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On Performance Analysis for Signaling on Correlated Fading Channels
Venugopal V. Veeravalli

Abstract—A general approach is presented for analyzing the
performance of digital signaling with multichannel reception on
correlated fading channels. The approach is based on: i) exploiting
the complex Gaussian model for the joint distribution of the fading
on the multiple channels; and ii) applying recent results on the uni-
fied performance analysis of digital signaling on fading channels
using alternative representations of the ( ) and related functions.
Numerical results that illustrate the effect of correlation on the di-
versity gain from multichannel reception are also presented.

Index Terms—Correlation, diversity methods, fading channels,
multichannel reception.

I. INTRODUCTION

I N THE performance analysis of diversity schemes for mul-
tipath fading channels, it is typically assumed that the fading

is independent across the multiple diversity channels. While the
independence assumption is usually valid, there are several sit-
uations where the fading is correlated among the channels. For
example, in multiple antenna systems, physical constraints may
not allow the use of antenna spacing that is required for inde-
pendent fading across antennas. In time diversity schemes, e.g.,
coding with interleaving, if the interleaver is not long enough,
the code symbols undergo correlated fading.

It is well known that correlation in fading across multiple di-
versity channels results in a degradation of the diversity gain
obtained. Initial work on analysis of diversity with correlated
fading channels was done by Pierce and Stein in [1], where
they studied the special case of Rayleigh fading. Expressions
for the error probability for making hard decisions were de-
rived for the two special cases of binary phase shift keying
(BPSK) with maximal-ratio combining, and binary frequency
shift keying (BFSK) with equal-gain combining. Extending the
analysis of [1] to correlated Rician fading is in general diffi-
cult. In some special cases, such as BFSK with equal-gain com-
bining, we may use the Laplace transform results of [2] to ob-
tain closed-form expression for hard-decision error probabil-
ities. The results in [2] can also be used to obtain Chernoff
boundson error probabilities for coding with imperfect inter-
leaving on Rician fading channels [3], [4] (also see related work
in [5]).

Other work on extending the work in [1] has focused on the
Nakagami- fading model for analysis (see, e.g., [6]–[8]). The
approach taken in much of this work is to develop a model for
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the joint distribution of the envelopes at the various channels and
to use this model for analysis. While the Nakagami-model is
well justified for describing the first order statistics of the fading
envelopes, the joint distribution (correlation) model is not easily
justified and is generally quite complicated.

In this letter, we present a general approach to computing the
performance for digital signaling on complex Gaussian fading
channels with correlated diversity. Our approach makes use of
alternative representations of the and related functions
function as integrals with finite limits, and with the argument of
the function contained in the integrand. These alternative repre-
sentations have been used recently in several papers to compute
error rates for digital modulation on fading channels (see, e.g.,
[7]–[11] and[12]). In particular, this approach has been used to
unify performance results for a wide variety of digital signaling
schemes with possible multichannel reception in [10], [11]. We
establish that these unified performance analyzes can easily be
extended to include correlated diversity for a general complex
Gaussian fading channel model. As in these papers, the exact ex-
pressions are in the form of a single finite-range integral, with
an integrand that is a ratio of polynomials of trigonometric func-
tions, which can hence be easily evaluated numerically. In some
special cases, the integral simplifies to a closed form.

II. BPSK WITH MAXIMAL RATIO COMBINING

Let the instantaneous bit signal-to-noise ratio (SNR) on the
th channel, , be denoted by . Then for a general

complex Gaussian fading channel we can write

(1)

where is a nonzero mean proper complex
Gaussian (PCG) random variable and is
PCG random vector. (See [13] for a summary of the properties
of proper complex vectors and processes.) Sinceis a PCG
vector, its joint pdf can be written compactly as

(2)

where denotes the Hermitian operation, , and

Note that the complex covariance matrix equals
, where
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The envelope on theth channel has a Rician distribution
[14] with Rice factor that depends on the mean .

For BPSK with maximal ratio combining (MRC), it is well
known [14] that the average bit error rate (BER) is given by

(3)

where is the joint pdf of the SNR vector
.

To compute the integral in (3), the approach taken in previous
papers has been to use the pdf for the sum (see, e.g.,
[1]). For the Nakagami- fading model, the pdf of is obtained
by first modeling in a complicated and somewhatad hoc
manner (see, e.g., [6], [7]).

Our approach is to rewrite the integral in (3) in terms of the
complex envelope vector , whose joint distribution is com-
pletely characterized by and as in (2). This allows us to
arrive at performance results for a general complex Gaussian
probability model for the fading on thechannels. Specifically,

(4)

We now use the alternative expression for the function de-
scribed in [9]

(5)

to rewrite (4) as

Completing squares inside the exponential, exploiting the fact
that , and using fact that a PCG joint pdf integrates to
1, we get

where

Now, a straightforward application of the matrix inversion
lemma [15, pg. 19] yields

(6)

No further simplification is possible in the general case when
. However, since (6) is a single finite-range integral,

with an integrand that is a ratio of polynomials of trigonometric
functions, it can easily be evaluated numerically for any given

and .

A. Special Case: Rayleigh Fading

In the special case where , i.e., the envelopes are
Rayleigh distributed, (6) simplifies to

(7)

Now suppose has distinct eigenvalues , then

(8)

where is the th residue in the partial-fraction expansion, i.e.,

Thus (7) can be written as

(9)

To evaluate the integral in (9), we use the following result from
[11, Appendix B]:

(10)

with .
If we use (10) with in (9), we get the expression for

the BER given in [1, eq. (52)], i.e.,

(11)

If has repeated eigenvalues, then the partial fraction expan-
sion in (8) involves terms of the form

for , and the BER can still be obtained in closed form
using (10).
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III. EXTENSIONS TOMOREGENERAL MODULATION SCHEMES

The results obtained for BPSK with MRC in the previous sec-
tions can easily be extended to a general class of linear modu-
lation schemes with coherent reception and MRC. This class
includes -ary phase shift keying ( -PSK), -ary amplitude
modulation ( -AM) and -ary quadrature amplitude modula-
tion ( -QAM). In all these cases, recent work by Alouiniet al.
(see, e.g., [7], [11]), has shown that the probability of symbol
error , conditioned on , can be written as a linear combina-
tion of terms of the form:

where . For example, for -PSK, there is only
one term with , , , and

(see [7, eq. (31)]). Applying the approach used
in deriving (4), it is easy to see that can be written as a linear
combination of terms of the form

The above integral can be written in closed form in some spe-
cial cases when the fading is Rayleigh, but in general it can be
reduced to a single finite-range integral, with an integrand that
is a ratio of polynomials of trigonometric functions.

Extensions to differentially encoded and nonlinear modula-
tion, with differentially coherent and noncoherent multichannel
reception (respectively), is also possible. In this case we can usu-
ally assume that postdetection equal gain combining (EGC) is
performed. Then, based on work by Simon and Alouini [10],
it can be shown for a wide class of problems that the bit error
probability (conditioned on ) can be written in the form

where , , , and the function are as defined in [10, eq. (62)],
with . Here again it is clear that the steps used
in simplifying (4) can be applied to obtain an easily computable
expression for .

In the special case of binary FSK with noncoherent reception
and EGC, we can use the expression for the BER, conditioned
on , given in [1, eq. (55a)], to get a closed-form expression for

in the general case of Rician fading. (Recall from Section II
that cannot be obtained in closed-form for BPSK with MRC
when the fading is Rician.)

IV. EXAMPLE AND NUMERICAL RESULTS

In this section, we numerically evaluate the results of Sec-
tion II for a BPSK signal subject to correlated fading. While

there are several correlated diversity scenarios of interest (the
diversity could be across space, time, frequency or a combina-
tion thereof), they translate simply into an appropriate choice of
the mean vector and the covariance matrix for in our
model.

For modeling , in the context of correlated fading, it is rea-
sonable to assume that the Rice factor is the same for alldi-
versity paths:1 , , and the th component
of is

(12)

where is the average SNR on theth channel. Note
that may in general be complex, but the marginal distribution
of is unaffected by the phase of .

Next, we consider modeling . When the diffuse component
of the fading process is isotropic, the correlation across space (or
time) follows a Bessel function [16]. (For illustration, we focus
on spatial diversity in the remainder of the letter.) Specifically,
the in-phase and quadrature components are uncorrelated and
the elements of the resulting real covariance matrix are given
by

(13)

where
distance between theth and th antennas;
carrier wavelength;
zeroth-order Bessel function of the first kind.

We also consider the exponential model suggested in [1]. This
model could be representative of the case where the diffuse com-
ponent of the fading is not isotropic, and the diversity has an un-
derlying equispaced nature. In this case, the elements ofare
given by

(14)

where and are (measured) parameters, anddescribes the
equi-spacing in the model. Note that it is possible to obtain the
eigenvalues of in closed form with this model [1].

The results with these models are shown in the following fig-
ures. In all cases, it is assumed that the average bit SNR on each
of the paths is the same: , .

First, we consider Rayleigh fading with the Bessel correla-
tion model and . The antennas are assumed to be spaced
equally,2 so that . A carrier frequency
of 900 MHz is assumed, and the corresponding m.
Fig. 1 shows the variation of with average bit SNR per path

1For receive antenna diversity in particular, correlated fading arises when the
antennas are not sufficiently far apart, and hence, all the antennas can be as-
sumed see a specular component of approximately the same strength.

2In (13), the first zero ofJ (2�(d =� )) occurs atd � 0:383� . If the
antenna spacing is<0:383� , the fading is correlated.
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Fig. 1. Rayleigh fading with Bessel correlation model.

Fig. 2. Ricean Fading with Bessel correlation model,� = 6.

for different values of the spacing parameter. Clearly, as in-
creases, we have greater diversity gain and the curves approach
that corresponding to independent fading. It is worth noting that
correlation can result in as much as 4 dB loss at a BER of .
The same set of curves is shown in Fig. 2 for Ricean fading with

. Along with an expected improvement in overall perfor-
mance, the loss due to the correlation is reduced due to the pres-
ence of the specular component: the loss in SNR at a BER of

reduces to about 1 dB.
Next, we consider the exponential correlation model with

Rayleigh fading. To allow comparison with the Bessel model,
the parameter is set to , and is taken to be 1.5. The re-
sults shown in Fig. 3 are similar to those in Fig. 1. Clearly, we
may expect a similar comparison to hold with Ricean fading as
well.

Finally, we consider a more direct application of the anal-
ysis in the letter. Assume we have two antennas spaced to yield
independent diversity under the Bessel correlation model (so

). The performance of this system is shown in

Fig. 3. Rayleigh fading with exponential correlation model.

Fig. 4. Comparison of cases withL = 2 andL = 3.

Fig. 4. Now, if we place a third antenna between the two an-
tennas (thereby introducing correlation in the fading), the max-
imum improvement in performance (obtained with

) is as shown in Fig. 4. Clearly, the performance is
worse than that obtained with and independent fading,
but on the other hand, a performance improvement with respect
to is obtained without an increase in the overall dimen-
sion of the array. The system designer could tradeoff this im-
provement with the cost of adding the third antenna.

V. CONCLUSION

Recent work (primarily by Simon and Alouini) has shown
that it is possible to obtain unified performance results for a wide
variety of digital signaling schemes on fading channels. We have
established in this letter that this unified performance analysis
can be extended to include multichannel reception with corre-
lated diversity for a general complex Gaussian fading channel
model. We have also presented examples that illustrate the use-
fulness of our results in the context of antenna diversity.
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