions x1 and x2; respectively,

in the singlet spin state. This spin state of the combined system is characterized
uniquely by the conditions,

ðs1x þ s2xÞ jcS ¼ ðs1y þ s2yÞ jcS ¼ ðs1z þ s2zÞ jcS ¼ 0: ð5Þ

More succinctly,

ðr1 þ r2Þ jcS ¼ 0: ð6Þ

Particle 1 interacts with a measuring device, with commuting pointer observables
q1 ¼ fq1x; q1y; q1zg; via the interaction Hamiltonian

H1 ¼ g1ðtÞr1 
 p1; ð7Þ

where p1 ¼ fp1x; p1y; p1zg are the momenta conjugate to q1; and g1ðtÞ is a function
that is equal to zero before and after the measurement interaction and is non-zero
during the measurement interaction. Similarly, particle 2 interacts with a measuring
device with pointer observables q2 via the Hamiltonian

H2 ¼ �g2ðtÞr2 
 p2: ð8Þ

The total interaction Hamiltonian is, therefore,

HINT ¼ H1 þ H2 ¼ g1ðtÞr1 
 p1 � g2ðtÞr2 
 p2: ð9Þ

Now suppose that g1ðtÞ ¼ g2ðtÞ ¼ gðtÞ; that is, the two measurement processes are
synchronized. Then we have

HINT ¼ gðtÞðr1 
 p1 � r2 
 p2Þ

¼ 1
2
gðtÞ½ðr1 þ r2Þ 
 ðp1 � p2Þ þ ðr1 � r2Þ 
 ðp1 þ p2Þ�: ð10Þ

The measurement devices are prepared initially in a simultaneous eigenstate of
q1 � q2 and p1 þ p2; each with eigenvalue 0: Since q1 and q2 do not commute with
p1 þ p2; and p1 and p2 do not commute with q1 � q2; this will not be an eigenstate of
q1; q2; p1; or p2; and will in fact be an entangled state of the two devices.
Furthermore, since p1 � p2 does not commute with q1 � q2; the total state of the
system will be an eigenstate of the Hamiltonian if and only if ðr1 þ r2Þ jcS ¼ 0—
that is, if and only if the spin state of the particle pair is the singlet state.

The Heisenberg-picture time evolution of the pointer observables is given by

d

dt
q1 ¼

1

i_
½q1;HINT� ¼

gðtÞ
i_

½q1; r1 
 p1�;

¼ gðtÞr1;

d

dt
q2 ¼

1

i_
½q2;HINT� ¼ �

gðtÞ
i_

½q2;r2 
 p2�;

¼ � gðtÞr2: ð11Þ
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Therefore,

d

dt
ðq1 � q2Þ ¼ gðtÞðr1 þ r2Þ: ð12Þ

The measurement devices remain in the eigenstate q1 � q2 ¼ 0 if and only if the
spin state of the two particles is the singlet state. An observation of q1 � q2 after the
measurement interaction is certain to yield the value 0 if and only if the spin state of
the two particles is the singlet state, and the measurement interaction leaves that
state undisturbed. If the initial state is not the singlet state, there is a non-zero
probability that an observation of q1 � q2 will yield some value other than zero.
Repeating the measurement sufficiently many times can render the probability of
getting q1 � q2a0 as high as one would like for any initial state other than the singlet
state. If the initial state is the singlet state, therefore, one can verify that it is the
singlet state (or close to it) to as high degree of probability as one would like, without
disturbing the state. For this reason, Aharonov and Albert refer to the experiment
just outlined as a verification of the initial state.

The conclusion that the experiment leaves the system undisturbed depends on the
condition g1ðtÞ ¼ g2ðtÞ ¼ gðtÞ; and this is not an invariant relation. If we do not have
g1ðtÞ ¼ g2ðtÞ; then the system does not remain in the singlet state. To see this, first
recall that the measuring devices were prepared in an eigenstate p1 þ p2 ¼ 0: As the
Hamiltonian does not contain the coordinates q1; q2; this relation holds throughout
the motion. On the subspace of states for which ðp1 þ p2Þ jcS ¼ 0; the interaction
Hamiltonian is equal to

HINT ¼ g1ðtÞr1 
 p1 � g2ðtÞr2 
 p2;

¼ 1
2
ðg1ðtÞr1 þ g2ðtÞr2Þ 
 ðp1 � p2Þ �

1
2
ðg1ðtÞr1 � g2ðtÞr2Þ 
 ðp1 þ p2Þ;

¼ 1
2
ðg1ðtÞr1 þ g2ðtÞr2Þ 
 ðp1 � p2Þ;

¼ 1
4
½ðg1ðtÞ þ g2ðtÞÞðr1 þ r2Þ þ ðg1ðtÞ � g2ðtÞÞÞðr1 � r2Þ� 
 ðp1 � p2Þ: ð13Þ

Therefore, in order for the total state jcS of the system to be an eigenstate of the
Hamiltonian, it must satisfy

½ðg1ðtÞ þ g2ðtÞÞðr1 þ r2Þ þ ðg1ðtÞ � g2ðtÞÞðr1 � r2Þ� jcS ¼ 0: ð14Þ

If the initial spin state is the singlet state, Eq. (14) holds if and only if
g1ðtÞ ¼ g2ðtÞ—that is, the measurement is non-disturbing if and only if the two
measurement interactions are synchronized. The described experiment, which, with
respect to one reference frame, merely verifies that the spin state of the two particles
is the singlet state without disturbing it, with respect to any other reference frame
first disturbs the state, then restores it to the singlet state.

In connection with an example similar to the one just discussed, Aharonov and
Albert (1984, p. 229) remark,

All of this begins to suggest something curious about the covariance of the
state vector. A measurement which is judged by an observer in K to verify [the
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state] without disturbing the system will necessarily disturb the system, as
judged by an observer in K 0: The measuring process, so far as K is concerned,
disrupts (as it were) the transformation properties of the state and disrupts its
covariance, without in any way disrupting the history of the state itself.

It is the goal of the next section to show that such processes do not, in fact, interfere
with the transformation properties of quantum states, if proper attention is paid to
the manner in which evolving states of spatially extended systems must be
transformed. This will provide a clue to understanding how the state histories in
the first two examples can, in fact, be descriptions, with respect to different reference
frames, of the same temporal evolution of the systems involved.

3. Quantum states and their Lorentz transforms

Let us first consider two systems, S1 and S2; that, during the time of interest, are
each confined to small regions A and B; located at time t (with respect to reference
frame S) at x1ðtÞ and x2ðtÞ; respectively. Assume that A and B are small enough,
compared to the distance between them, that they may be treated as if they were
points, but large enough that the systems may indeed be regarded as confined to the
regions; that is, the dimensions of A and B are large compared to the Compton
wavelengths of the systems located therein. Let H1 and H2 be the Hilbert spaces
corresponding to the internal degrees of freedom of S1 and S2; respectively; the
Hilbert space belonging to the joint system S1 þ S2 is thus the tensor product
space H1#H2:

Consider first the case in which the two systems are not entangled. If the state of
S1 at time t is given by juðtÞSAH1 and the state of S2 is jvðtÞSAH2; then the state
of S1 þ S2 at time t is

jcðtÞS12 ¼ juðtÞS1#jvðtÞS2: ð15Þ

Consider a Lorentz boost

x0 ¼ gðx � vtÞ;

t0 ¼ g t �
vx

c2

� �
; ð16Þ

where g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � v2=c2

p
: By Wigner’s theorem (see Weinberg 1995, pp. 91–96), there is a

unitary transformation operator L1 that takes vectors in H1 into their transforms
under the Lorentz boost (16). Similarly, there is a unitary Lorentz boost operator L2

on H2: As Dickson and Clifton (1998, p. 15) have shown, the transformation
operator on H1#H2 is simply L1#L2: Therefore, for any time t; the Lorentz
transform of jcðtÞS12 is

jc0S12 ¼L1juðtÞS1#L2jvðtÞS2;

¼ ju0ðt01ðtÞÞS1#jv0ðt02ðtÞÞS2; ð17Þ
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where

t01ðtÞ ¼ g t �
vx1ðtÞ

c2

� �
;

t02ðtÞ ¼ g t �
vx2ðtÞ

c2

� �
: ð18Þ

That is: to say that, as seen in reference frame S; the state at time t is juS#jvS; is to
say that, as seen by reference frame S0; S1 is in state ju0S at time t01ðtÞ; and that S2 is
in state jv0S at time t02ðtÞ: Statements about the instantaneous state of the system,
with respect to S; go over into statements about the states of the parts of the system
at two different times with respect to S0: Instantaneous states of S1 þ S2; with respect
to S0 are of the form

jc0ðt0ÞS12 ¼ ju0ðt0ÞS#jv0ðt0ÞS;

¼L1juðt1ðt0ÞÞS#L2jvðt2ðt0ÞÞS; ð19Þ

where

t1ðt0Þ ¼ g t0 þ
vx0

1ðt
0Þ

c2

� �
;

t2ðt0Þ ¼ g t0 þ
vx0

2ðt
0Þ

c2

� �
: ð20Þ

The instantaneous state of an extended quantum system is, therefore, defined only
relative to a spacelike hyperplane (or, more generally, a spacelike hypersurface) of
simultaneity. This is not a radically new postulate, but a simple consequence of the
notion ‘state at a time’, plus the relativity of simultaneity. A state history of an
extended system is defined only with respect to a choice of a foliation of spacetime
into spacelike hypersurfaces. This was pointed out by Dirac (1933), and was
elaborated by Tomonaga (1946) and Schwinger (1948). If one works within the
Heisenberg picture, in which it is operators corresponding to fields that evolve,
rather than states, and concerns oneself with operators corresponding to local
observables, then one need not deal with foliation-dependent states (though field
quantities defined in terms of spatial integrals of local fields are, on such a picture,
foliation-relative). The language of foliation-relative state evolution is the translation
of this Heisenberg-picture evolution back into the Schr .odinger picture.

The state of a system can remain constant for all time with respect to one foliation
while not remaining constant with respect to another. Suppose, for example, that our
system consists of two spin-1

2
particles, with charge e; initially in the state

jz þS1#jz �S2; at rest with respect to S; and that at a certain time t a magnetic
field in the #z-direction, of strength B, is switched on. After time t; the Hamiltonian
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of the system (with degrees of freedom other than spin neglected) is

H ¼ �
e_B

2mc
ðs1z#I2 þ I1#s2zÞ;

¼ � _oðs1z#I2 þ I1#s2zÞ; ð21Þ

where o ¼ eB=2mc: The subsequent evolution of the system is, therefore,

UðtÞjz þS1#jz �S2 ¼ eðHðt�tÞÞ=�i_jz þS1#jz �S2;

¼ eioðt�tÞjz þS1#e�ioðt�tÞjz �S2;

¼ jz þS1#jz �S2: ð22Þ

The state remains unchanged for all time only if the magnetic field at A is switched at
the same time as the magnetic field at B: If the two magnetic fields are applied at
distinct times t1 and t2; we have, after both fields are switched on,

UðtÞjz þS1#jz �S2 ¼ eioðt�t1Þjz þS1#e�ioðt�t2Þjz �S2;

¼ eioðt2�t1Þjz þS1#jz �S2: ð23Þ

In this example, two reference frames, one in which the fields are switched on
simultaneously and one in which they are not, will represent the state of the system
differently, but the two accounts will differ only by a multiplicative factor of
magnitude one. Consider, however, the situation in which the initial state of the
particle pair is the singlet state. Then we have, after both fields are switched on,

jcðtÞS ¼UðtÞjcSsinglet;

¼
1ffiffiffi
2

p ðe�ioðt�t1Þjz þS1#e�ioðt�t2Þjz �S2

� eioðt�t1Þjz �S1#eioðt�t2Þjz þS2Þ;

¼
1ffiffiffi
2

p ðeioðt2�t1Þjz þS1#jz �S2 � e�ioðt2�t1Þjz �S1#jz þS2Þ: ð24Þ

Unless t1 ¼ t2—that is, unless the switching on of the magnetic fields occurs
simultaneously at A and B—this is not the singlet state. For example, for a system in
state (24), a measurement of spin-x on both particles is not guaranteed to yield
opposite results; there is a probability equal to sin2ðoðt2 � t1ÞÞ that the results of the
two spin measurements will match.

It may seem, therefore, that there is a conflict between the probabilities of
measurement results calculated with respect to a reference frame S; in which the
switching events are simultaneous, and a frame S0; in which they are not
simultaneous. According to S; a measurement of spin-x on both particles is
guaranteed to yield opposite results, whereas, according to S0; a measurement of
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spin-x on both particles has a non-zero probability of yielding matching results. The
reason that no conflict exists is that these probabilities are probabilities of the results
of simultaneous measurements on the two particles. Both frames agree that
measurements of spin-x on both particles that are simultaneous with respect to S
will always yield opposite results, and that measurements of spin-x that are
simultaneous with respect to S0 have a non-zero probability of yielding matching
results.

The circumstance that Aharonov and Albert draw attention to, that the state of a
combined system may remain unchanged with respect to one reference frame but not
with respect to another, does not depend on the interaction being a measurement
interaction, and can obtain in circumstances not regarded as interactions with
measuring devices. This may seem to lend support to Aharonov and Albert’s
suggestion that there is something curious about the covariance of the state vector.
Consider the example just discussed. In the absence of the magnetic fields, the system
remains in the singlet state with respect to any reference frame. In the presence of the
magnetic fields, the system remains in the singlet state when described by a frame in
which the switching events are simultaneous, and does not remain in the singlet state
when described by a frame in which the switching events are not simultaneous. This
seems to require that the same state have two distinct Lorentz transforms!

That this is not the case can be seen if one takes care to include the time evolution
of the states in the transformation. Let UðtÞ ¼ U1ðtÞ#U2ðtÞ be the evolution
operator for a composite system consisting of two subsystems located, as above, at
x1ðtÞ and x2ðtÞ; respectively. Let the initial state of the system at time t ¼ 0; with
respect to S; be given by

jcð0ÞS ¼
X

k

ckjukS#jvkS: ð25Þ

Then, at time t; the state of the system is

UðtÞjcð0ÞS ¼
X

k

ckU1ðtÞjukS#U2ðtÞjvkS: ð26Þ

The Lorentz transform of the state at time t is

LUðtÞjcð0ÞS ¼ ðL1#L2ÞUðtÞjcð0ÞS;

¼
X

k

ckL1U1ðtÞjukS#L2U2ðtÞjvkS: ð27Þ

The instantaneous state of the system, with respect to S0; at time t0; is given by

jc0ðt0ÞS ¼
X

k

ckL1U1ðt1ðt0ÞÞjukS#L2U2ðt2ðt0ÞÞjvkS;

¼L1U1ðt1ðt0ÞÞ#L2U2ðt2ðt0ÞÞjcð0ÞS: ð28Þ

That is, the transformation from a state, defined with respect to S; along one of S’s
hyperplanes of simultaneity, to a state defined with respect to S0; along one of S0’s
hyperplanes of simultaneity, involves a combination of Lorentz transformation
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and time-evolution from one hyperplane to another. In our example, this yields

jc0ðt0ÞS ¼
1ffiffiffi
2

p ðeio0ðt0�t0
1
Þjz0 þS1#e�io0ðt0�t0

2
Þjz0 �S2

þ e�io0ðt0�t0
1
Þjz0 �S1#eio0ðt0�t0

2
Þjz0 þS2Þ;

¼
1ffiffiffi
2

p ðeio0ðt0
2
�t0

1
Þjz0 þS1#jz0 �S2 � e�io0ðt0

2
�t0

1
Þjz0 �S1#jz0 þS2Þ: ð29Þ

The system remains in the singlet state with respect to S whether or not the magnetic
fields are turned on. In the absence of the magnetic fields, the state is also a singlet
state with respect to S0: In the presence of the magnetic fields, it would be incorrect
to transform the state into a singlet state with respect to S0; as such a transformation
does not respect the dynamical evolution of the component subsystems.

Transformation (28) assumes that the time evolution operator UðtÞ is the product
of local evolution operators:

UðtÞ ¼ U1ðtÞ#U2ðtÞ: ð30Þ

This will be the case if and only if the system Hamiltonian is a sum of local
Hamiltonians:

H ¼ H1#I2 þ I1#H2: ð31Þ

If the Hamiltonian contained a non-local interaction term, this term would create a
need for a preferred notion of distant simultaneity.

Now consider a case in which the magnetic field is applied at time t to particle 2
only. This gives, for tXt;

jcðtÞS
1ffiffiffi
2

p ðe�ioðt�tÞjz þS1#jz �S2 � eioðt�tÞjz �S1#jz þS2Þ: ð32Þ

Note that this is the same state that would result from a magnetic field of the same
strength in the opposite direction applied to particle 1—it is only the difference

between the applied field at A and the applied field at B that appears in the state (32).
Nevertheless, there is a matter of fact about whether a field was applied to particle 1
or particle 2, a matter of fact that could be revealed by the behaviour of other
particles in the vicinity of particles 1 and 2. It seems reasonable to consider the
evolving state (32) to involve a change pertaining to particle 2. We should not,
however, describe this as a change in particle 2’s spin state, as the state does not
ascribe the individual particles their own spin states. It is, however, a change
pertaining to particle 2’s Hilbert space, as is shown by the fact that the evolution
operator has the form

UðtÞ ¼ I1#U2ðtÞ: ð33Þ

In what follows, I will describe such changes—changes that, when the dynamics is
taken into account, are properly represented by operators of this sort—as local
changes, even though they need not be regarded as changes in intrinsic properties
possessed by one or other of the localized subsystems.
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Let us now add collapse to the picture.3 It will be helpful to begin with a particular
example, and then generalize, and, again, it will helpful to consider first factorizable
states and then entangled states as superpositions of factorizable states. Consider,
then, two spin-1

2
particles, located some distance apart, in regions A and B;

respectively, and take the initial state to be jz þS1#jz �S2: Suppose that a
measurement of spin-x is performed on particle 2. After the measurement, the
state of the particle pair becomes one of jz þS1#jx þS2 or jz þS1#jx �S2;
depending on the outcome of the measurement. Suppose that the outcome is þ1; and
that the new state is therefore jz þS1#jx þS2: Let P be a point on particle 1’s
worldline that is spacelike separated from the measurement process. There will be
reference frames that have it that the measurement on particle 2 is in the future as of
P; and reference frames according to which the measurement on particle 2 has
already occurred as of P: More precisely, there will be some reference frame S such
that the hyperplane of simultaneity with respect to S that passes through P

passes through particle 2’s worldline to the past of the measurement (call
this hyperplane sP), and there will be some reference frame S0 such that the
hyperplane of simultaneity with respect to S0 passing through P passes through
particle 2’s wordline to the future of the measurement (call this hyperplane s0P).
The instantaneous state defined along sP is the original state jz þS1#jz �S2;
whereas the state defined along s0P is jz0 þS1#jx0 þS2: There is, of course,
nothing paradoxical about this; the differing state descriptions are merely
consequences of the relativity of distant simultaneity. The change in the state
vector is a local one confined to the region B in which the measurement takes
place, and affects the global state vector only via its dependence on the part
pertaining to B:

Call the scenario just described Scenario I, and consider a second scenario in
which the initial state is jz �S1#jz þS2; spin-x is measured on Particle 2, and the
outcome is again +1, and call this Scenario II. On Scenario II, the state defined on
sP is jz �S1#jz þS2; and the state defined on s0P is jz0 �S1#jx0 þS2:

Now consider a third scenario, Scenario I + II, which is the superposition of the
first two. In this scenario, the initial state is a superposition of the initial states in
Scenarios I and II:

jcð0ÞS ¼ ajz þS1#jz �S2 þ bjz �S1#jz þS2: ð34Þ

3 Though, as was mentioned above, the notion of foliation-relative state evolution was present from the

very beginning of work on relativistic quantum theories, the application of this notion to state-vector

collapse was perhaps first made by Aharonov and Albert (1984). Fleming (1986, 1989) has done more than

anyone else to bring the idea of foliation-relative state evolution, and in particular foliation-relative

collapse, to the attention of the philosophical community. Maudlin (1994, p. 208) also cites Giovannini

(1983) and Dieks (1985) in connection with foliation-dependent collapse theories. Giovannini, however,

regards the wave function as a representation of the knowledge some observer has of a system, and wave

packet reduction, not as a physical process, but as a reflection of information gained by the observer.

(Giovannini associates with each observer a corresponding foliation of spacetime, thereby making

observer-relative changes in knowledge into foliation-relative state-vector reductions.) Dieks (1985) works

within a ‘no-collapse’ interpretation in which the state vector evolves unitarily at all times but

environmentally induced decoherence leads to what is regarded as an effective collapse.
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Again, suppose that a measurement of spin-x is made on particle 2, and that the
result is þ1: The state of the system on this scenario is, at all times (and along any
hyperplane) just a superposition of the states in Scenarios I and II. Along sP; the
state is

ajz þS1#jz �S2 þ bjz �S1#jz þS2: ð35Þ

The (unnormalized) state defined on s0P is

ajz0 þS1#ð2/x0 þ jz0 �S2Þjx
0 þS2 þ bjz0 �S1#ð2/x0 þ jz0 þS2Þjx

0 þS2;

¼ ða2/x0 þ jz0 �S2jz
0 þS1 þ b2/x0 þ jz0 þS2jz

0 �S1Þ#jx0 þS2

¼
1ffiffiffi
2

p ðajz0 þS1 þ bjz0 �S1Þ#jx0 þS2: ð36Þ

Although an entangled state of the two-particle system does not factor into local
parts, any state vector can be written as a superposition of terms that do so factor. In
the case of unitary evolution, when an operation is performed on one particle (say,
particle 2), and not the other, the effect of this operation can be represented as a local
change, affecting the global state vector only via its effect on particle 2’s state in each
term of the superposition. It is because these operations can be represented as local
changes, and combined operations on both particles can be represented as
combinations of local changes, that such operations do not disrupt the covariance
of the state vector, even in the seemingly paradoxical cases in which the state history
is an unchanging one along one foliation but not along other foliations.

Something similar happens in the collapse case also. In Scenario I + II, just as in
Scenarios I and II, the transition that occurs when a measurement is performed on
particle 2 can, for each term of the superposition, be represented as effecting a
change in the global state vector only via the effect on the particle 2’s state in each
term of the superposition. This suggests that we regard such changes as local changes
also.

There is, however, an important difference between Scenarios I and II and
Scenario I + II. In the first two scenarios, the state of the particle pair is a
factorizable state both before and after collapse; the state is a factorizable state on
both sP and s0P: In Scenario I + II, however, the state of the combined system is
entangled before the measurement and factorizable afterwards. The state defined on
sP is entangled, whereas the state defined on s0P is factorizable, even though the two
hyperplanes intersect Particle 1’s worldline at the same point P: This circumstance, a
consequence jointly of the relativity of simultaneity and of modelling collapse as a
local change in the state vector, can with justice be called the relativity of

entanglement.4

4 The relativity of entanglement is referred to by Ghirardi and Pearle (1990) as ambiguity about

properties. As Rob Clifton (personal communication) has pointed out, the argument of Clifton, Pagonis,

and Pitowsky (1992) can be seen as an argument for the relativity of entanglement.
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A state-vector collapse, even when affected by a measurement performed
on particle 2, affects properties that one is inclined to regard as intrinsic to particle
1—notably, the probabilities pertaining to subsequent measurements on particle 1.
This is an important disanalogy between collapse and unitary evolution. Whether
this means that collapse events cannot be regarded as ‘local’ depends on whether
such properties ought to be regarded as local intrinsic properties of the systems in
question; there can be no objection to global properties being affected by local
changes pertaining to particle 2. It is the lesson of Bell’s theorem that quantum-
mechanical probabilities are not to be regarded as local quantities (we will return to
this issue in Sections 4 and 5). By the same token, the reduced density matrices
obtained for each subsystem in an entangled state by tracing out the degrees of
freedom of the other systems also ought not to be regarded as representing intrinsic
states of the component subsystems.

It will be shown below that collapse evolution can be modelled so as not to pick
out a preferred foliation, and in such a way that a complete state history given with
respect to one foliation uniquely determines the state history with respect to any
other foliation (that is, it will be shown that it can be so modelled within the scope of
the approximations discussed in Section 1). This lends support to the notion that
changes in the global state induced by collapses ought to be regarded as ‘local’
changes, and this is the terminology that will be adopted below. It should be borne in
mind that ‘local’ is being used here in the sense (appropriate to both unitary and
collapse evolution) of: affecting the global state vector via changes in each term of
the superposition pertaining to the system on which the measurement is performed,
and not in the sense of changes of a local, complete, intrinsic state of some system.

The collapse of the state vector cannot be the result of a linear unitary evolution.
We will model a collapse event by a one-parameter family of linear, non-unitary
evolution operators, EðtÞ: Consider, for example, a spin-1

2
particle, initially in state

jcS; on which a measurement of spin-x is performed. Schr .odinger evolution is
represented by a one-parameter family of unitary operators UðtÞ: This evolution is
deterministic in the sense that UðtÞ is determined, for all t; by the Hamiltonian of the
system. Collapse evolution will be represented by a one-parameter family of
operators EðtÞ such that, for all times t before the measurement EðtÞ ¼ I ; and for
times t after the measurement EðtÞ becomes either PjxþS or Pjx�S; with probability
/cjPjxþSjcS=jjcjj2 and /cjPjx�SjcS=jjcjj2; respectively.5 (Here PjfS is the projection
operator onto the subspace spanned by jfS; i.e., PjfS ¼ jfS/fj=jjjfSjj2:Þ The
family EðtÞ is thus not determined by the dynamics of the system but contains a
stochastic element—what one has is a one-parameter family of operator-valued

5 The collapse evolution operator, so defined, is not norm-preserving. This is all right so long as we

remember to divide by the squared norm of the state in calculating probabilities. The paradoxical-seeming

fact that one can represent collapse via linear operators if one is willing to sacrifice unitarity was pointed

out by Pearle (1989). On some collapse theories, of which CSL is one, the state only approaches

asymptotically a state of complete collapse and at any finite time contains ’tails’. On such a theory, the

projection operators here introduced must be regarded as approximations to a more complicated

representation of the collapsed state.
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random variables, that takes on, for any t some value EðtÞ; with probabilities
determined by the details of our collapse theory.

More generally, a collapse will be modelled by a one-parameter family of
operators EðtÞ such that EðtÞ is equal to I before the collapse, and to Pjc0S; where
jc0S is whatever state the system happens to collapse to. If two systems S1 and S2 are
spacelike separated during a certain time interval, it will be assumed that during this
interval the evolution operator factors:

EðtÞ ¼ E1ðtÞ#E2ðtÞ: ð37Þ

We now have a coherent meshing of the accounts given by the two reference
frames S and S0; in Example 1. With respect to S; the evolution of the system is given
by

jcðtÞS ¼ E1ðtÞ#E2ðtÞjcSsinglet; ð38Þ

where

E1ðtÞ ¼
I1 before the measurement at A;

PjxþS1 after the measurement at A:

(

E2ðtÞ ¼
I2 before the measurement at B;

PjzþS2 after the measurement at B:

(
ð39Þ

With respect to S0; the evolution of the system is given by

jc0ðt0ÞS ¼ E0
1ðt

0Þ#E 0
2ðt

0Þjc0Ssinglet; ð40Þ

where

E0
1ðt

0Þ ¼
I1 before the measurement at A;

Pjx0þS1 after the measurement at A:

(

E0
2ðt

0Þ ¼
I2 before the measurement at B;

Pjz0þS2 after the measurement at B:

(
ð41Þ

These operators are simply the Lorentz transforms of the operators (39):

E 0
i ðt

0Þ ¼ LiEiðtiðt0ÞÞL
w
i : ð42Þ

Now, let ta be a S time-coordinate, such that the measurement at A occurs after ta-
that is, the hyperplane t ¼ ta lies in the past of the A-measurement (see Fig. 1). Let tb
be a time after the A-measurement but before the B-measurement, and let tg be a
time after both measurements. The account of the evolution of the system, with
respect to S; runs: prior to the measurement at A; the state of the system is the singlet
state:6

jcð0ÞS ¼ jx þS1#jx �S2 � jx �S1#jx þS2 ¼ E1ðtaÞ#E2ðtaÞjcð0ÞS: ð43Þ

6 Since we are discussing a non-unitary collapse evolution in this section, it will be more convenient not

to require the state vector to be normalized.
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After the A-measurement, the state becomes

E1ðtbÞ#E2ðtbÞjcð0ÞS ¼ ðPjxþS1#I2Þjcð0ÞS;

¼PjxþS1 jx þS1#jx �S2 � PjxþS1 jx �S1#jx þS2;

¼ jx þS1#jx �S2: ð44Þ

After the B-measurement, the state is

E1ðtgÞ#E2ðtgÞjcð0ÞS ¼ ðPjxþS1#PjzþS2 Þjcð0ÞS;

¼ �
1ffiffiffi
2

p jx þS1#jz þS2: ð45Þ

Let t0a; t
0
b; and t0c be S0 times such that t0a is before the B-measurement, t0b is

between the two measurements, and t0c is after both measurements. The state-
history with respect to S0 runs: before the measurement at B; the state of the
system is

jc0ð0ÞS ¼ jz0 þS1#jz0 �S2 � jz0 �S1#jz0 þS2 ¼ E0
1ðt

0
aÞ#E0

2ðt
0
aÞjc

0ð0ÞS: ð46Þ

Fig. 1. Spacetime diagram of the EPR-Bohm experiment.
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After the B-measurement but before the measurement at A; the state is

E 0
1ðt

0
bÞ#E0

2ðt
0
bÞjc

0ð0ÞS ¼ ðI1#Pjz0þSÞjc0ð0ÞS;

¼ jz0 þS#Pjz0þSjz0 �S� jz0 �S#Pjz0þSjz0 þS;

¼ � jz0 �S1#jz0 þS2: ð47Þ

After the A-measurement, the state is:

E 0
1ðt

0
cÞ#E0

2ðt
0
cÞjc

0ð0ÞS ¼ ðPjx0þS1#Pjz0þS2 jc0ð0ÞS

¼ �
1ffiffiffi
2

p jx0 þS1#jz0 þS2: ð48Þ

The differences in the state histories according to the two frames thus arise solely
from a difference in the foliations used to define the evolving state of the extended
system.

The scheme must be generalized to include multiple collapses occurring along the
world-line of the same object, and also to include a combination of unitary and
collapse evolution. Ideally one would like to see unitary evolution and collapse
evolution as limiting cases of the same process, perhaps along the lines of Philip
Pearle’s continuous spontaneous localization model (CSL). (See Pearle, 1997 and
references therein.) The scheme will also have to be generalized to a full field-
theoretic context. Without committing ourselves as to the details of the collapse
model, let us assume that there exist generalized evolution operators Eðtf ; tiÞ
that take a system from a state on ti to its state on tf ; satisfying

Eðt; tÞ ¼ I ;

Eðtf ; tiÞ ¼ Eðtf ; tÞEðt; tiÞ for tiptptf : ð49Þ

For a system of n individually localized subsystems fSk j; k ¼ 1;y; ng; relativity
requires that the evolution operator factorize if the systems are spacelike separated
during the interval ½ti; tf �:

Eðtf ; tiÞ ¼ #
n

k¼1
Ekðtf ; tiÞ: ð50Þ

Collapse evolution is not reversible; different initial states can collapse into the same
final state. Therefore, Eðt1; t2Þ will be undefined if t1ot2 and a collapse has taken
place between t1 and t2: The transformation from one foliation to another,

jc0ðt0ÞS ¼ L1E1ðt1ðt0Þ; tÞ#L2E2ðt2ðt0Þ; tÞjcðtÞS; ð51Þ

must therefore be handled with care. We cannot, for example, directly apply (51) to
obtain the state on the hyperplane t0 ¼ t0b from the state on t ¼ tb or vice versa, as
there is a collapse between the hyperplanes in each direction. This does not mean
that the two states are unrelated, however, as they can both be obtained from
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the state on ta as follows:

jcðtbÞS ¼ E1ðtb; taÞ#E2ðtb; taÞjcðtaÞS;

jc0ðt0bÞS ¼ L1#L2E2ðtg; taÞjcðtaÞS: ð52Þ

In order to find a state defined along a hyperplane of constant t0; one must in the
general case apply the transformation to a state defined on a hyperplane of constant t

such that tpt1ðt0Þ and tpt2ðt0Þ:
7 With this proviso, it can readily be seen that a

complete state history with respect to one foliation, together with a specification of
the local evolution operators fEig; completely determines the state history with
respect to any other foliation.

The relativity of entanglement entails that a system might be assigned a spin
eigenstate by a state defined along one hyperplane and not be assigned any definite
state at all by a state defined along another hyperplane passing through the very
same instant on the system’s worldline. One might wonder whether it is possible for a
system to be assigned two different definite spin states at the same point on its
worldline by two different hyperplanes intersecting the systems’s worldline at that
point.8 The conditions (49)–(51) suffice to rule this out.

Let the spacelike hyperplanes b and c intersect at point Q on S1’s worldline (refer
to Fig. 1). Suppose that the states on b and c are, respectively,

jcðtbÞS ¼ juS1#jvS2;

jc0ðt0cÞS ¼ jfS1#jxS2: ð53Þ

Let R be the intersection of the hyperplane t ¼ tb with S2’s worldline, and let the
hyperplane t0 ¼ t0a also intersect S2’s worldline at R: The segment of S2’s evolution
that must be taken into account is the interval between t0 ¼ t0a and t0 ¼ t0c on S2’s
worldline. All such points on S2’s worldline ate spacelike separated from Q; so,
applying (50), we assume factorizable evolution and write:

jc0ðt0cÞS ¼ L1E1ðt1ðt0cÞ; tbÞ#L2E2ðt2ðt0cÞ; tbÞjcðtbÞS: ð54Þ

But t1ðt0cÞ is just tb; and so

E1ðt1ðt0cÞ; tbÞ ¼ E1ðtb; tbÞ ¼ I1: ð55Þ

Therefore

jc0ðt0cÞS ¼ ðL1#L2ÞE2ðt2ðt0cÞ; tbÞjcðtbÞS; ð56Þ

or

jfS1#jxS2 ¼ L1juS1#L2E2ðt2ðt0cÞ; tbÞjvS2; ð57Þ

7 This restriction can be removed if the collapsed state contains ‘tails’ in which information about

previous states in hidden. See Pearle (1997, p. 154).
8 I am grateful to Joseph Berkovitz for posing this as a problem.
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and so, up to a multiplicative constant, we must have

jfS1 ¼ L1juS1: ð58Þ

It follows that if S1 is assigned a definite state vector by states defined along two
hyperplanes passing through its worldline at a point Q; then the two state vectors will
simply be the Lorentz transforms of each other, as consistency requires.

4. Separability and locality

So far, it has been argued that, with or without collapse, in a relativistic context
the state of an extended system must be defined along a spacelike hypersurface of
simultaneity, and that a state history must be defined with respect to a particular
foliation of spacetime. Collapse evolution can be modelled by linear, local, non-
unitary, stochastic evolution operators—at least, it can be so modelled within the
scope of the approximate localizability assumption discussed in Section 1. The
resulting state histories given with respect to alternate foliations are not conflicting
accounts of different events but merely different descriptions of the same events, and
a complete state history with respect to one foliation can be transformed into a state
history with respect to another foliation via Eq. (51). A consequence of modelling
collapse by linear, local, non-unitary evolution operators is the relativity of

entanglement.
The probabilities governing the transitions of our local, stochastic collapse

evolution operators are calculated in the usual quantum-mechanical way, that is,
calculated with respect to the entire global state vector. The foliation dependence of
the state vector thus entails foliation-dependence of these probabilities. The lesson of
Bell’s theorem is that these probabilities cannot be taken to factor into independent
local probabilities, even if the quantum-mechanical state description were to be
supplemented by some more complete description.

There is therefore a form of holism associated with the quantum-mechanical
description of composite systems. This holism is exhibited by the fact that,
in an entangled state, the composite system has properties not reducible to properties
of the component subsystems. In the singlet state, for example, the sum of
the spins of the two particles in any direction is zero. This is true in spite of
the fact that the state does not assign definite values to the individual spins
in any direction, and does not assign any spin state at all to the individual particles
(since, for spin-1/2 systems, any spin state is a state of definite spin in some

direction). Thus, the two individual spins are in a certain relation, that of summing
to zero, that is not attributable to non-relational properties of the two individual
systems, Teller (1989) has proposed the term relational holism for the view that there
are relations that do not supervene on nonrelational properties of the things related.
The relativity of entanglement can be regarded as one manifestation of this relational
holism.

To regard a quantum-mechanical entangled state of systems that are spatially
separated as a complete description entails a rejection of Einstein’s principle of
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separability, which holds that the things dealt with in physics ‘‘claim an existence
independent of one another, insofar as they ‘lie in different parts of space’ ’’ (Einstein
1948, p. 321; translation by Don Howard, quoted in Howard 1985, p. 190). Howard
(1985, 1989) has distinguished between this principle and another principle invoked
by Einstein, the principle of locality, or absence of interaction between spatially
separated systems.9 A natural translation of these principles into the language of
quantum mechanics would be:

Separability: The state of a spatially extended system can always be written as a
tensor product of local states.

Locality: The Hamiltonian of a spatially separated system can be written as a sum
of local Hamiltonians.
The quantum-mechanical treatment of extended systems, on this reading, violates
separability but is usually assumed to satisfy locality.10

A violation of Einstein locality in quantum theory would require a preferred
notion of distant simultaneity for the state evolution, and, in fact, any such violation
would permit superluminal signalling via suitable measurements carried out on
suitably prepared states, as a choice of which observable was measured at B would
affect the statistics pertaining to measurements at A: That is, a violation of Einstein
locality would entail a violation of the condition called ‘‘Locality’’ by Jarrett (1984,
1989) and ‘‘Parameter Independence’’ by Shimony (1986). An entangled state, which
violates Einstein separability, violates, for suitable measurements, the condition
called ‘‘Completeness’’ by Jarrett and ‘‘Outcome Independence’’ by Shimony.

The goal of the previous section was to make it plausible that, although a violation
of Einstein separability is not what acquaintance with classical relativistic physics
would lead one to expect, such a violation does not ipso facto constitute a violation
of special relativity, if the entangled state can be written as sum of factorizable states,
each undergoing purely local evolutions. Evolution governed by a Hamiltonian that
is the sum of local Hamiltonians and represented by a unitary evolution operator
that is a tensor product of local unitary evolution operators clearly counts as local
evolution in this sense. Moreover, collapse evolution when the state is factorizable
also clearly counts as local evolution. We have extended the picture to collapse
evolution represented by operators that are tensor products of local collapse
operators, operating on entangled states. This has some counterintuitive con-
sequences, such as the relativity of entanglement, but clearly does not pick out a
preferred foliation or reference frame.

9 Einstein himself did not always clearly distinguish between the two principles. In the Dialectica article,

for example, he refers to the two principles together as ‘‘Grundsatz II’’ (1948, p. 322). In the Schilpp

volume, however, there is a passage that clearly distinguishes them: ‘‘(One can escape from this conclusion

[that to the same real state of affairs one can assign two distinct c-functions] only by either assuming that

the measurement of S1 (telepathically) changes the real situation of S2 or by denying independent real

situations as such to things which are spatially separated from each other. Both alternatives appear to me

entirely unacceptable.)’’ (Einstein, 1949, p. 85). It is likely that Einstein regarded locality and separability

as two aspects of a single principle.
10 Gordon Fleming has, however, argued for the introduction of non-local Hamiltonians. See Fleming

(1988) and Fleming and Bennett (1989).
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5. Maudlin’s objections

The sharpest critic of foliation-relative state evolution, and of foliation-relative
collapse in particular, has been Maudlin (1994, 1996), and no defense of
peaceful coexistence via foliation-relative state vector collapse can afford to ignore
his objections. Maudlin’s criticisms are chiefly directed at Fleming (1989),
though he also cites Giovannini (1983), Aharonov and Albert (1984), and Dieks
(1985). As has already been mentioned, the position defended in this paper
differs in some aspects from Fleming’s position. It seems, however, that Maudlin’s
criticisms are not affected by these differences, and hence that the present
account, if it is to be regarded as a tenable position, must be capable of
answering these objections. It is not the purpose of this section to discuss
whether Maudlin has interpreted Fleming correctly, or whether his
criticisms succeed as objections to Fleming’s position; the issue at hand is
whether his criticisms of Fleming succeed as objections to the position
presented in this paper.

Maudlin asks (1994, p. 209),

Does it really make sense to say that a photon at a particular location
has one polarization when thought of as lying along one hyperplane and
another when thought of as lying along a different one? Or that a detection
event is stochastic when one assigns it to one hyperplane but deterministic
when assigned to another? The original difficulty in picking a hyperplane for
wave collapse has been swamped by a radical generosity: in Fleming’s
theory there are wave collapses along an infinity of hyperplanes that pass
through either detection event. Has Nature really been so profligate with
collapse events?

The last question will be answered first: no, Nature has not been profligate with
collapse events. There are not different collapse events corresponding to different
foliations; the accounts given with respect to alternate choices of foliation are not
descriptions of different events but different descriptions of the same events. In
Example 1, there are two collapse events, whose descriptions in terms of state
transitions depend upon the hypersurfaces of simultaneity one uses to define the
instantaneous state of the evolving system.

This objection is raised in a sharper form in Maudlin’s (1996). There he considers
an example similar to our Example 1; in Maudlin’s notation, the two measurement
events are designated by L and R; instead of A and B: Maudlin considers two sets of
hyperplanes: fa; b; gg are hyperplanes of simultaneity in S; with a in the past of the
L-measurement, b lying in the future of the L-measurement and in the past of the R-
measurement, and g lying in the future of both measurements; fa; b; cg are
hyperplanes of simultaneity in S0; with a in the past of the R-measurement, b

between the two measurements, and c in the future of both (refer once more to
Fig. 1). Thus, the measurement at L lies between a and b; and between b and c; while
the measurement at R lies between b and g; and between a and b: In connection with
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this example, Maudlin (1996, p. 301) writes,

There seem to be four distinct collapses postulated so far: the collapse
that transforms the a singlet state into the b R-spin eigenstate (for
both electrons); the collapse that transforms the latter wave function into the
L-spin eigenstate for the L-electron and the R-spin eigenstate for the R

electron; the collapse that transforms the a singlet state into an L-spin
eigenstate; and the collapse that transforms this latter into the g spin
state. Using obvious notation, let us call these the a � b; b � c; a� b; and
b� g collapses.

Now, we certainly do have four state transitions here—in the state history
according to S; we have a transition from the state defined on a to the state on b
and a transition from the state on b to the state on g; whereas in the state
history according to S0 we have a transition from the state on a to the state
on b and a transition between the state on b to the state on c: It would be
misleading, however, to speak of these as four collapse events. Though one
could, in a relativistic context, refer to a change in a (foliation-relative) instantaneous
state of an extended system as an event, it is customary to save the word
for local changes. That is, events, in special relativity, are associated with
spacetime points, or else with spacetime regions that are sufficiently small
that they can be regarded as points. One can—and I believe, should—regard
collapse events as local events, in the sense discussed above, in Section 3. It is the
same collapse event, namely, the collapse at L that occurs when the measurement at
L takes place, that induces the a� b transition and the b � c transition. Similarly, it
is the same collapse event, the one at R; that induces the b� g transition and the
a � b transition.

Maudlin’s objection can be cast in the form of a dilemma. Either the state histories
along each foliation agree as to the macroscopic outcomes of experiments, or they
don’t. If all foliations agree on the outcome of experiments, this is a coincidence
inexplicable on the basis of the dynamics of the theory, which only connect states
within a foliation (Maudlin, 1996, p. 301). If, on the other hand, the state histories do
not agree on such outcomes, ‘‘[t]he wave functions on each family of hyperplanes
would then completely decouple, yielding an independent world for each foliation’’
(p. 302).

The first horn of the dilemma, according to Maudlin, leaves us with unexplained
correlations. While quantum mechanics accounts for correlations in outcomes
between the a� b collapse and the b� g collapse, and for correlations between the
a � b collapse and the b � c collapse, ‘‘there is still an unexplained correlation. The
a � b collapse is correlated not only with the b � c collapse, but also with the a� b
collapse’’ (1996, p. 301). The answer to this objection should be obvious: the b � c

collapse—that is, the collapse that induces the transition from the b-state to
the c-state—is the same event as the a� b collapse. Thus a correlation between the
a � b collapse and the b � c collapse is ipso facto a correlation between the a � b

collapse and the a� b collapse.
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The objection presupposes that states defined along different foliations are
ontologically independent of each other.

The wave function on a hyperplane is, as it were, ontologically atomic. Wave
functions defined on hyperplanes in the same family can be related by a
dynamics which uses the family as a substitute for absolute time, but relations
among wave functions from different families are obscure at best (1996,
p. 302).

This supposed ontological independence does not exist, however. A factorizable state
defined on a hypersurface s is merely one way of splicing together local parts into an
instantaneous global state; entangled states are superpositions of such splicings. A
complete state history given with respect to one foliation uniquely determines the
state history with respect to any other foliation; the relations between states defined
with respect to different foliations are given by Eq. (51).

Let us return to the first question asked by Maudlin in the paragraph quoted
at the beginning of this section: ‘‘Does it really make sense to say that a photon
at a particular location has one polarization when thought of as lying
along one hyperplane and another when thought of as lying along a different
one?’’ Maudlin is here referring to the relativity of entanglement. The
way that Maudlin phrases the question is misleading, though; Maudlin tends to
call being entangled with another photon a ‘‘polarization state’’ of an individual
photon. When a pair of systems is in an entangled state, however, quantum
mechanics assigns no state vectors to the individual systems; the individual photons,
when the system is in an entangled state, do not have quantum-mechanical
polarization states.

According to Maudlin, the relativity of entanglement not only shocks common-
sense intuitions, but also ‘‘shocks intuitions which are formed by acquaintance both
with relativity and with non-relativistic quantum mechanics’’ (1994, p. 209).

The language of relations, of the photon having a property relative to a
hypersurface, makes the situation sound a bit more prosaic. Socrates can be tall
relative to Theatetus and short relative to Plato without thereby engendering
any paradoxes or puzzlement. But hyperplane dependence is more unfamiliar,
and stranger, than this analogy suggests. First, it is obvious that tallness and
shortness are relations, not properties that an object could have in and
of itself alone. If the universe contained but one object, that object could
not in principle be either short or tall. But polarization is not
such an intrinsically relational matter. In a universe with but one
photon, the photon could have a definite state of polarization. Indeed, one
has the strong intuition that whether or not a photon is polarized should be a
matter of the intrinsic state of it, independent of any considerations about
hyperplanes. (p. 210)

In this context, to say that a photon is ‘‘polarized’’ means that it has its own
polarization state, and to say that it is not polarized means, not that it has a state
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vector that is a superposition of distinct polarization states, but that it is entangled
with some other system and so is not ascribed its own state vector at all. The last
sentence of the quoted paragraph, then, says that one has the strong intuition that
whether or not a photon is entangled with some other system should be a matter
purely of the intrinsic state of it, and not a matter of its relations to other objects.
However, it is not clear that intuition runs in this direction at all.11

According to Maudlin (1994, p. 212),

The theory of hyperplane dependence contradicts Einstein’s supposition [of
separability] in a particularly radical fashion. It is not just that there are some
relations which don’t supervene on the intrinsic state of the relata but that the
relata don’t have any intrinsic state at all. It is not just that the whole is
more than the sum of the parts but that the parts can’t even be defined apart
from the whole.

This is exactly right, except that it applies equally well to quantum mechanics in
Galilean spacetime, in which there is a distinguished foliation of spacetime and hence
a unique state history, as long as one accepts that the state vector of a system is a
complete description of the system. It is not the hyperplane dependence of state
vectors that violates Einstein separability, but the supposition that the state vector is
all there is, and hence that the components of a system in an entangled state do not
have individual states of their own. It is not collapse, foliation-relative or otherwise,
that Maudlin is objecting to in this passage, but entanglement construed
ontologically.

There is, however, something new when one adds collapse to the picture of
foliation-relative evolution of entangled states, namely, the relativity of entangle-
ment. One does, I believe, have a strong intuition that, if S1 is not entangled with S2;
then this circumstance is a matter of the intrinsic state of S1; and it is this intuition

11 This discussion presumes that the state of a system is represented by a state vector. If density

operators are used instead, then one can always associate with the component systems the reduced density

operators r1 and r2: Then the state of the composite system is factorizable if and only if r12 ¼ r1#r2: If

the evolution from one hyperplane to another is unitary, then the reduced density operators along different

hyperplanes all passing through the same point on a localized system’s worldline are just the Lorentz

transforms of each other: r0iðt
0
iðtÞÞ ¼ LiriðtÞL

w
i : This is not the case if collapse evolution is included. In the

absence of collapse, one could, perhaps, think of the reduced density operators as describing intrinsic

states of the subsystem. These reduced operators will be pure states if the global state is factorizable and

improper mixtures if the global state is entangled. On such an account, there is some plausibility to the

claim that whether or not a photon is polarized is a matter of the intrinsic state of it. In a footnote Maudlin

(1994, 222, fn. 10) remarks, ‘‘In referring to the ‘‘polarization state’’ of the photon I do not mean to

presuppose that the photon by itself necessarily has any state at all. There is some dispute about whether a

member of a pair in an entangled state should itself be ascribed a so-called reduced state or should only be

ascribed a joint state with the second photon. I incline to the latter view, but the issue is not important

here. Whatever one wants to say about the photon, let that be its ‘state’.’’ It seems, however, that any

plausibility there is in the view that whether or not a photon is entangled with another is a matter of the

intrinsic state of it stems from regarding reduced density operators as representations of the intrinsic states

of subsystems, even when the global state is entangled.
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that seems to be the one that Maudlin is alluding to. Acceptance of collapse
occurring as part of a foliation-relative state evolution entails regarding this
intuition, formed, as Maudlin points out, by acquaintance with relativity and non-

relativistic quantum mechanics, as mistaken. To invoke an anthropocentric analogy:
if marriage is a relational state, so too is divorce!

The second question in the paragraph from Maudlin quoted at the beginning
of this section asks: ‘‘Does it really make sense to sayy that a
detection event is stochastic when one assigns it to one hyperplane but
deterministic when assigned to another?’’ As noted above, reference frames
may disagree on which collapse events are chance events and which have
predetermined outcomes. This is a consequence of the fact that, though collapse
events can be regarded as local events, the probabilities assigned to the various
possible outcomes of this local event are calculated with respect to the
globally defined state vector, and hence are foliation-relative. To be predetermined
is to have probability one for some outcome, and zero for all others, and an event
may be assigned probability one by a state defined along one hyperplane
passing through the event, and a probability of less than one by a state defined
along another hyperplane passing through the event. This is odd. One would expect,
in any stochastic theory, that all facts that are relevant to the probabilities of
outcomes of a given event be confined to the past light-cone of the event. It
is the message of Bell’s theorem, however, that the probabilities assigned
to outcomes of measurements at spacelike separation by quantum-mechanical
entangled states cannot be reduced to products of independent local probabilities. It
is in this sense that quantum theory is non-local.12

Although this runs contrary to intuitions trained by exposure to relativity theory,
it is not clear that this feature of quantum-mechanical probabilities constitutes an
actual conflict with relativity, so long as every reference frame agrees on the
probability assigned to any set of outcomes of a set of spacelike-separated
measurement events. This ensures that the statistics of a repeated series of
measurements will not distinguish between reference frames (or between alternate
foliations).

6. Transformation of wave functions

Let us return to Example 2. We want to write the (non-local) state of the particle
as a tensor product of local states. We can do this via an occupation-number
representation for the states of the three boxes. Let jn1n2n3S ¼ jn1S1#jn2S2#jn3S3

be a state in which there are n1 particles in box 1, n2 particles in box 2,

12 However, quantum mechanics is not non-local in the sense of a violation of Einstein’s principle of

locality. The non-local nature of quantum-mechanical probabilities is due, rather, to the entanglement of

spatially separated systems, which is a violation of Einstein’s principle of separability.
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and n3 particles in box 3.13 Then we have

jx1S ¼ j100S ¼ j1S1#j0S2#j0S3;

jx2S ¼ j010S ¼ j0S1#j0S2#j0S3;

jx3S ¼ j001S ¼ j0S1#j0S2#j1S3: ð59Þ

The initial state jaS is given by

jaS ¼ j100Sþ j010Sþ j001S: ð60Þ

The state jaS is, therefore, an entangled state of the local box-states.
The sequence of box-openings is given by

EðtÞjaS ¼ E1ðtÞ#E2ðtÞ#E3ðtÞjaS: ð61Þ

where

E1ðtÞ ¼
I1 before box 1 is opened:

Pj0S1 after box 1 is opened:

(

E2ðtÞ ¼
I2 before box 2 is opened:

Pj0S2 after box 2 is opened:

(

E3ðtÞ ¼ I3: ð62Þ

E0
1ðt

0Þ; E0
2ðt

0Þ; E 0
3ðt

0Þ are defined similarly. With respect to S0; the state history is given
by

E0ðt0Þja0S ¼ E0
1ðt

0Þ#E 0
2ðt

0Þ#E0
3ðt

0Þja0S: ð63Þ

The two state histories are, therefore, Lorentz transforms of one another, in much
the same way as the state histories discussed in Example 1.

A few comments are in order about this treatment of the example. First, the single-
particle state jaS is an entangled state of the local box-states. Second, the state jx1S
is not a local state of box 1 alone, but is a global state of the three boxes; it is a state
in which there is one particle in box 1 and none in either of the other two boxes. As
the boxes are located some distance apart, such states are defined only relative to a
hypersurface of simultaneity. A general state in which, on hypersurface s; there is
exactly one particle somewhere in the three boxes is given by

jcSs ¼ csðx1Þjx1Ss þ csðx2Þjx2Ss þ csðx3Þjx3Ss: ð64Þ

Since the jxiSs’s are not local states but rather global states on s; the values of csðxiÞ
are not local quantities but are, rather, defined in terms of the entire state on s: There
is no reason for csðxiÞ and cs0 ðx

0
iÞ to coincide for distinct hypersurfaces of

simultaneity s and s0; even if the two hypersurfaces intersect at xi:

13 In light of the restrictions placed by quantum field theory on localization, this representation can only

be regarded as an approximation to the real state.
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Suppose that, in Example 2, box 2 had been opened first, and the particle had been
detected there. This transition would be modelled by the collapse evolution operator

EðtÞ ¼ I1#E2ðtÞ#I3; ð65Þ

where

E2ðtÞ ¼
I2 before box 2 is opened:

Pj1S2 after box 2 is opened:

(
ð66Þ

Suppose the initial state at t ¼ 0 (that is, on the hyperplane t ¼ 0) is given by

jcð0ÞS ¼ cðt¼0Þðx1Þj100Sþ cðt¼0Þðx2Þj010Sþ cðt¼0Þðx3Þj001S: ð67Þ

After the box opening, this becomes

ðI1#Pj1S2#I3Þjcð0ÞS

¼ ðI1#Pj1S2#I3Þðcðt¼0Þðx1Þj100Sþ cðt¼0Þðx2Þj010Sþ cðt¼0Þðx3Þj001SÞ;

¼ cðt¼0Þðx2Þj010S: ð68Þ

And so, on a hyperplane after the opening, say, t ¼ 1; we have

cðt¼1Þðx1Þ ¼ 0;

cðt¼1Þðx2Þ ¼ cðt¼0Þðx2Þ;

cðt¼1Þðx3Þ ¼ 0: ð69Þ

We have the seemingly paradoxical fact that the local act of opening box 2
instantaneously reduces cðx1Þ and cðx3Þ to zero. Yet the air of paradox disappears
when we recall that these are not locally defined quantities but coefficients of
expansion of the state along a specified hyperplane in terms of globally defined states
on that hyperplane. Insofar as there is a wave function at all, whose square gives a
probability density for the location of a single particle (and this must, in a relativistic
context, be regarded merely as an approximation), it is a foliation-relative object: not
a function mapping spacetime points onto numbers but a functional taking both a
spacelike hypersurface and a point on that hypersurface as arguments (Tomonaga,
1946; Schwinger, 1948). There is no contradiction, therefore, in the claim that the
collapse of the wave function is simultaneous with respect to every reference frame
and, in general, with respect to any foliation of spacetime into hypersurfaces of
simultaneity.

7. A final comment on relativistic collapse models

Beginning with the work of Ghirardi, Rimini, and Weber (1986), a number of
models for collapse dynamics have been proposed. One of the most attractive of
these is Philip Pearle’s (1997) continuous spontaneous localization model (CSL).
Pearle (1999a, b) has also done work on extending CSL to relativistic quantum
theories. There are difficulties associated with such an extension, but these have to do
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with vacuum divergences; there is a tendency for the model to produce an infinite
number of particles per unit time from the vacuum. This issue seems closely related
to the divergences that crop up in quantum field theory without collapse, and is not
obviously related to the arguments considered in this paper. Thus, while we do not
currently have a clearly unproblematic relativistic collapse model, neither do we have
strong reason to believe that no such model can be constructed.
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