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Normative data for neuropsychological tests are often presented in the form of percentiles.

One problem when using percentile norms stems from uncertainty over the definitional

formula for a percentile. (There are three co-existing definitions and these can produce

substantially different results.) A second uncertainty stems from the use of a normative

sample to estimate the standing of a raw score in the normative population. This uncertainty

is unavoidable but its extent can be captured using methods developed in the present paper.

A set of reporting standards for the presentation of percentile norms in neuropsychology is

proposed. An accompanying computer program (available to download) implements these

standards and generates tables of point and interval estimates of percentile ranks for new or

existing normative data.

Keywords: Neuropsychological assessment; Interval estimates; Confidence intervals; Credible intervals;

Test norms; Non-normal data; Percentile ranks; Bayesian methods; Reporting standards; Statistical

reform; Computer scoring.

INTRODUCTION

There are many examples of the use of percentile norms in neuropsychology
(e.g., see Mitrushina, Boone, Razani, & D’Elia, 2005; Strauss, Sherman, & Spreen,
2006). They tend to be used when the distribution of raw scores departs markedly
from a normal distribution, particularly when the range of scores obtained by the
normative sample is limited, or when there is a limited number of test items in the
first place. The norms may consist of full tables that present the percentile rank for
each raw score, or it may be restricted to presenting the raw scores corresponding
to various landmark percentiles (e.g., the raw scores corresponding to the 1st, 5th,
10th, 50th percentile etc.).

It could be argued that even greater use could be made of percentile norms,
as they would often be more appropriate than the common practice of presenting
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normative data in the form of raw score means with accompanying standard
deviations. When using this latter type of normative data, neuropsychologists are
either explicitly or implicitly encouraged to estimate an individual’s standing on the
test by expressing her/his scores as a z score and referring it to a table of areas under
the normal curve. Quite apart from the problems with this approach when the
normative sample is modest in size (Crawford & Garthwaite, 2008; Crawford &
Howell, 1998), it also assumes that the normative data are drawn from a normal
distribution. However, normative data for neuropsychological tests will often reveal
evidence of extreme skew and/or leptokurtosis (Crawford, Garthwaite, Azzalini,
Howell, & Laws, 2006); often this is because the tests are comfortably within the
competence of most healthy participants so that scores at or near ceiling
predominate.

ARE PERCENTILE RANKS THE POOR RELATIONS OF STANDARDIZED
SCORES?

For test scores that are normally distributed (or can be transformed to
normality) many commentators on neuropsychological assessment emphasize
the use of standardized scores (e.g., IQs, Indexes, or T scores, etc.) rather than
percentiles as the preferred means of representing an individual’s performance
(Crawford, 2004; Lezak, Howieson, Loring, Hannay, & Fischer, 2004; Strauss
et al., 2006). Indeed some are distinctly hostile towards the use of percentiles
(Bowman, 2002).

Percentiles, however, have one distinct advantage over any alternative metric:
They tell us directly how common or uncommon a patient’s test score is in the
normative population. In contrast, a standardized score, such as (say) an Index
score of 82, has no intrinsic meaning: It only becomes meaningful when we know
that approximately 12% of the normative population are expected to obtain a lower
score. Thus a standardized score can only be interpreted if a neuropsychologist
has developed an internalized look-up table mapping standardized scores on to
percentile ranks or has consulted an external conversion table (Crawford &
Garthwaite, 2009).

The focus of the present paper is on how to represent performance when test
scores are not normally distributed (and cannot be adequately transformed to
normality) and thus, in such cases, the relative merits of standardized scores and
percentiles is irrelevant: Standardized scores are not an option and so the normative
data need to be presented in the form of the percentile ranks.

SOME PROBLEMATIC PARTICULARS OF PERCENTILES

Most neuropsychologists, even those who would have a preference for
standardized scores (were they an option) acknowledge that a further positive
feature of percentiles is their simplicity: Their meaning is apparently unequivocal.
For example, it is often noted that this simplicity makes them useful for
communicating results to non-psychologists (Lezak et al., 2004). We are broadly
in agreement with this position. However, the devil can be in the detail.
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Although it may not be widely recognized as such, one significant problem
with using percentile norms in neuropsychology is the co-existence of different
definitions of a percentile. The most recent edition of the Standards for Educational
and Psychological Testing offers the following definitions, ‘‘Most commonly the
percentage of scores in a specified distribution that fall below the point at which a
given score lies. Sometimes the percentage is defined to include scores that fall at the
point; sometimes the percentage is defined to include half of the scores at the point’’
(American Educational Research Association, American Psychological Association,
& National Council on Measurement in Education, 1999 p. 179). Hereafter these
three definitions will be referred to as definition A (the percentage of scores that fall
below the score of interest), B (the percentage of scores that fall at or below the
score of interest), and C (the percentage of scores that fall below the score of
interest, where half of those obtaining the score of interest are included in the
percentage).

In some circumstances the differences between the percentile ranks of a score
obtained by applying these three different definitions will be marginal. However,
the differences can be very considerable when there is only a modest number of test
items, or when, despite a large number of items, the scores obtained by the
normative sample are nevertheless concentrated across a narrow range (as will
occur, for example, when many members of the sample score at or near ceiling).
It will be appreciated that these are the very characteristics that lead neuropsychol-
ogists to opt to present normative data in the form of percentiles. Thus, in
neuropsychology, we cannot afford to be casual in our attitude towards which
particular method has been used to calculate percentiles. Furthermore, small
normative sample sizes are still quite common in neuropsychology (Bridges &
Holler, 2007; Crawford & Howell, 1998) and this will often further exacerbate
differences between the percentiles provided by the three methods.

To illustrate the potential magnitude of differences between percentiles
calculated using the three definitions, Table 1 records a hypothetical frequency
distribution of raw scores obtained by a normative sample of 100 persons on a
neuropsychological test consisting of 12 items, together with the percentile ranks of
the raw scores calculated using the three methods. It can be seen that the differences
are substantial: For example, the percentile rank for a raw score of 6 is 2 according
to definition A, but is 6 according to definition B; for a raw score of 8, the
corresponding percentile ranks are 10 and 24.

This problem is really two problems. First, it is unsatisfactory that three
mutually exclusive methods of calculating percentiles are currently in use,
particularly when the differences between them can be marked. This makes working
with percentile norms more complicated than it need be. However, the second
problem is more serious: When percentile norms are presented the method used to
calculate them is often unspecified. That is, the method section of a normative study
may state only that ‘‘the raw scores were expressed as percentiles’’ or something
similar. Even where a definition is provided, there can still be room for ambiguity.
Definition A in the Standards for Educational and Psychological Testing is ‘‘the
percentage of scores in a specified distribution that fall below the point at which a
given score lies’’ (p. 179). This definition is unequivocal in its meaning only because
it is then explicitly contrasted with the alternative definitions. If such a definition
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appeared in isolation in a study presenting percentile norms it would not be clear
whether the percentiles were calculated using definitions A or C (that is, in
calculating the percentage of scores below the point at which a given score lies,
half of those obtaining the integer valued score may have been included).

Therefore it is not just the case that neuropsychologists have to struggle to
recall which definition has been used for a particular set of norms, but they often do
not have access to this information in the first place. In this latter scenario there
is the possibility that some neuropsychologists may define a percentile according
to, say, definition A while being unaware that some of the percentile norms they
use have been generated according to, say, definition B. This will often lead to
erroneous conclusions concerning the standing of a case’s scores as can be seen by
referring back to the examples presented in Table 1.

THE CASE FOR ADOPTING A SINGLE DEFINITION OF PERCENTILES IN
NEUROPSYCHOLOGY

Having seen that the percentile ranks for raw scores can differ substantially
depending on how percentiles are defined, and having discussed the practical
problems that ensue, we suggest that the neuropsychological community should
attempt to settle on a single, agreed, definition of a percentile for neuropsycho-
logical test scores. It could be argued that which of the three definitions should
fulfill this role is of secondary importance compared to the desirability that one
(any one) should prevail over the two others. We would have some sympathy with
this position, nevertheless we strongly advocate the use of definition C. In doing so
we are in august company (e.g., Guilford, 1954; Ley, 1972).

Table 1 Applying three different definitions of a percentile rank to the raw scores

Percentile ranks

Raw score

n

obtaining

Definition A:

m/N

Definition C:

(mþ 0.5k)/N

Definition B:

(mþ k)/N

0 0 51 51 51

1 0 51 51 51

2 0 51 51 51

3 0 51 51 51

4 0 51 51 51

5 2 51 1 2

6 4 2 4 6

7 4 6 8 10

8 14 10 17 24

9 16 24 32 40

10 20 40 50 60

11 30 60 75 90

12 10 90 95 499

Illustration of the effects of applying three different definitions of a percentile rank to the raw scores

from a normative sample of 100 (m¼ number scoring below, k¼ number obtaining given score, and

N¼overall normative sample size).
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Although test scores are discrete (i.e., integer valued), the underlying cognitive
abilities they index are generally taken to be continuous, real-valued quantities.
Thus a raw score of, say, 7 is regarded as a point estimate of a real valued score
which could lie anywhere in the interval 6.5 to 7.4999 (plus an infinite number of
additional 9s after the fourth decimal place). Put another way, theoretically we
could distinguish among individuals obtaining the same raw score were we to
introduce tie-breaking items. In the absence of knowledge of the shape of the
underlying distribution, our best estimate is that half of the real-valued scores will
be below 7 and half above. This, then, is the rationale for definition C.

Moreover, if neuropsychology is to adopt a single definition of a percentile,
and if this single definition is to encompass all scenarios in which percentiles are
used, then definition C is the only candidate. That is, in the present paper the
emphasis is on the use of percentile norms with test scores that depart markedly
from normality. However, as previously noted, scores on standardized tests (such
as IQs or Index scores from Wechsler tests) can also be expressed as percentiles.
Definition C is implicit in the latter scenario: Approximately 2.66% of the
population are expected to obtain an IQ of 100 so that, although the percentile rank
for this score is 50 using definition C, the use of definitions A or B gives percentile
ranks of 49 and 51 respectively. The discrepancies are even larger when Wechsler
subtest scores are expressed as percentiles: The percentile rank for a subtest score
of 10 is 50 using definition C but is 43 and 57 respectively using definitions A and B.

Before leaving this topic, and in keeping with our emphasis on providing
an explicit definition of a percentile, the formula (Ley, 1972) for obtaining the
percentile rank of a given score using definition C is presented below:

Percentile rank ¼
mþ :5k

N

� �
100, ð1Þ

where m is the number of members of the normative sample scoring below a given
score, k is the number obtaining the given score, and N is the overall size of the
normative sample.

UNAVOIDABLE UNCERTAINTY OVER PERCENTILE RANKS

In a previous section we highlighted the uncertainty that can arise over
percentile norms because (a) there are multiple definitions of a percentile, and (b) it
is often not clear what definition has been used to generate a particular set of
percentile norms. This uncertainty could be avoided if explicit definitions of a
percentile were provided by those presenting percentile norms or, even better, if the
neuropsychological community were to adopt a single definition of a percentile.
In contrast, there is a further uncertainty when using percentile norms that is
unavoidable. We turn now to a consideration of this uncertainty.

When neuropsychologists refer a case’s score to percentile norms, their interest
is in the standing (percentile rank) of the case’s score in the normative population,
rather than its standing in the particular group of (say) 150 participants who happen
to make up the normative sample. That is, the percentile rank of a score obtained
from normative data is a point estimate of its standing in the normative population
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and there is uncertainty over this quantity (in the foregoing example it is very
unlikely that the percentile ranks of raw scores would be the same were they
obtained from an alternative sample of 150 members of the normative population).

Fortunately point estimates can potentially be supplemented with interval
estimates of a score’s percentile rank. These interval estimates would serve the
useful, general, purpose of reminding us that normative data are fallible and serve
the specific, concrete, purpose of quantifying the degree of fallibility expected for a
particular normative data set.

It might be thought that the utility of interval estimates will lie mainly in
quantifying the uncertainty over the percentile ranks of scores when a normative
sample is modest in size. It is certainly true that interval estimates would be
particularly useful in this situation, as they would provide a stark reminder of the
lack of precision of the point estimate. However, a neuropsychologist may have an
unrealistic sense of the precision of point estimates of percentile ranks when using
norms from more moderately sized samples and so an interval estimate would still
be valuable in this latter situation. Moreover, when an interval estimate of a
percentile rank is narrow (as will occur when the normative sample size is very
large), it will still have served the useful purpose of providing reassurance that the
standing of a test score has been quantified with a high degree of precision. Finally,
in neuropsychological assessment much emphasis is placed on examining the profile
of a patient’s scores across a range of cognitive tests. When (as is often the case)
these tests have been normed on different samples, there will be differing degrees of
uncertainty over the standing of the various scores; the provision of accompanying
interval estimates would help the neuropsychologist weigh the evidence from these
different tests when arriving at a formulation.

The foregoing arguments suggest that the point estimates of a score’s
percentile rank should be supplemented with an interval estimate. However,
although percentile norms are widely used in neuropsychology, we could find no
example in any of the three major collections of published normative data for
neuropsychological tests (Lezak et al., 2004; Mitrushina et al., 2005; Strauss et al.,
2006) in which the percentile ranks for raw scores (i.e., the point estimates of the
standing of raw scores) were accompanied by interval estimates (i.e., confidence
intervals quantifying the uncertainty over the true standing of a raw scores in the
normative population). The next sections are concerned with how such estimates
can be obtained.

METHODS FOR OBTAINING INTERVAL ESTIMATE OF A TEST SCORE’S
PERCENTILE RANK

When test scores are assumed to be normally distributed (either because the
raw scores of the normative sample tend to a normal distribution, or the scores can
be transformed to normality, or the test in question is part of a standardized
battery), then a parametric method developed by Crawford and Garthwaite (2002)
can be used to provide an interval estimate of the percentile rank of a test score
(see also Crawford & Garthwaite, 2008). It is possible to calculate this interval
because, when test scores are normally distributed, their percentile ranks follow a
non-central t-distribution. The methods employed are those of classical statistics but
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it has recently been shown that a Bayesian approach to the same problem gives
identical results (Crawford & Garthwaite, 2007).

The foregoing parametric methods have a wide range of potential applications
in neuropsychology. However, they are not appropriate for the problem at hand
because neuropsychologists usually opt to present normative data in the form of
percentiles precisely when it is clear that the normality assumption cannot be met.
Alternative methods are therefore required: Consideration will now be given to
non-parametric approaches to obtaining an interval estimate of a percentile rank.
There is no shortage of potential methods for this purpose because a percentile rank
is a proportion multiplied by 100. Non-parametric methods of obtaining interval
estimates for proportions can therefore be used to provide interval estimates of the
percentile ranks of raw scores. In the next sections we consider existing classical and
Bayesian methods that could be used to obtain interval estimates for percentile
ranks and go on to develop variants upon them that are better suited to the
particulars of the present problem.

CLASSICAL (FREQUENTIST) INTERVAL ESTIMATE FOR A PERCENTILE
RANK

There is a host of classical methods for obtaining interval estimates for a
proportion; see Newcombe (1998) and Brown, Cai, and DasGupta (2001) for
reviews and quantitative evaluations of these methods. Among the oldest and most
widely used method is that developed by Clopper and Pearson (1934). It ensures a
coverage probability of at least 95% and is often referred to as an ‘‘exact’’ method,
because it is based on the inversion of a binomial test, which is an exact test of a
binomial proportion (Brown et al., 2001).

This method, or the other alternative classical methods referred to above,
could be used to provide interval estimates for the percentile rank of an individual’s
test score. However, there is a complication. As previously noted, normative data
will almost always contain a sizeable number of tied scores; that is, a large number
of people in the normative sample will often obtain the same raw test score. Indeed,
if the normative sample is very large and the number of different possible scores
is limited, then there could literally be hundreds of such ties for a given raw score.
The present problem therefore differs from standard binomial sampling in
which there can be no possibility of multiple ties. One solution would be to
simply ignore the problem of ties and obtain an interval based on the number of
‘‘successes’’ as provided by definition C. However, regardless of which existing
classical method was used to obtain this estimate, it would not incorporate all of the
uncertainty involved. Fortunately we can do better. The nature of the problem and
its solution is best illustrated with a concrete example.

Suppose that a case obtains a particular raw score on a neuropsychological
test. Also suppose that, in a normative sample consisting of 80 people, k¼ 4 people
obtained this score and a further m¼ 10 people obtained a lower score. We want to
obtain both a point estimate of the case’s percentile rank and a two-sided 95%
interval estimate of the percentile rank. Applying definition C the point estimate
of the percentile rank for the case’s score is 100� ð10þ 2Þ=80 ¼ 15; expressed as
a proportion it is 0.15.
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To obtain the interval estimate for the proportion we could define these data
as constituting x¼mþ 0.5k¼ 12 ‘‘successes’’ out of 80 and treat them as an
observation from a binomial distribution. A binomial distribution has two
parameters: N the number of trials, and p, the probability of success on any one
trial. To find the lower limit of the interval, we use a search procedure to find the
binomial distribution, with 80 as its first parameter (as there are 80 ‘‘trials’’, i.e.,
members of the normative sample), that has x¼ 12 as its 0.025 percentile point: The
second parameter of this distribution (p) provides us with the upper limit and, in this
example, the distribution turns out to be bin(80, 0.0800). For the upper limit we find
the binomial distribution (again with 80 as its first parameter) that has x¼ 12 as its
0.975 percentile point and this turns out to be bin(80, 0.2474). Therefore, the 95%
confidence interval on the proportion is from 0.0800 to 0.2474. The procedure just
described is the Clopper-Pearson method referred to earlier. Multiplying the
endpoints of this interval by 100 provides the two-sided confidence interval on the
percentile rank for the given raw score, which is from 8.00 to 24.74.

DEVELOPMENT OF A CLASSICAL METHOD THAT INCORPORATES THE
UNCERTAINTY ARISING FROM MULTIPLE TIES

We have k members of the normative sample with the same integer valued
score as the case (k¼ 4 in the numerical example). On the underlying continuous
score the number of these members (x) scoring below the individual could range
from 0 to k (with each of these kþ 1 possibilities being equally probable), and
the interval estimate should reflect this uncertainty. We assume that each of these
possibilities is equally likely, based on the premise that the case is very similar to the
controls with which it is tied, so that the results of any tie-breaking are almost
random.1 To obtain the lower endpoint of the confidence interval, we find the
binomial distribution (again with N as its first parameter) that has A as its 0.025
quantile, where A¼ the average of the kþ 1 probabilities that x is less than mþ 0,
mþ 1, . . .,mþ k. In the current example there are five such probabilities (e.g., the
probability that x is less than 10, through to the probability that x is less than 14).
The binomial distribution having this characteristic is bin(80, 0.0739) and thus
0.0739 is our lower endpoint. A similar approach is used to find the upper endpoint
and the associated binomial distribution is bin(80, 0.2548), so the upper endpoint is
0.2548. Thus the interval estimate of the percentile rank for the case’s score is from
7.39 to 25.48. A fuller, more formal, description of the method is set out in the
Appendix, including a worked example (Section A.1) and details of the search
procedure required to find the appropriate binomial distribution (Section A.4).

It can be seen that, for the current example, the interval estimate of the
percentile rank obtained using this method (7.39 to 25.48) is wider than that
obtained using the standard classical (Clopper-Pearson) approach (8.00 to 24.74).
This occurs because it incorporates the additional uncertainty arising from the
presence of ties. The difference between these intervals is very modest in this

1Note that treating these possibilities as equally probable is consistent with using definition C, i.e.,

(mþ 0.5k)/N, as the point estimate of the percentile rank.
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example but that is because there are relatively few ties (the number of ties was
chosen so that it was practical to provide a worked example in the Appendix).
However, the differences can be substantial: A later section compares the interval
estimates obtained when the number of ties is varied.

The current problem with tied scores has many similarities to that encountered
when applying the Mann-Whitney test to compare the scores of two samples.
However, because in the present case the problem is one of referring an individual’s
score to a single normative sample containing ties, obtaining a satisfactory solution
for dealing with ties is much simpler than when comparing two groups.

Before leaving this issue it is worth stressing that the methods developed here
are motivated by the assumption of an underlying continuous score, so that ties can
be broken, and the assumption that all possible results from tie-breaking are equally
likely. These assumptions also lead to definition C for a percentile rank and render
a standard approach based on binomial sampling non-optimal. When ties cannot
be broken because the underlying quantity of interest is discrete (the quantity is
unlikely to be a test score), a lower-bound or upper-bound percentile may be
appropriate and the methods developed here would be unnecessary.

A MID-p VARIANT OF THE CLASSICAL METHOD

The classical method developed in the foregoing section can be construed as
an extension to the standard Clopper-Pearson method to incorporate the additional
uncertainty introduced by the presence of multiple ties. It is commonly thought that
the standard Clopper-Pearson method is unnecessarily conservative (Agresti &
Coull, 1998) and, instead, a mid-p variant of the standard method is often used to
obtain interval estimates (Brown et al., 2001). The Clopper-Pearson method bases
confidence intervals on the probability of the observed result plus the probability of
more extreme results, while the mid-p variant bases them on half the probability
of the observed result plus the probability of more extreme results; see Berry and
Armitage (1995) for a general discussion of the rationale for using a mid-p approach
to confidence intervals.

The approach giving a mid-p variant of the standard method can also be
applied to obtain a mid-p variant of the classical method for dealing with multiple
ties developed here. The technical details are set out in section A.2 of the Appendix
and the option of applying the mid-p variant is incorporated into the computer
program that accompanies this paper (see later for details of how to download).
The 95% interval estimate calculated using the mid-p version of the classical interval
is (7.79 to 24.86) and it can be seen that this interval is shorter (i.e., less
conservative) than that obtained earlier (7.39 to 25.48).

BAYESIAN CREDIBLE INTERVALS ON A PERCENTILE RANK

Bayesian statistics provide an alternative to the classical approach to
inference. The essential difference between the classical and Bayesian approaches
is that the classical approach treats parameters as fixed but unknown whereas, in the
Bayesian approach, parameters are treated as random variables and hence have
probability distributions. For example, suppose � is the (unknown) proportion in a
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specified normative population. Then a Bayesian might say ‘‘the probability that �
is less than 0.3 is 0.95’’ while classical statistics does not permit a probabilistic

statement about �. With the classical approach, � is either less than 0.3 or it is not,

and there is no random uncertainty, so the probability that � is less than 0.3 is either

1 or 0, and nothing in between.
In the Bayesian approach, a prior distribution is used to convey any

information about model parameters that was available before the sample data were

gathered. This is combined with the information supplied by the data, which is

contained in the likelihood, to yield a posterior distribution. Formally,

posterior / prior� likelihood,

where / means ‘‘is proportional to’’. Prior distributions can enable background

knowledge to be incorporated into a statistical analysis. This is one of the central

sources of dispute between the classical and Bayesian schools. For the Bayesian the

ability to incorporate prior opinion or knowledge is a strength of the approach and

is consistent with general principles of scientific reasoning (Howson & Urbach,

1993). For opponents, the incorporation of prior opinion allows results to be, in

part, determined by the subjective biases of the investigator. Bayesians can marshal

a variety of arguments against this latter position but, in the present context, this

debate need not overly concern us: we assume no prior knowledge of the normative

population and therefore use a non-informative prior distribution.
In the basic Bayesian approach to obtaining interval estimates of a proportion

(that is, when the problem involves standard binomial sampling with no ties) the

prior distribution for the proportion is represented by a single beta distribution: A

beta distribution has two parameters, denoted a and b and the beta distribution is

denoted beta(a, b). Three beta distributions have commonly been used to represent a

lack of prior knowledge or opinion: the Jeffrey’s prior, beta(0.5, 0.5); a uniform

prior, beta(1, 1); and a beta(0, 0) distribution. We will use the Jeffrey’s prior,

although the choice among these priors makes little practical difference as their

effect on the posterior distribution is swamped by the data unless the sample

providing the data is very modest in size.
As in any Bayesian analysis, the prior is combined with the data to yield

the posterior distribution. For the present problem, conveniently, the posterior

is another beta distribution thereby avoiding the need for numerical integration

(when prior and posterior distributions are of the same distributional form they are

referred to as conjugate distributions). To obtain this posterior distribution denote

the number in the normative sample scoring below a case’s score as ‘‘successes’’ (x)

and the remainder as ‘‘failures’’ (N� x), then the posterior distribution is a

beta(0.5þ x, 0.5þN� x) distribution.
This standard Bayesian approach could be used to obtain an interval estimate

of the percentile rank of the case’s score. Take the example used to illustrate the

classical method, in which 10 members of a normative sample of 80 scored below

a case’s score and 4 obtained the same score as the case. Thus, as in the classical

example, we set x to mþ 0.5k¼ 12. Then the posterior distribution is beta(0.5þ 12,

0.5þ 80� 12). To obtain the 95% two-sided, equal-tailed interval estimate of the

proportion scoring below the case simply requires finding the quantiles
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corresponding to the 0.025 and 0.975 percentile points of this beta distribution. These
quantiles can be obtained from tables (e.g., Phillips, 1973) or, more accurately (as the
need for any interpolation is avoided), by a computer algorithm. In this example the
interval estimate of the proportion is from 0.0847 to 0.2401 and hence the interval
estimate of the case’s percentile rank is from 8.47 to 24.01. Bayesians use the term
‘‘credible interval’’ rather than ‘‘confidence interval’’ for such interval estimates.

Just as with the standard classical method, for the problem at hand this
standard Bayesian approach can be improved upon to incorporate the additional
uncertainty introduced by multiple ties. This is achieved by using a mixture of beta
distributions. As in the standard Bayesian approach, we use a Jeffrey’s prior for
the prior distribution. However, unlike the standard approach, the posterior
distribution is a mixture of kþ 1 beta distributions in which each element of the
mixture has probability 1/(kþ 1). These kþ 1 beta distributions are all
beta 0:5þ x, 0:5þN� xð Þ but with x¼mþ i, where i takes values of 0, 1, . . ., k.
The interval estimates are obtained by finding the 0.025 and 0.975 quantiles of this
posterior distribution. In the specific example used earlier the interval estimate for
the proportion is 0.0739 to 0.2548 and hence the interval estimate for the case’s
percentile rank is from 7.39 to 25.48. It can be seen that this interval is wider than
the interval obtained using the standard Bayesian method. Fuller details of the new
method are provided in section A.3 of the Appendix along with a worked example.

COMPARISON OF INTERVAL ESTIMATES

Table 2 allows the reader to compare the interval estimates of a percentile rank
generated by the standard Bayesian and classical methods (in which the uncertainty
arising from tied scores is ignored) with the methods developed here (that
incorporate this source of additional uncertainty). Crucially, Table 2 was
constructed so that the point estimate of the percentile rank for a hypothetical
raw score (obtained using definition C) was always 16. However, this point estimate
can be arrived at in a variety of ways. Take the specific example in Table 2 of a
normative sample of 50 people in which the point estimate of 16 was arrived at by
eight people scoring below the given raw score and none obtaining the score: The
point estimate can also be arrived at if two people obtained a lower score and 12
obtained the given score.

Table 2 demonstrates a number of important points. First it can be seen that,
at each sample size, the standard methods give the same interval estimates,
regardless of whether there are tied scores (because they are blind as to how the
point estimate was obtained). Second, when there are no tied scores (i.e., no
members of the normative sample obtained the score of interest), the methods
developed here necessarily give exactly the same intervals as the corresponding
standard methods. For example, with a sample size of 50 and no tied scores, the
present Bayesian method gives the interval (7.9, 27.9), as does the standard Bayesian
method. Thus for this problem, the three standard methods are essentially
subsumed under each of the three corresponding methods developed here.

Third it can be seen that, when there are tied scores (as will normally be the
case), the intervals are substantially wider in order to incorporate the additional
uncertainty. For example, in the example just referred to (i.e., a normative sample
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size of 50), for the Bayesian method, the interval estimate of the percentile rank
when there are 12 tied scores is (2.5, 35.0) compared to (7.9, 27.9) when there are no
ties. Similar differences resulting from variation in the number of ties can be
observed for the classical methods.

Fourth, it can be seen that the three methods developed to incorporate the
uncertainty arising from ties (Bayesian, Classical, and the Classical mid-p variant)
yield fairly similar intervals; the degree of convergence increases with the size of
the normative sample. Note also that the convergence between the Bayesian and
classical methods is particularly close for the classical mid-p variant. It can be
proved mathematically that convergence for large sample sizes is a property of these
methods (Garthwaite & Crawford, 2009). (Table 2 shows that the standard Bayesian
and classical methods also exhibit convergence, but this is of less interest for present
purposes.)

Fifth it can be seen that, in general, there is substantial uncertainty over the
percentile rank of a raw score when normative samples are moderate in size. The
uncertainty is reduced with larger sample sizes but is still appreciable, particularly
when there are a large number of ties. These observations underline that, when
working with percentile norms, neuropsychologists should have access to interval
estimates of the percentile rank for a case’s score, not just a point estimate.

BAYESIAN VERSUS CLASSICAL (FREQUENTIST) INTERPRETATIONS OF
INTERVAL ESTIMATES OF A PERCENTILE RANK

As Antelman (1997) notes, the classical (frequentist) conception of a
confidence interval is that ‘‘It is one interval generated by a procedure that will

Table 2 Comparison of standard Bayesian and classical interval estimates of a percentile rank

Standard

methods

Methods capturing uncertainty

from presence of ties

Bayesian Classical

Classical

mid-p Bayesian Classical

Classical

mid-p

N¼ 50, m¼ 8, k¼ 0 (7.9, 27.9) (7.2, 29.1) (7.7, 28.1) (7.9, 27.9) (7.2, 29.1) (7.7, 28.1)

N¼ 50, m¼ 6, k¼ 4 (7.9, 27.9) (7.2, 29.1) (7.7, 28.1) (6.8, 29.4) (6.1, 30.5) (6.6, 29.5)

N¼ 50, m¼ 2, k¼ 12 (7.9, 27.9) (7.2, 29.1) (7.7, 28.1) (2.5, 35.0) (1.9, 36.1) (2.4, 35.1)

N¼ 100, m¼ 16, k¼ 0 (9.8, 24.1) (9.4, 24.7) (9.8, 24.2) (9.8, 24.1) (9.4, 24.7) (9.8, 24.2)

N¼ 100, m¼ 12, k¼ 8 (9.8, 24.1) (9.4, 24.7) (9.8, 24.2) (8.5, 25.7) (8.1, 26.3) (8.4, 25.8)

N¼ 100, m¼ 4, k¼ 24 (9.8, 24.1) (9.4, 24.7) (9.8, 24.2) (3.3, 31.9) (2.9, 32.4) (3.3, 31.9)

N¼ 200, m¼ 32, k¼ 0 (11.4, 21.6) (11.2, 21.8) (11.4, 21.6) (11.4, 21.6) (11.2, 21.8) (11.4, 21.6)

N¼ 200, m¼ 24, k¼ 16 (11.4, 21.6) (11.2, 21.8) (11.4, 21.6) (9.8, 23.4) (9.6, 23.7) (9.8, 23.4)

N¼ 200, m¼ 8, k¼ 48 (11.4, 21.6) (11.2, 21.8) (11.4, 21.6) (3.9, 29.9) (3.7, 30.2) (3.9, 29.9)

N¼ 500, m¼ 80, k¼ 0 (13.0, 19.4) (12.9, 19.5) (13.0, 19.4) (13.0, 19.4) (12.9, 19.5) (13.0, 19.4)

N¼ 500, m¼ 60, k¼ 40 (13.0, 19.4) (12.9, 19.5) (13.0, 19.4) (10.9, 21.6) (10.8, 21.7) (10.9, 21.6)

N¼ 500, m¼ 20, k¼ 120 (13.0, 19.4) (12.9, 19.5) (13.0, 19.4) (4.3, 28.5) (4.2, 28.6) (4.3, 28.5)

Comparison of standard Bayesian and classical interval estimates of a percentile rank with the methods

developed in the present paper to capture the additional uncertainty arising from tied scores: Importantly

the point estimate of the percentile rank is 16 in all examples, the sample size (N) is varied as is the

number of tied scores (k) and thus also the number scoring below a given score (m).
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give correct intervals 95% of the time. Whether or not the one (and only) interval
you happened to get is correct or not is unknown’’ (p. 375). Thus, in the present
context, the frequentist interpretation is as follows: ‘‘If we could compute
confidence intervals for a large number of normative samples collected in the
same way as the present normative sample, about 95% of these intervals would
contain the true percentile rank of the score obtained by the case.’’

In contrast, the Bayesian interpretation of the interval estimate is that ‘‘there is
a 95% probability that the true percentile rank of the score obtained by the case lies
within the stated interval’’ (as noted, for the Bayesian, probability statements can be
attached to parameters). This statement is not only less convoluted but, we suggest,
it also captures what a neuropsychologist would wish to infer from an interval
estimate. Indeed, as Howell (2002) observes, most psychologists who use frequentist
confidence limits probably construe these in what are essentially Bayesian terms.

For this particular problem the two sets of limits converge, and therefore the
upshot is that neuropsychologists can place a Bayesian interpretation on the interval
estimate of a percentile rank, regardless of whether it was obtained using Bayesian
or frequentist methods.

ONE-SIDED INTERVAL ESTIMATES OF PERCENTILE RANKS

In the foregoing treatment of interval estimates, attention has been limited to
two-sided intervals. However, there will be occasions in which a one-sided interval
for a percentile rank may be preferred (just as there are situations in which a one-
tailed rather than a two-tailed test is appropriate). For example, a neuropsychol-
ogist may be interested in whether a patient’s score is less extreme than is indicated
by the point estimate but not particularly interested in whether the score is even
more extreme (or vice-versa). Both the classical and Bayesian methods developed
here can easily be adapted to provide a one-sided limit. However, without prior
knowledge of which limit is of interest (the situation here, as the aim is to provide
intervals for use by others) it is more convenient to generate 100 1� aþ a=2½ �ð Þ two-
sided intervals which then provide 100 1� �ð Þ one-sided lower and upper limits. For
example, if a 95% lower limit on the percentile rank is required, then a 90% two-
sided interval can be generated: the user then simply disregards the upper limit of
the two-sided interval and treats the lower limit as the desired one-sided 95% limit.

PRECISION WHEN REPORTING PERCENTILE RANKS

The precision with which percentile ranks are reported is a relatively minor
issue in comparison to others dealt with in earlier sections. However, the issue does
warrant a brief discussion. Our view is that one size does not fit all. That is, for
percentile ranks that are not at the extremes (i.e., percentile ranks greater than 5 and
less than 95), it is sufficient to report these as integers. Greater precision than this
adds nothing and is potentially a distraction. On the other hand, for percentile ranks
that are extreme, reporting to one decimal place has clear advantages. For example,
it is useful to make a distinction between a patient with a score that is estimated to
be exceeded by only one in a thousand members of the general adult population and
a patient whose score is estimated to be exceeded by one in a hundred. By adopting
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the present proposal this form of distinction can be made while simultaneously
preserving the convenience and simplicity of using integer values for the percentile
ranks of less extreme scores.

To avoid any potential confusion, it is not the case that the normative sample
must be 1000 or greater for this proposed convention to be useful. For example,
suppose that the normative sample consists of 500 individuals and that only one
member obtained a score lower than that obtained by a patient (suppose also, in the
interests of simplicity, that none obtained the same score as the patient). Then the
estimated percentile rank is 0.2; this is more informative (and more a cause for
concern) than knowing only that the score is below the 1st percentile.

TWO RADICALLY DIFFERENT CLASSES OF INTERVAL ESTIMATES FOR
TEST SCORES

The interval estimates on the percentile ranks provided here, using either
Bayesian or classical methods, should not be confused with interval estimates that
attempt to capture the effects of measurement error on an individual’s score. These
latter intervals, which usually assume normally distributed scores, are based on
classical test theory.

When these latter interval estimates are used, the neuropsychologist is posing
the question ‘‘ignoring the error in estimating the population mean, standard
deviation and reliability of the test, and assuming a normal distribution of scores,
how much uncertainty is there over an individual’s score as a function of
measurement error in the instrument?’’ In contrast, when using the interval estimates
presented in the present paper, the concern is solely with the score in hand and no
assumptions concerning the distribution of raw scores need be invoked (other than
the ubiquitous assumption that the underlying scores are continuous, albeit
measured as integers). The more concrete question posed is ‘‘how much uncertainty
is there over the standing (i.e., percentile rank) of the score the case obtained as a
function of error in using a normative sample to estimate its standing rather than
directly establishing its standing in the normative population?’’ That is, the limits set
out here do not address the issue of what score a case might obtain on another
occasion, or on a parallel version of the test, but simply provide an interval estimate
of the percentage of the normative population that would score below the score
obtained by the case.

A COMPUTER PROGRAM FOR THE GENERATION OF POINT AND
INTERVAL ESTIMATES OF PERCENTILE RANKS

A computer program (Percentile_Norms_Int_Est.exe) was written for PCs in
the Delphi programming language to accompany this paper. It can be downloaded
(either as an uncompressed executable or as a zip file) from the first author’s web
pages (at www.abdn.ac.uk/�psy086/dept/Percentiles_Int_Est.htm). The program
implements all of the suggested reporting standards set out in the final section of
this paper, including the provision of interval estimates based on the Bayesian and
classical methods developed here. It can be used to generate tables of percentile
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norms (point and interval estimates) from the frequency distribution of raw scores
for a normative sample.

To use the program the user needs to first prepare a text file consisting of two
columns (using Notepad or a similar application to enter these data would be the
easiest option; if using a word processor the file must be saved as a raw text file).
The first column should list the raw scores in ascending order, and the second the
corresponding number of participants from the normative sample obtaining each of
these raw scores. The columns must be separated by a blank space.

The user is prompted to enter the overall sample size of the normative sample
(N) and the minimum and maximum raw scores. It is important to note that it is
assumed that the raw scores are expressed as integers. (Note also that if, within the
range of the minimum and maximum scores, some scores are unobtainable or are
obtainable but were not obtained by any members of the normative sample, then
these must still be entered and accompanied by a zero in the second column). The
user then selects their preferred method of generating the interval estimates for the
percentile ranks, Bayesian, classical, or the classical mid-p variant. Our preference
is for the Bayesian method but the classical methods are made available for those
who are wedded to the classical approach to inference (as noted, typically the limits
converge in any case). Finally, identifying information on the test and/or normative
sample can be entered (in a field entitled ‘‘User’s Notes’’) for future reference (these
notes are reproduced in the program output).

The output from the program consists of a table of six columns: the first
column records the raw scores, the second the percentile rank (i.e., point estimate)
for these raw scores calculated using formula 1 (i.e., definition C). The third and
fourth columns list the corresponding 95% lower and upper endpoints for the
interval estimates of the percentile rank. The fifth and sixth columns present
the corresponding 90% lower and upper endpoints (as noted, these can serve as the
95% one-sided endpoints if these are required). The output of the program can be
viewed on screen, saved to a file, and/or printed.

Although this program can be used to provide point and interval estimates of
percentile ranks for new (i.e., previously unpublished) normative data, we hope that
it will also be used with existing (previously published) normative data sets. There
are many such datasets in neuropsychology and, in many cases, the effort expended
in their collection was clearly considerable. We considered writing a second program
that would provide interval estimates using existing (i.e., published) tables of
percentile ranks rather than raw frequency distributions as input. This would have
allowed neuropsychologists to obtain interval estimates for percentile norms
without requiring access to the raw frequency distribution (and allow them to apply
definition C when calculating percentile ranks regardless of the definition used
to generate the original norms). However, we decided that there were a number of
problems with this.

First, and as noted, there are three definitions of percentiles in current usage
and the definition applied to obtain percentile ranks is often unspecified; this would
preclude application of the reporting standards, including the provision of the
interval estimates. Second, noise would be introduced (particularly when calculating
interval estimates for extreme scores) because of the common practice of rounding
percentile ranks to integers; our proposed standards also recommend that
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non-extreme percentile ranks should be rounded and reported as integers but the
calculations performed to provide the interval estimates are based on the raw

counts.
Finally, note that, on occasion, a neuropsychologist may only require a point

and interval estimate of the percentile rank for a single raw score, rather than a
full table of percentile norms (for example, a neuropsychologist may wish to

compare the score of a single-case to a control or normative sample). A companion
program, Single_PR_PIE.exe, was written to deal with this scenario: the user need

only enter the overall N for the normative sample together with the number of

members of the sample obtaining the score of interest and the number scoring below
this score.

CONCLUSIONS AND PROPOSED REPORTING STANDARDS

There are two important but very different sources of uncertainty when using
percentile norms in neuropsychology, one avoidable, the other not. The first

uncertainty is over how percentiles have been defined, and hence calculated, by the

originator of the norms. The second uncertainty stems from the use of a normative
sample to represent the normative population. Although this uncertainty is

unavoidable its effects can be quantified. The conceptual and numerical analysis
of the issues surrounding percentile norms in the foregoing sections of the present

paper leads to the following proposed reporting standards for the presentation of

percentile norms for neuropsychological test scores:

(1) When presenting tables of percentile norms the definition of a percentile rank

used to generate the norms should be made explicit.
(2) Definition C (Equation 1) should be used when calculating percentile norms.

Not only is this the method most commonly employed by experts in

measurement, it is also consistent with the ubiquitous assumption of an
underlying continuous score, and it avoids practical problems. It is to be hoped

that even those who may have a preference for either of the two alternative

definitions will consider that the advantages of establishing a single definition
outweigh these preferences. Furthermore, to our knowledge, this recommenda-

tion is not in conflict with existing advice to neuropsychologists, as we are

unaware of any previous attempt to develop a set of reporting standards.
(3) When presenting the percentile ranks of raw scores, 95% interval estimates

should also be provided. This not only serves the generally useful purpose of

reminding users that the percentile ranks are point estimates (i.e., it highlights
that norms are fallible and thereby counters any tendency to reify the percentile

rank), but it also serves the eminently practical purpose of directly quantifying

this uncertainty. We further suggest that the methods developed in the present
paper should be used to generate these intervals, as they allow for the full range

of uncertainties involved. Although they are more complicated to implement

than potential alternative approaches this is at no cost either to those developing
norms or to end users as the accompanying computer program (see earlier for

details) automates the process of obtaining them.
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(4) A brief statement concerning the interpretation that can be placed on interval
estimates should be provided for the user. This would avoid any potential
confusion with intervals that estimate the effects of measurement error on test
scores. We assume that the Bayesian interpretation of the intervals featured here
is the most relevant to a neuropsychologist’s concerns (as noted, a Bayesian
interpretation is defensible even if the classical methods are used to obtain the
intervals given the convergence between the methods).

(5) Consideration should be given to supplementing 95% intervals with 90%
intervals when presenting tables of percentile norms. This would allow users
to obtain 95% one-sided lower or upper intervals should they be desired
(see earlier section for the rationale and use of such one-sided intervals).

(6) When reporting the point and interval estimates of percentile ranks the number
of significant digits recorded should be varied with the extremity of the
percentile ranks. For percentile ranks in the range 5 to 95 it is sufficient and
more convenient for the end user to round the percentile ranks to the nearest
integer whereas, for more extreme scores, the percentile ranks should be
reported to one decimal place.

The foregoing reporting standards are straightforward and easy to implement
(particularly with the assistance of the computer program). Their adoption when
presenting percentile norms would have the additional positive effect of raising
awareness among neuropsychologists of the general issues surrounding the use of
any set of existing percentile norms.

Finally, the present paper has been concerned with determining the standing
of a case’s score with regard to those obtained from a healthy normative population.
One way of looking at percentile ranks is that they indicate how likely it is that a
case’s score belongs to this latter population. However, this does not address the
question of whether the case’s score belongs to another specific population. As
noted by a reviewer, if the concern is with determining the probability that a case
has a condition of interest (COI) then the percentile rank only provides some of the
information required. We would also need to know the percentile rank of a case’s
score in the population of persons having the COI, the sample sizes from which
percentiles were determined, and base rates that give the relative sizes of the
normative population and the population with the COI. Bayes’ theorem could then
be applied to evaluate the probability that the case has the COI. For recent
treatments of this issue see Chelune (in press) and Crawford, Garthwaite, and
Betkowska (in press).

In closing, it was demonstrated earlier that the uncertainty over the percentile
rank of a test score can be considerable, particularly when the normative sample is
modest and there are many tied scores. Those providing percentile norms may be
tempted to restrict themselves to presenting point estimates because of concerns that
accompanying interval estimates might cast doubt on the value of their data.
Similarly, neuropsychologists might choose to ignore interval estimates of percentile
ranks because they find them unsettling. Jacob Cohen, who did so much to make
the case for the use of interval estimates in psychology, was acutely aware of this
issue. He noted (Cohen, 1994) that interval estimates are ‘‘. . . rarely to be found in
the literature. I suspect that the main reason they are not reported is that they are so
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embarrassingly large!’’ (p. 1002). The crucial point, of course, is that ignoring the
uncertainty does not make it go away: It is better to acknowledge its existence, both
to ourselves and to others, and take solace in the fact that its effects can at least be
quantified.

APPENDIX

A.1. Classical confidence interval

Suppose that l controls have larger scores than the case, k controls have the
same score as the case, and m controls have a lower score. Define a ‘‘success’’ to be a
score for a control that is less than the score of the case were ties eliminated by a tie-
breaking mechanism that breaks ties randomly. The number of successes is thus m,
mþ 1, . . . , or mþ i and each of these possibilities is equally likely. Assume we
require an equal-tailed 95% confidence interval.

We have that n¼ kþ lþm. When p is the probability of success, the
probability of x successes is

n!

x! n� xð Þ!
pxð1� pÞn�x, ð2Þ

as the number of successes has a binomial distribution. Hence, the probability of
mþ i successes or fewer is

Pi ¼
Xmþi
x¼0

n!

x! n� xð Þ!
pxð1� pÞn�x

� �
: ð3Þ

For i¼ 0, 1, 2, . . ., k, each Pi has probability 1/(kþ 1) of being the appropriate
Pi. Hence, if pb is the upper limit of the equal-tailed 95% confidence interval, then

Xk
i¼0

Pi=ðkþ 1Þ ¼ 0:025:

when pb is substituted for p in Equation (3). That is,

0:025 ¼
Xk
i¼0

Xmþi
x¼0

n!

x! n� xð Þ!
pxbð1� pbÞ

n�x

� �
= kþ 1ð Þ: ð4Þ

Similarly, for the lower endpoint we will seek a value pa that satisfies

0:025 ¼
Xk
i¼0

Xn
x¼mþi

n!

x! n� xð Þ!
pxað1� paÞ

n�x

� �
= kþ 1ð Þ: ð5Þ

When mþ k ¼ n, the right-hand side of (4) may exceed 0.025 even when
pb! 1, in which case we set pb equal to 1. Similarly, when m ¼ 0, the right-
hand side of (5) may exceed 0.025 even when pa! 0, in which case we set pa
equal to 0.
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To illustrate the method we use the example provided in the main body of the
paper. In a normative sample of size n¼ 80, k¼ 4 members obtained the same raw
score as the case, and m¼ 10 obtained a lower score. Thus x ranges from 10 through

to 14. The binomial distribution that provides the upper endpoint for the interval
estimate is binð100, 0:2548Þ because, for this binomial distribution,

1

5
½PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ þ PðX � 14Þ�

¼
1

5
½:003544þ 0:008281þ 0:017593þ 0:034247þ 0:061497� ¼ 0:025:

Similarly, the binomial distribution that provides the lower endpoint is
bin(100, 0.0739) as for this distribution,

1

5
½PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ þ PðX � 14Þ�

¼ 1�
1

5
½PðX � 9Þ þ PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ�

¼ 1�
1

5
½0:929862þ 0:966897þ :985699þ :994324þ :997923� ¼ 0:025:

Hence, as recorded in the main body of the paper, the 95% interval estimate of
the proportion is (0.0739, 0.2548) and for the percentile rank it is (7.39, 25.48).

A.2. A mid-p variant of the classical interval when there are
multiple ties

We first demonstrate the mid-p variant of the classical method for the
numerical example used in the previous sections and then go on to provide the
general formula and the procedure to deal with extremes.

Mid-p upper limit. As previously noted for the classical limit with multiple
ties we consider

1

5
½PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ þ PðX � 14Þ�:

The corresponding probability for the mid-p variant with multiple ties is

1

5

1
2 fPðX � 9Þ þ PðX � 10Þg þ 1

2 fPðX � 10Þ þ PðX � 11Þg þ 1
2 fPðX � 11Þ

þPðX � 12Þg þ 1
2 fPðX � 12Þ þ PðX � 13Þg þ 1

2 fPðX � 13Þ þ PðX � 14Þg

� �
:

This can be expressed more succinctly as

1

5

1

2
PðX � 9Þ þ PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ

�

þ
1

2
PðX � 14Þ

�

PERCENTILE NORMS IN NEUROPSYCHOLOGY 1191

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
A
b
e
r
d
e
e
n
]
 
A
t
:
 
1
3
:
5
2
 
2
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



The general formula for the mid-p variant is as follows. Suppose we have n trials
with m values below and k values equal. Then, if m is not equal to 0, and mþ k 6¼ n,

for the mid-p method we want

1

kþ 1

1

2
PðX � m� 1Þ þ

Xmþk�1
i¼m

PðX � iÞ þ
1

2
PðX � mþ kÞ

" #
ð6Þ

Mid-p lower limit. Using the same numeric example, for the classical lower limit
we consider 1

5 PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ þ PðX � 14Þ½ �. The

corresponding probability for the mid-p variant is

1

5

1
2 fPðX � 10Þ þ PðX � 11Þg þ 1

2 fPðX � 11Þ þ PðX � 12Þg þ 1
2 fPðX � 12Þ

þPðX � 13Þg þ 1
2 fPðX � 13Þ þ PðX � 14Þg þ 1

2 fPðX � 14Þ þ PðX � 15Þg

� �
:

Again this can be expressed more succinctly as

¼
1

5

1

2
PðX � 10Þ þ PðX � 11Þ þ PðX � 12Þ þ PðX � 13Þ þ PðX � 14Þ

�

þ
1

2
PðX � 15Þ

For the general formula suppose we have n trials with r values below and k values

equal. Then if m is not equal to 0 and rþ k 6¼ n, for the mid-p variant we want

1

kþ 1

1

2
PðX � mÞ þ

Xmþk
i¼mþ1

PðX � iÞ þ
1

2
PðX � mþ kþ 1Þ

" #
ð7Þ

Mid-p variant: Extremes. When i¼ 0, the standard mid-p method sets Pi equal to
1; this is not very satisfactory as it essentially mixes one- and two-tailed intervals.

Similarly, when i¼ nþ 1, rather oddly, the standard mid-p method sets Pi equal to
1. Rather than adopt this approach for extremes, we set P0 equal to P1 and set Pnþ1

equal to Pn when these probabilities are required in Equations (6) and (7).

A.3. Bayesian credible intervals

We suppose the prior distribution for p is the Jeffrey’s beta(0.5, 0.5)
distribution. Having observed x successes from n controls, the posterior distribution

for p is a beta 0:5þ x, 0:5þ n� xð Þ distribution.
As x¼mþ i, where i is equally likely to be 0, 1, . . . , or k with equal

probability, the posterior distribution is a mixture of kþ 1 beta distributions:

beta(0.5þmþ i, 0.5þ n�m� i) for i¼ 0, 1, . . ., k. Each element of the mixture has
probability 1/(kþ 1). Given a value p�, we determine the quantile of the posterior

distribution that this corresponds to, as follows.
For i¼ 0, 1, . . . , k determine the quantile of the beta(0.5þmþ i,

0.5þ n�m� i) distribution that p� corresponds to. Let p�i denote that quantile.

Then the quantile that p� corresponds to is

p�0 þ p�1 þ 	 	 	 þ p�k
� �

= kþ 1ð Þ: ð8Þ
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Using a search procedure described below, we find values of p� that
correspond to the 0.025 and 0.975 quantiles. If p�a and p�b denote these quantiles,
then ðp�a, p

�
bÞ is our 95% equal-tailed credible interval. Note that, unlike the classical

method, no modifications are required for extreme values.
To illustrate using the previous example, for this problem we have five

(i.e., kþ 1) beta distributions: beta(10.5, 70.5), beta(11.5, 69.5), beta(12.5, 68.5),
beta(13.5, 67.5), and beta(14.5, 66.5). For the upper endpoint of the interval,
0.2477 is the 0.996594, 0.991911, 0.982593, 0.965785, and 0.938122 quantile,
respectively, of these beta distributions. Also 0:996594 þ 0:991911þð

0:982593þ 0:965785þ 0:938122Þ=5 ¼ 0:975 and so p�b¼ 0.2477 is the upper
endpoint. For the lower endpoint, 0.0786 is the 0.069191, 0.033190, 0.014619,
0.005932, and 0.002225 quantile, respectively, of these five beta distributions.
Also 0:069191þ 0:033190þ 0:014619þ 0:005932þ 0:002225ð Þ=5 ¼ 0:025 and so
the lower endpoint of the interval for the proportion is p�a¼ 0.0786. Thus, as
reported in the text, the interval estimate for the percentile rank of the case’s
score is (7.86, 24.77).

A.4. Search procedure to find the endpoints

We first consider how to search for the endpoints of the classical confidence
interval; that is, values of pb and pa that satisfy Equations (4) and (5) respectively.
There are a number of potential search procedures. For example, we could use a
start value provided by the standard Clopper-Pearson method. That is, we could
compute the Clopper-Pearson interval based on mþ 0.5k successes in N trials (i.e.,
12 successes in 100 trials in the foregoing worked example) and then successively
increase or decrease pb until it satisfies Equation 4 for the upper endpoint and use
the same approach for the lower endpoint. Alternatively we could use a brute
force approach and simply specify initial lower and upper bounds for pb of 0 and 1
(and similarly for pa) and use bisection to successively reset these bounds until the
required value of pb is trapped between them with an acceptable level of precision
(i.e., if the initial candidate value of 0.5 for pb is too large then this candidate value
becomes the new upper bound; if it is too small then it becomes the new lower
bound etc.). This was the approach adopted here and the details for finding the
upper endpoint are set out below:

(1) Let w denote the lower endpoint.
(2) Let L be an upper bound for w and let U be a lower bound.
(3) Initialise the algorithm by putting L¼ 0 and U¼ 1.
(4) Let p¼ (LþU)/2.
(5) Using a routine that gives the cumulative distribution function of a binomial

distribution, determine for bin(N, y) the probabilities for each of the kþ 1
possible values of x. Let A denote the average of these kþ 1 quantities.

(6) If A is greater than 0.025 then we have a new upper bound and we put U¼ p. If
A is less than or equal to 0.025 we have a new lower bound and we put L¼ p.

(7) We repeat steps 4 to 6 a number of times (in the present case 15 times gives
sufficient precision).

(8) Using the final values of L and U, we set the lower endpoint equal to (LþU)/2.
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The procedure for finding the lower endpoint is identical to that above but
with 0.025 replaced with 0.975.

The same search procedure is used for the Classical Mid-p method, except
that in step 5 of the algorithm A is set equal to the quantity in expression (7) when
searching for the lower limit and to the quantity in expression (6) in a search for the
upper limit. To search for the endpoints of the Bayesian credible interval, in step 5
the quantity in expression (8) is equated to A.
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