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1. Introduction

Recently the idea of Penrose that “Any space-time has a plane wave a limit” [1] has

undergone a period of a “Renaissance”. In Penrose’s own words, this limit is the adaptation

to pseudo riemannian manifolds of the well-understood procedure of taking tangent space

limit. The main difference being that whether Tp in essentially flat, the Penrose limit

applied to a null geodesic results in curved space — a plane wave. The idea has been

extended, generalized and applied to the study of string theories on the corresponding

backgrounds. In particular several papers have been devoted to a detailed analysis of the

application of the limit to supergravity backgrounds [2, 3, 4], and to explicitly solving

the superstring theory defined on the ppw background [5] as well as understanding the

relation between the string spectrum and massless supergravity modes [6]. In [7] the string

spectrum of a pp-wave background was shown to arise from the large-N limit (large g2YMN ,

fixed g2YMN/J
2) of N = 4 SYM theory in 4d. This was accomplished by summing a subset
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of planar diagrams. The work of Berenstein, Maldacena and Nastase is a very interesting

extension of the original AdS/CFT correspondence [8] in that it considers massive string

modes.

The goal of this paper is two folded: to apply the Penrose limit to other conformal

and non conformal backgrounds and to examine the question of whether the procedure

introduced in [7] can be used to identify a string spectrum in certain classes of operators

of gauge theories which have N = 1 supersymmetry and are non-conformal theories. We

construct various limits of the AdS5 × T 1,1 background. For one particular choice of a

geodesic line the resulting Penrose-Güven limit coincides with the similar limit for AdS5×
S5. Another limit associated with a different geodesic yields a string theory resembling a

particle in a magnetic field. We then analyze the limits of backgrounds that are not dual

to conformal field theories: The Schwarzschild black hole in AdS5, D3-branes on the small

resolution of the conifold and the Klebanov-Tseytlin background.

We find that in all these cases there exist a limit which results in a string theory

described by a worldsheet action that includes a mass term that depends on the worldsheet

time. We make the first steps toward the identification of the field theory operators that

correspond to the low lying string states.

While this paper was being prepared for publication two manuscripts [9] and [10] that

discuss similar questions appeared on the net. These papers overlap with our discussions

of the limits in the T 1,1 and T p,q models as well as the identification of the string spectrum

in the field theory picture.

The paper is organized as follows. In section 2 various Penrose limits of conformal

backgrounds are taken. In particular in the context of AdS5×T 1,1 we identify a limit which

reproduce the exact geometry found in [7] for the AdS5 × S5 case and describe another

limit which leads to a string background resembling a particle in a magnetic field. We then

discuss the general T p,q background. Section 2 is devoted to the analysis of several non

conformal cases. These include the AdS black hole, the small resolution of the conifold [11]

and the Klebanov Tseytlin model [12]. We then comment on the general structure of the

Penrose limit of the non-conformal backgrounds. In the appendix we discuss the local

nature of the limit we take in the context of conformal backgrounds.

2. Penrose limits in conformal backgrounds

The analysis of [7] is completely symmetric with respect to the choice of the U(1) coordinate

inside S5 or equivalently the U(1) subgroup of SU(4) R-symmetry. In the case of AdS5×T 1,1

there is a clear difference between the three possible U(1) coordinates; only one correspond

to the U(1) R-symmetry. To clarify this difference we next study various possibilities.

2.1 PP wave limit on AdS5 × T 1,1

We consider various Penrose limits in the geometry of AdS5 × T 1,1

R−2ds2 = −dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2
3 +

1

9
[dψ + cos θ1dφ1 + cos θ2dφ2]

2 +

+
1

6

[

dθ21 + sin2 θ21φ
2
1 + dθ22 + sin2 θ2dφ

2
2

]

. (2.1)

– 2 –



J
H
E
P
0
5
(
2
0
0
2
)
0
1
0

In analogy with [7] we concentrate on the motion of a particle that moves along a direction

given by ψ + φ1 + φ2 in a geodesic defined in a small neighborhood of ρ = 0 and θi = 0.

Technically this amounts to changing the metric to new coordinates

x̃+ =
1

2

[

t+
1

3
(ψ + φ1 + φ2)

]

,

x̃− =
1

2

[

t− 1

3
(ψ + φ1 + φ2)

]

,

Φ1 = φ1 −
1

2

[

t+
1

3
(ψ + φ1 + φ2)

]

,

Φ2 = φ2 −
1

2

[

t+
1

3
(ψ + φ1 + φ2)

]

, (2.2)

and subsequently we take the R→∞ limit with

x+ = x̃+ , x− = R2x̃− , ρ =
r

R
, θi =

√
6
ri
R
. (2.3)

In this limit the metric becomes

ds2 = −4dx+dx− − µ2(r2 + r21 + r22)(dx
+)2 +

+ dr2 + r2dΩ2
3 + dr21 + r21dΦ

2
1 + dr22 + r22dΦ

2
2 , (2.4)

where we have introduced the mass parameter µ as a rescaling x+ → µx+ and x− → x−/µ.

Since each pair (ri,Φi) parametrizes an R2 we end up with a result exactly matching that

of [7], that is, a background of the form

ds2 = −4dx+dx− − µ2~z 2(dx+)2 + d~z 2 ,

F+1234 = F+5678 ∼ µ . (2.5)

This background has been studied as an exactly solvable string theory in Ramond-Ramond

background [5, 6].

2.2 Other limits of AdS5 × T 1,1, a magnetic case

The combination of variables that we took in the previous subsection was rather particular

and was dictated by field theory considerations which we will discuss in more detail in

section 4. It is also natural, from the geometrical point of view to consider other limits. In

particular it is natural to consider a limit of particles moving along the ψ or φi directions.

We will see that they look rather different. Introducing in (2.1) the following change of

variable

x̃+ =
1

2

(

t+
1

3
ψ

)

, x̃− =
1

2

(

t− 1

3
ψ

)

(2.6)

and further taking the limit

x+ = x̃+ , x− = R2x̃− , ρ =
r

R
,

θi =
π

2
+
√
6
yi
R
, φi =

√
6
xi
R
. (2.7)
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we obtain the following metric resembling the motion of a particle in a magnetic field.

ds2 = −4dx+(dx− + µy1dx1 + µy2dx2)− µ2~r 2(dx+)2 + d~r 2 + d~y2 + d~x2 ,

F5 = F5 + ∗F5 , F5 ∼ µdx+ ∧ dy1 ∧ dx1 ∧ dy2 ∧ dx2 , (2.8)

where ~y = (y1, y2) and ~x = (x1, x2). This background can be transformed into (2.5) by

means of an appropriate coordinate transformation. However, from the field theory point

of view (see discussion in subsection 4.4) these two limits seem to be distinct.

The gauge fixed light-cone bosonic string action in this case is

S =
1

2πα′

∫

d2σ

[

1

2
∂α~r∂

α~r +
1

2
∂α~y∂

α~y +
1

2
∂α~x∂

α~x− 1

2
µ2~r2 + 2µ~y · ∂τ~x

]

, (2.9)

which is exactly solvable.

Finally we consider motion along the φ1, as before we introduce

x̃+ =
1

2

(

t+
1√
6
φ1

)

, x̃− =
1

2

(

t− 1√
6
φ1

)

(2.10)

and further taking the limit

x+ = x̃+ , x− = R2x̃− , ρ =
r

R
,

θ1 =
π

2
+
√
6
y1
R
, θ2 =

π

2
+
√
6
y2
R
, φ2 =

√
6
x2
R
, ψ = 3

z

R
. (2.11)

we obtain the following metric resembling the motion of a particle in a magnetic field.

ds2 = −4dx+(dx− + µy1dz)− µ2(~r 2 + 2y21)(dx
+)2 + d~r 2 + d~y2 + dx22 + dz2,

F5 = F5 + ∗F5 , F5 ∼ µdx+ ∧ dz ∧ dy1 ∧ dy2 ∧ dx2 , (2.12)

where ~y = (y1, y2).

2.3 PP wave limit on AdS5 × T p,q

In this section we discuss the analogous problem for the motion of a particle in T p,q space.

We thus consider a solution to the IIB equations of motion given by AdS5×T p,q where the
metric on T p,q is given by

ds2T p,q = λ21(dθ
2
1 + sin2 θ1dφ

2
1) + λ22(dθ

2
2 + sin2 θ2dφ

2
2) +

+λ2(dψ + p cos θ1dφ1 + q cos θ2dφ2)
2 . (2.13)

This space is Einstein provided:

1

λ21

[

1− λ2p2

2λ21

]

=
1

λ22

[

1− λ2q2

2λ22

]

=
λ2

2

[

p2

λ41
+
q2

λ42

]

(2.14)

In this sense the metric considered in the previous section is a particular case of this more
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general space corresponding to p = q = 1, λ21 = λ22 = 1/6 and λ2 = 1/9. The element of

this class of spaces that have attracted the most attention is precisely T 1,1 since it is the

only that provides a supersymmetric solution of IIB [13].

Next we perform the following coordinate transformation

x̃+ =
1

2
[t+Λλ(ψ + φ1 + φ2)] ,

x̃− =
1

2

[

t− Λλ
1

3
(ψ + φ1 + φ2)

]

,

Φ1 = φ1 −
λp

4Λλ21
[t+Λλ(ψ + φ1 + φ2)] ,

Φ2 = φ2 −
λq

4Λλ22
[t+Λλ(ψ + φ1 + φ2)] . (2.15)

Here we have introduced a constant Λ which is used to matched the radii of AdS5 and T
p,q.

Taking the large R limit in the form

x+ = x̃+, x− = R2x̃−, ρ =
r

R
, θi =

ri
ΛλiR

. (2.16)

we obtain

ds2 = −4dx+dx− − µ2
(

r2 +
λ2p2

4Λ2λ41
r21 +

λ2q2

4Λ2λ42
r22

)

(dx+)2 +

+ dr2 + r2dΩ2
3 + dr21 + r21dφ

2
1 + dr22 + r22dφ

2
2 . (2.17)

Note that each pair (ri, φi) parametrizes an R2. At the string theory level we can identify,

in principle, three different masses for the eight transverse coordinates. Although here

we are considering a conformal background, this splitting is characteristic in nonconfor-

mal situations, where different coordinates get different masses due to the introduction of

nonconformality.

3. Nonconformal cases

One of the most striking features of the AdS/CFT is that it allows to go beyond its original

statement about the duality between IIB string theory in AdS5 × S5 and N = 4 large N

super Yang-Mills. From phenomenological perspective backgrounds that are not conformal

invariant play a very important role. In this section we consider the Penrose limit of three

different types of nonconformal backgrounds. Namely, we consider the Schwarzschild black

hole in AdS5 complemented by S5 and a nontrivial 5-form; in this case the scale in the

problem is provided by the mass of the Schwarzschild black hole. We also consider the

Maldacena limit of D3-branes placed at the origin of the small resolution of the conifold,

which is a natural deformation of the AdS5 × T 1,1 solution considered before. Finally

in this section we consider the simplest of the theories with varying 5-form flux — the

Klebanov-Tseytlin solution [12]. As oppose to the conformal cases discussed before non of

this deformation allows for exact solvability at the string theory level due to an explicit

dependence on the metric on the x+ coordinate. However, it is possible to extract some

information about the field theory side.
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3.1 Penrose limit of the Schwarzschild black hole in AdS

In this section we consider the Penrose limit for the Schwarzschild black hole in AdS. This

deformation of the AdS/CFT, when analytically continued to euclidean time is related to

a nonzero temperature deformation in the field theory side. However, here we consider

strictly the lorentzian signature since it is a requirement in the implementation of the

Penrose limit [1]. The metric we consider in this subsection is1

R−2ds2 = −r2
(

1− r40
r4

)

dt2 +
dr2

r2(1− r40/r4)
+ r2dΩ2

3 + dψ2 + sin2 ψdΩ2
4 . (3.1)

Before applying to Penrose limit we bring the metric into a convenient form following [1], [3].

We study the null geodesic determined by the following effective lagrangian

L = −r2
(

1− r40
r4

)

ṫ2 + ψ̇2 +
ṙ2

r2(1− r40/r4)
, (3.2)

where dot represents derivative respect to the affine parameter. Since the effective la-

grangian does not depend explicitly on the coordinates t and ψ we have two integrals of

motion:

ψ̇ = µ , ṫ =
E

r2(1− r40/r4)
. (3.3)

For null geodesics L = 0 we obtain an equation for r

ṙ2 + µ2r2
(

1− r40
r4

)

= E2 . (3.4)

We choose the affine parameter u as part of a new coordinate system (u, v, φ) in which we

can enforce guu = guφ = 0 and guv = 1. In these coordinates the metric takes the form

R−2ds2 = 2dudv + 2µ2r2
(

1− r40
r4

)

dvdφ− r2
(

1− r40
r4

)

dv2 +

[

1−
(

1− r40
r4

)]

dφ2 +

+ r2dΩ2
3 + sin2(φ+ µu)dΩ2

4 , (3.5)

with

dr

du
=

√

1− µ2r2
(

1− r40
r4

)

. (3.6)

We now perform the Penrose limit by sending R→∞ with

u→ u , v → v

R2
, Y i → yi

R
, (3.7)

where Y i represent a subset of the rest of the coordinates. We find the Penrose limit for

the Schwarzschild black hole in AdS to be

ds2 = 2dudv + (1− µ2ρ2(u))dφ2 + r2(u)ds2(R3) + sin2(µu)ds2(R4) , (3.8)

1For simplicity we consider a particular limit of the Schwarzschild-AdS in global coordinates. The

result, however, does not depend on taking this limit. Moreover the result coincides with the Penrose limit

of nonextremal D3-branes.
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where

ρ2 = r2
(

1− r40
r4

)

. (3.9)

As noted in [3] for (r0 = 0) the Penrose limit is flat space if µ ≡ 0; for r0 = 0 we recover

the result corresponding to the Penrose limit in AdS5 × S5. The above result is presented

in Rosen coordinates we can transform the metric into the usual Brinkman coordinates in

which case we obtain:

ds2 = −4dx+dx− − µ2
[(

1− 3r40
r4

)

φ2 +

(

1− r40
r4

)

z23 + z24

]

(dx+)2 + dφ2 + dz23 + dz24 ,

(3.10)

where z3 parametrizes R3 and z4 parametrizes R4. In this coordinate system

x+ =
1

2µ
arctan

[

2µ2r2 − 1

2µ
√

r2 − µ2r4 + µ2r40

]

. (3.11)

Note that the coordinates parametrizing R4 originate from the S5 and are not affected by

the nonconformality introduced by the Schwarzschild-AdS black hole. The masses of the

bosons that have been affected are to those directions lying within AdS.

3.2 The small resolution of the conifold

In this subsection we consider a very different type of nonconformality from the previous

section. Namely, we consider the Maldacena limit of regular D3-branes on the small reso-

lution of the conifold. A natural scale is introduced in the problem by the radius (minimal

volume) of the nonvanishing S2. The field theory interpretation of this solution was dis-

cussed by Klebanov and Witten in [14], the supergravity construction was presented in [11].

The near horizon limit is of the standard D3-brane form

ds2 = h−1/2ηµνdx
µdxν + h1/2ds26 , (3.12)

where ds26 is the metric of the small resolution of the conifold

ds26 = κ−1dr2 +
1

9
κr2e2ψ +

1

6
r2

(

e2θ1 + e2φ1

)

+
1

6
(r2 + 6a2)

(

e2θ2 + e2φ2

)

,

κ ≡ r2 + 9a2

r2 + 6a2
, eθi

= dθi , eφi
= sin θidφi . (3.13)

As usual the warp factor is a harmonic function on the transverse 6-d space:

h =
R4

9a2r2

[

1− r2

9a2
ln

(

1 +
9a2

r2

)]

. (3.14)

Proceeding as in the previous cases, we study the geodesic line along (r, t, ψ) in order to

find a natural transformation into coordinates (u, v, x) convenient to perform the Penrose

limit. Namely, we consider the null geodesic described by

L = − 3ar
√

1− r2

9a2 ln(1 +
9a2

r2 )
ṫ2 +

√

1− r2

9a2
ln(1 + 9a2

r2
)

3ar
κ−1ṙ2 +

√

1− r2

9a2
ln(1 + 9a2

r2
)

3a
κrψ̇2 .

(3.15)
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The equations following from this lagrangian are:

ṫ =

√

1− r2

9a2
ln(1 + 9a2

r2
)

3ar
,

ψ̇ =
3aµ

κ r
√

1− r2

9a2
ln(1 + 9a2

r2
)
,

ṙ2 =
r2 + 9a2

r2 + 6a2
− 9a2µ2

1− r2

9a2 ln(1 +
9a2

r2 )
. (3.16)

We take the Penrose-Güven limit as

u = u , v → v

R2
, x→ x

R
, θi =

√
6
ri
R
, (3.17)

resulting in

ds2 = 2dudv +
κΛ

3a

[

1− 9a2µ2

κΛ2

]

dx2 +
Λr

3a
ds2(R2

1) +
Λr

3a

(

1 +
6a2

r2

)

ds2(R2
2) ,

Λ =

√

1− r2

9a2
ln

(

1 +
9a2

r2

)

, (3.18)

where R2
i represents the R2 parametrize by (ri, φi). This metric can be brought to

Brinkman coordinates following the prescription of [3]. As in the previous case this metric

smoothly goes to the maximally supersymmetric pp-wave as the conformality parameter

goes to zero (a→ 0).

3.3 The Klebanov-Tseytlin solution

The Klebanov-Tseytlin solution describes the geometry of a collection of regular and frac-

tional branes on the conifold [12]. It contains a naked singularity in the IR where it must be

replaced by the Klebanov-Strassler solution corresponding to the replacement of the coni-

fold by the deformed conifold [15]. Although not completely accurate, the KT geometry

provides a simple description of the supergravity dual of the breaking of conformal invari-

ance in the field theory by the introduction of fractional branes, it is also computationally a

lot more manageable than the corresponding background for the deformed conifold metric.

We thus proceed, with caution, to study the Penrose limit in the KT solution.

In this section we will use the Poincaré coordinates of AdS that are naturally related

to the standard D3-brane solution. This approach in principle obscures the relation of the

time coordinate to the global time coordinate that we used in the previous sections and

that was used in [7]. However, as was explicitly shown in [3], the end result is the same

limit and this completely shows the equivalence of both routes. The metric of the KT

solution is

ds2 = h−1/2ηµνdx
µdxν + h1/2[dr2 + r2ds2T 1,1 ],

h =
R4

r4

(

1 + P ln
( r

r0

)

)

. (3.19)
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For the precise normalizations we refer the reader to [16]. For us it will be important the P

is proportional to the number of fractional D3-branes and that it is natural to consider it

small with respect to the number of regular D3-branes which is proportional to R4. After

a rescaling of the radial coordinate, and similarly r0, we bring the metric to the form

R−2ds2 =
r2ηµνdx

µdxν
√

1 + P ln(r/r0)
+ r−2

√

1 + P ln
( r

r0

)

dr2 +

√

1 + P ln
( r

r0

)

ds2T 1,1 . (3.20)

As in the case of AdS5×T 1,1 we concentrate on motion along a geodesic given by ψ+φ1+φ2
in a small neighborhood of θi = 0. The effective lagrangian from which the geodesic

equation follows is

L = − r2ṫ2
√

1 + P ln( rr0 )
+ r−2

√

1 + P ln
( r

r0

)

ṙ2 +

√

1 + P ln
( r

r0

)

ψ̇2 , (3.21)

where dot represents derivative with respect to the affine parameter u. Since the lagrangian

does not explicitly depend on t and ψ we have two integral of motion:

ṫ =
E

r2

√

1 + P ln
( r

r0

)

, ψ̇ =
µ

√

1 + P ln(r/r0)
. (3.22)

From these two relations we find that

ṙ2 +
µ2r2

1 + P ln(r/r0)
= E2 . (3.23)

Our aim is, following [1, 2, 3], to find new coordinates (u, v, x) satisfying guu = 0, guv = 1

and gux = 0, in which the Penrose-Güven limit is naturally taken. A simple solution

satisfying this transformation was given in [3] and can be naturally extended to the case

under consideration

∂u = ṙ∂r + ṫ∂t + ψ̇∂ψ , ∂v = −
1

E
∂t, ∂x = µ∂t +E∂ψ . (3.24)

From now on we set E = 1, as in the previous cases. This system can be integrated. After

taking the Penrose limit following

u→ u , v → v

R2
, θi =

√
6
ri
R
, x→ x

R
, (3.25)

we obtain the following metric

ds2 = 2dudv +
r2

√

1 + P ln(r/r0)
dx23 +

√

1 + P ln
( r

r0

)

[

1− µ2r2

1 + P ln(r/r0)

]

dx2 + (3.26)

+

√

1 + P ln
( r

r0

)

[

dr21 + r21dφ
2
1 + dr22 + r22dφ

2
2

]

− µ2
√

1 + P ln(r/r0)
(r21 + r22)du

2 ,

where r and u are related according to

u =

∫

dr
√

1− µ2r2

(1+P ln(r/r0))

. (3.27)
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Note that in the particular case of P = 0 we find that the above expression can be explicitly

integrated (r = µ−1 sinµu) giving the pp-wave in Rosen coordinates [3]. One of the most

interesting characteristics of the KT-type backgrounds is the dependence on the 5-form on

the radius, associated with the RG-cascade. In the present context this feature remains

F5 = F5 + ∗F5, F5 ≈
(

1 + P ln
( r

r0

)

)

ψ̇du ∧ dr1 ∧ r1dφ1 ∧ dr2 ∧ r2dφ2 . (3.28)

Similarly some of the components of the 3-form fields survive the Penrose-Güven limit

B2 ∼ P ln
( r

r0

)

(dr1 ∧ r1dφ1 − dr2 ∧ r2dφ2) ,

F3 ∼ P ψ̇du ∧ (dr1 ∧ r1dφ1 − dr2 ∧ r2dφ2) (3.29)

3.4 Comments on the general structure of the Penrose limit in nonconformal

backgrounds

We have seen that in all the three examples that we discussed the nonconformality pa-

rameters appear naturally as a perturbation of the metric away from the exactly solvable

pp-wave limit discussed in [5, 6]

ds2 = −4dx+dx− + d~z2 − µ2
[

∑

i

(

1 + εfi(x
+)
)

z2i

]

(dx+)2 , (3.30)

where ε is the nonconformality parameter. The collection of functions fi(x
+) characterize

the form of the “mass” deformation for the coordinate zi; in the case of the Schwarzschild

black hole we note that fi = 0 for the directions within the S5, as expected. From the

string theory point of view we have that since the equation of motion for x− implies that

¤x+ = 0 we can fix the world sheet diffeomorphism invariance by choosing the light cone

x+ = p+τ . The resulting gauge fixed string theory action will then be interpreted as a

theory of eight massive fields with time-dependent mass.

An interesting observation is that the fields zi can not appear to order higher than

two, that is to say, the action is always quadratic in the field zi. This can be seen by

recalling that in the Penrose-Güven limit one rescales zi → zi/R and then multiplies the

metric by R2.

The near horizon limit of nonconformal Dp-branes has been discussed in [17], their

Penrose-Güven limit has been presented in [3]. It is interesting to note that they also fall

into the general form discussed here, in the sense that they have and x+-dependent mass

function.

4. N = 1 Super Conformal Field Theory interpretation

In this section we attempt to find a field theory interpretation to the limits taken in section 1

for the conifold geometry of AdS5 × T 1,1. We follow closely the procedure used in [7], in

the Penrose limit of section 2.1, namely, we first identify the field theory operators that

correspond to the ground state with large p+ and to the first excited level. We then make
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some preliminary observations about the possibility to have a perturbative expansion that

will reproduce the string hamiltonian. We end by discussing the operator identifications of

the magnetic cases of section 2.2. It is crucial for us to relate isometries of the T 1,1 space

with charges of the operators of the CFT. To make that connection completely transparent

we start with reviewing the construction of the conifold metric following Candelas and De

la Ossa [18] and some facts about the superconformal field theory discussed by Klebanov

and Witten [19] (we will also rely on the analysis of [21]).

4.1 Review of the the conifold and the superconfomal theory of D3-branes at

the conifold singularity

The conifold is defined by the following quadric in C4:

4
∑

i=1

w2
i = 0 . (4.1)

This equation can be written as

detW = 0 , i.e. Z1Z2 − Z3Z4 = 0 , (4.2)

W =
1√
2

(

w3 + iw4 w1 − iw2

w1 + iw2 −w3 + iw4

)

≡
(

Z1 Z3

Z4 Z2

)

. (4.3)

Equation (4.1) has an SO(4) symmetry that is usually treated as an SU(2)×SU(2). There

is also a U(1) symmetry given by

wi → eiαwi . (4.4)

This last symmetry was identified with the U(1)R in the gauge theory side based on the

fact that the holomorphic 3-form can be written as

Ω =
dw1 ∧ dw2 ∧ dw3

w4
, (4.5)

and therefore has charge two under this U(1) symmetry. Moreover, since the chiral super-

space coordinate transform as Ω1/2 we obtain that it naturally has charge one.

To write an explicit metric on the conifold we need to find a general solution to eq. (4.3)

and assume that the Kähler potential depends only on the radial coordinate which is

defined as: r2 = tr(W†W). The most general solution can be found by acting on a

particular solution with elements of SU(2)×SU(2). Namely, given a particular solution Z0

we construct W as

W
r

= LZ0R
† =

(

a −b̄
b ā

)(

0 1

0 0

)(

k̄ l̄

−l k

)

(4.6)

where |a|2+ |b|2 = |a|2+ |b|2 = 1 and they can be parametrize as a = cos θ12 exp i
2(ψ1+φ1),

b = sin θ1
2 exp i

2 (ψ1 − φ1) and similarly for k and l. With this choice of parametrization of

SU(2) we find

Z1 = −r cos θ1
2
sin

θ2
2
exp

i

2
(ψ + φ1 − φ2) ,
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Z2 = r sin
θ1
2
cos

θ2
2
exp

i

2
(ψ − φ1 + φ2) ,

Z3 = r cos
θ1
2
cos

θ2
2
exp

i

2
(ψ + φ1 + φ2) ,

Z4 = −r sin θ1
2
sin

θ2
2
exp

i

2
(ψ − φ1 − φ2) , (4.7)

where ψ = ψ1 +ψ2. Looking at equation (4.3) we see that the Z ′s are linear combinations

of the w′s and thus in order for the latter to have R-charge one we must identify that

symmetry with shifts of ψ = 2β, precisely as in [20].

4.2 Identification of lowest “string modes” of the KW model

The lowest components of the chiral superfields of the KW model are related to the conifold

parameters in the following way [19]

Z1 = A+B+ , Z2 = A−B− , Z3 = A+B− , Z4 = A−B+ . (4.8)

where (A−, A+) and (B−, B+) are doublets of SU(2)A and SU(2)B global symmetries re-

spectively and carry a U(1)R charge of 1/2. The question now is how to characterize these

fields in the sector that corresponds to the Penrose limit. In [7] the light-cone hamiltonian

was taken to be 2P− = ∆ − J where J is the generator of rotations in the ψ direction,

J = −i∂ψ. Following (2.1) and the discussion above about the identification of ψ = 2β, it

is natural to identify J for the T 1,1 case as follows

J = −i[1/2∂β + ∂φ1
+ ∂φ2

] . (4.9)

In table 1 we classify the fields of the KW theory by respect to their gauge transforma-

tions, their U(1)A × U(1)B × U(1)R charges, where U(1)A and U(1)B associate with the

T3 generators of SU(2)A and SU(2)B respectively, their J = 1/2U(1)R + U(1)A + U(1)B
charges and their conformal dimension. In addition table 1 contain composite operators

that carry ∆− J = 0, 1.

From table 1 it is clear that in a similar manner to the N = 4 case [7], the natural

candidate in the KW model for the operator that corresponds to the light-cone ground

state is
1√

JNJ/2
Tr[(A+B+)

J ] . (4.10)

The bosonic operators associated with ∆ − J = 1 are the DiZ and φ1 and φ2 defined

in table 1. The missing 2 bosonic operators may be associated with non chiral operators

composed from complex conjugates of the basic bosonic fields as was pointed out in [22].2

As for the fermionic operators at “level”one we have the operators defined in table 1 as

ψ1 and ψ2 and in addition there are the gauginos and the missing operators may be again

associated with certain non chiral operators.

2We thank O. Aharony for pointing this out to us.
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SUL(N) SUR(N) UA(1) UB(1) UR(1) J ∆ ∆− J
(A+, ψ

A
+) N N̄ 1/2 0 (1/2,−1/2) (3/4, 1/4) (3/4, 5/4) (0, 1)

(A−ψ
A
−) N N̄ −1/2 0 (1/2,−1/2) (−1/4,−3/4) (3/4, 5/4) (1, 2)

(B+ψ
B
+) N̄ N 0 1/2 (1/2,−1/2) (3/4, 1/4) (3/4, 5/4) (0, 1)

(B−ψ
B
−) N̄ N 0 −1/2 (1/2,−1/2) (−1/4 − 3/4) (3/4, 5/4) (1, 2)

λL adj 1 0 0 1 1/2 3/2 1

λR 1 adj 0 0 1 1/2 3/2 1

Z ≡ A+B+ adj ⊕ 1 adj ⊕ 1 1/2 1/2 1 3/2 3/2 0

φ1 ≡ A+B− adj ⊕ 1 adj ⊕ 1 1/2 −1/2 1 1/2 3/2 1

φ2 ≡ A−B+ adj ⊕ 1 adj ⊕ 1 −1/2 +1/2 1 1/2 3/2 1

ψ1 ≡ A+ψ
B
+ adj ⊕ 1 adj ⊕ 1 1/2 −1/2 0 1 2 1

ψ2 ≡ B+ψ
A
+ adj ⊕ 1 adj ⊕ 1 −1/2 +1/2 0 1 2 1

Table 1: SU(N)L × SU(N)R transformation properties, global charges and dimensions of chiral

fields and gauginos.

4.3 On the “strings” of the KW model

Since the Penrose limit of the AdS5 × T 1,1 is identical to that of the AdS5 × S5, it is clear

that the bosonic part of the light-cone string action associated with the former limit takes

the form [7]

S =
1

2πα′

∫

d2σ

[

1

2
∂α~z∂

α~z − µ2~z2
]

. (4.11)

The question now is whether one can show that the KW field theory in the Penrose

limit admits a string bit picture which is governed by a discretized hamiltonian that flows

in the continuum limit to the hamiltonian associated with (4.11). The Penrose limit now

associates with

g2sN →∞ g2sN

J2
fixed ∆− J fixed , (4.12)

Note that it is gs and not g2YM which is involved in the limit since the later becomes large at

the IR fixed point. gs maps in the field theory language, in a manner that is not completely

understood to λ the coupling of the superpotential which is given by

W =
λ

2
εijεkl Tr[AiBkAjBl] (4.13)

with i = +,−. The corresponding scalar potential takes the form

V = Grs̄∂rW∂s̄W̄ = Tr[GA
†
+A+(B+A−B−)(B

†
+A
†
−B
†
−)] + · · · (4.14)

where the · · · corresponds the other terms in Grs̄. The Kähler metric [19] which takes

the form
∑

i(w̄iwi)
−1/3dwidw̄j can be rewritten in terms of the Ai and Bi fields, inverted

and inserted in the expression for the potential. The potential then will have terms like

(A†+A+)
2/3(B†+B+)

−1/3|A−B−A+|2 of total dimension four.

A key issue is obviously whether one can find a perturbative expansion of this inter-

action potential. It is hard to believe that such a perturbation is possible especially since
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the theory is at strong gauge coupling. On the other hand as stayed above the final answer

should converge to a free light-cone “massive” string. The resolution of the puzzle how such

a complicated potential can lead to the same continuum result as for the AdS5 × S5 may

involve some non-trivial map that will transform the interaction potential into Tr[Ẑφ̂
¯̂
Z
¯̂
φ]

where Ẑ and φ̂ are dimension one operators of ∆− J equal to 0 and 1 respectively, like for

instance Ẑ = Z2/3, φ̂ = φ/Z1/3. This type of construction is under current investigation.

4.4 String modes in the magnetic limit

In spite of the fact that the Penrose limits of (2.1) and (2.2) are related by coordinate

transformation we will argue that the corresponding light-cone hamiltonians are different

and therefore determine different projections in the space of operators. In analogy to using

Hlc = 2P− = ∆− [(1/2)U(1)R+U(1)A+U(1)B ] for the Penrose limit of section we identify

J = αUR(1), where α is some numerical constant for the limit where x̃+ = 1
2(t+

1
3ψ). It

is thus clear that all the Ai and Bi will have the same eigenvalue of 2P−. In particular

for α = 3/2 we have that ∆ − J = 0 for all the scalar fields and the gauginos. In this

case the vacuum state will be highly degenerate since there will be many operators that

are analogous to Tr[ZJ ]. This high degeneracy may be related to the degeneracy of the

Landau levels. The fermions ψA± and ψB± have ∆− J = 2

For the case that φi is replacing ψ in the definition of x+ then naturally J = αU(1)A.

In this case there is less degeneracy since J is distinguish between A+ and A− but since

the Bi carry zero J charge there is still some degeneracy. For instance for α = 3 both

Tr[A+B+] and Tr[A+B−] correspond to the string ground state.

A similar situation is also encountered in AdS5×S5. Using different linear combinations

of the U(1)’s, implies using different J ’s and therefore different light-cone hamiltonians H lc.

In particular, it is possible to get the magnetic case by taking the sum of the three U(1)’s

inside SU(4).
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A. Local versus global existence of geodesic congruence

In this appendix we explain the intrinsically local character of some of the limits taken in

the main body of the test. Consider the construction of null geodesic in the plane given by

(t, ρ, ψ) in any of the geometries discussed previously of for that matter even in AdS5×S5

we concentrate on the part of the metric having the following form:

ds2 = −dt2 cosh2 ρ+ dρ2 + dψ2 . (A.1)
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The equation of the geodesic in this coordinates follows from the lagrangian

L = −ṫ2 cosh2 ρ2 + ρ̇2 + ψ̇2 , (A.2)

where the dot means derivatives with respect to the affine parameter u. Since there is not

explicit dependence on ψ or t we have two integral of motion:

ψ̇ = µ , ṫ =
E

cosh2 ρ
. (A.3)

substituting in the condition of null geodesic L = 0 we get

ρ̇2 + µ2 =
E2

cosh2 ρ
. (A.4)

This equation shows the local character of such geodesic. Namely, in a neighborhood of

ρ = 0 there is always a solution to this equation with nonzero µ and therefore including

ψ. However if we allow ρ to be very large we find that the above equation can always be

falsified unless we take µ ≡ 0 in which case the solution is

µ ≡ 0 , sinhρ = Eu , t = arctanEu− v

E
. (A.5)

which shows that away from a neighborhood of ρ = 0 the geodesic line is completely

independent of ψ and lies wholly within AdS5. Further, is was shown in [3], explicitly and

using the hereditary properties of Penrose limits, that the Penrose limit on AdS always

results in flat space. The key point exploited in the body of the paper is that we can set

the size of the small neighborhood of ρ = 0 by rescaling by R and up to fourth order in

1/R there is a null geodesic nontrivially including a dependence on ψ, which is precisely

the one used in the body of the paper.
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