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Abstract— Continuous Petri nets were introduced as an
approximation to deal with the state explosion problem which
can appear in discrete event models. When time is introduced,
the flow through a fluidified transition can be defined in many
ways. The most used in literature are infinite and finite servers
semantics. Both can be seen as derived from stochastic Petri
nets. The practical problems addressed in this contribution are:
(1) a sufficient condition for the performance monotonicity,
and (2) a study of the transition semantics, always related to
continuous Petri nets. We prove that under some conditions,
the subclass of mono-T-semiflow is monotone and also for the
same class of nets we prove a property for which infinite servers
semantics offers a better approximation than finite servers
semantics for the discrete model.

I. INTRODUCTION

PETRI nets (PNs) are a well-known formalism to deal
with discrete event systems (DES) [1]. The state ex-

plosion problem appears frequently in such systems, mak-
ing enumerative analysis methods practically inapplicable.
Fluidification is an approximation technique that relaxes the
description by removing the integrality constraints. Applying
this idea to the discrete PNs, the firing of the transitions is
not limited to natural numbers but to positive real numbers
leading to continuous Petri nets (contPNs)[2][3].

As in the discrete case, contPNs can be autonomous
(untimed) or can have time associated with the transitions
or places, namely timed contPNs. In the literature, two
servers semantics are often used in the continuous case, both
closely related to the semantics used in discrete stochastic
PNs. These semantics are: finite servers semantics (constant
speed) and infinite servers semantics (variable speed) [2] [3].

In the first part of the paper the firing speed monotonicity
(i.e. if λ1 ≥ λ2, with λi the vector of firing rate of the
transitions, then the system throughput with λ1 is greater
than or equal to the system throughput with λ2) is studied
for the case of mono-T-semiflow PNs. The second part deals
with the two firing semantics. The objective is to provide
some guiding rule about their use: which semantics is better
and in which conditions? In [4] the authors mention to
have observed that in several cases infinite servers semantics
provides a ”very accurate” approximation of discrete PNs.
In this paper, we prove that infinite servers semantics is
always better for mono-T-semiflow nets under some broad
conditions.
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The results provided here are proved for mono-T-semiflow
nets but can be extended immediately to a more general
class mono-T-semiflow reducible nets (as in [5]). This class
(mono-T-semiflow reducible) offers a significant modeling
power from a practical point of view. Focusing on live and
bounded systems, the class of mono-T-semiflow reducible
nets includes the class of equal conflict nets [6], which
is a superset of the classes of free-choice, choice-free [7],
weighted T-systems and marked graphs nets [8].

This paper is organized as follows: in Section II basic def-
initions of timed contPN and some ideas about fluidification
are given. A characterization of performance monotonicity
with respect to λ is proved in Section III. Section IV provides
a comparison of the most used firing semantics for conPNs
and is demonstrated that infinite servers semantics gives
a better approximation of a discrete model. In Section V
these two semantics are compared using an example. Some
conclusions are given in Section VI.

II. ON THE FLUIDIFICATION OF PN: BASICS SEMANTICS

In the first part of this section we will give a definition
of contPN and timed contPN. We assume that the reader is
familiar with discrete PNs (for more details see [1] [2])

Definition 2.1: A contPN system is a pair 〈N ,m0〉,
where N = 〈P, T,Pre,Post〉 is a net structure with a
set of places P , a set of transitions T and the pre and post
incidence matrices Pre and Post, and m0 is the initial
marking (distributed state).

A transition tj ∈ T is enabled at m iff ∀pi ∈
•tj , mi > 0

and its enabling degree is:

enab(tj ,m) = min
pi∈•tj

{
mi

Pre(pi, tj)

}
An enabled transition t can fire in any amount 0 < α <

enab(t,m) leading to a new marking m′ = m + αC(:, t),
where C = Post − Pre is the token-flow matrix.

A contPN is bounded when every place is bounded (∀p ∈
P,∃bp ∈ R≥0 with m(p) ≤ bp at every reachable marking
m). It is live when every transition is live (it can ultimately
occur from every reachable marking). A net N is structurally
bounded when 〈N ,m0〉 is bounded for every initial marking
m0 and is structurally live when a m0 exists such that
〈N ,m0〉 is live.

Right and left non negative annullers of the token flow
matrix C are called T- and P-semiflows, respectively. If non
negativity is not required, the annullers are called T- and
P-flows. When y · C = 0, y > 0 the net is said to be
conservative, and when C · x = 0, x > 0 the net is said to
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Clients Servers Semantics of the transition
Many(C) Many(C) infinite servers semantics
Many(C) Few(D) finite servers semantics
Few(D) Few(D) discrete transitions
Few(D) Many(C) discrete transitions

TABLE I

ON THE FLUIDIFICATION OF A TRANSITION [9]

be consistent. The support of a vector v is denoted by ||v||
and is the set of the non-zero components.

Two transitions t1 and t2 are said to be in conflict relation
if •t1∩•t2 
= ∅. They are said to be in equal conflict relation
when Pre[P, t1] = Pre[P, t2] 
= 0. As in discrete nets,
continuous nets can be classified according to their structure:
a net is Join Free (JF) if ∀t ∈ T , |•t| ≤ 1; a net is Choice
Free (CF) if ∀p ∈ P , |p•| ≤ 1; a net is Equal Conflict
(EQ) iff ∀t1, t2 ∈ T such that •t1 ∩

•t2 
= ∅, Pre[P, t1] =
Pre[P, t2].

Definition 2.2: A time contPN system is a contPN system
together with a vector λ : T → R>0, where λj is the firing
rate or maximum firing speed (depending on the semantics)
associated to the transition tj .

In this way, the fundamental equation depends on time:
m(τ) = m0 +C ·σ(τ). Differentiating with respect to time
the following equation is obtained: ṁ(τ) = C · σ̇(τ). The
derivative of the firing sequence is the flow of the timed
model: f(τ) = σ̇(τ).

Notice that not every transition can be fluidified, for
example in a traffic system, the ”power on” or ”power off”
of a semaphore is purely discrete and in many cases can be
inappropriate to fluidify it. If some transitions remain discrete
and some are continuous then the model is conceptually
hybrid [2], [9].

In timed continuous models, in order to associate a time
semantics to a transition, it should be taken into account that
a transition is like a station in Queuing Networks (QNs): the
meeting point of servers and clients. If a transition can be
fluidified, the more appropriate firing semantics depends on
the number of servers and clients. According to the values
of these variables, among other elements, the fluidification
may be appropriate or not.

It is evident that if the number of clients is small (Few-Few
and Few-Many in Table I), the transitions ”should” remain
discrete and the fluidification may be unsuitable. Notice that,
in the second case simply the place that models the servers
is implicit [10] and can be removed.

If there are many clients and many servers (Many-Many),
a continuous model with infinite servers semantics ”would”
be reasonable (since there are so many servers that there is no
need to make them explicit). On the other hand, in the case of
many clients and a few servers (Many-Few) the relaxation is
at the level of clients, and finite servers semantics can provide
a good approximation (the firing speed of the transition is
bounded by the product of the speed of a server and the
number of servers in the station), but it may be not the case
(as should be proved later for some cases).

Therefore, (according to Table I) two servers semantics
are often used for continuous approximation: finite servers
semantics (constant speed) and infinite servers semantics
(variable speed) [2], [3]. It might seem that finite servers
is more accurate than infinite servers. However, in PNs the
distinction is not so clear as in Queuing Networks, since
”resources” are usually shared and this is made explicit in the
model. This means that in practice infinite servers semantics
is often more accurate, since the restrictions are more precise.

Under infinite servers semantics it is assumed that the flow
through a synchronization uses the min operator expressing
the number of processable tuples of clients in synchroniza-
tions (in population dynamic systems the product is used
instead [3], expressing probabilities of meeting of tuples of
clients in a synchronization).

Hence, under infinite servers semantics the flow of a
transition tj can be expressed as:

fj = λj · enab(tj ,m) = λj · min
pi∈•tj

{
mi

Pre[pi, tj ]

}
(1)

So, the enabling degree of the transition tj gives the number
of active servers of the transition and the flow will be its
firing rate (λj) times the number of active servers. Notice
that the number of these servers depends only on the marking
of the input places and it is not bounded to any value.

Unlike the previous case, the number of active servers in
a transition under finite server semantics is bounded to a
natural number. Each transition has associated a real number
called maximal firing speed and if the markings of the input
places of a transition are strictly greater than zero, its flow
will be constant, equal with this value (all servers working
at full speed). Otherwise, the flow will be the minimum
between its maximal firing speed and the total input flow
of the places with zero marking.

fj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λj , if 
 ∃pi ∈
•t with mi = 0

min

{
min

pi∈•t|mi=0

{ ∑
t′∈•pi

f [t′]·Post[t′,pi]
Pre[pi,tj ]

}
, λj

}

otherwise
(2)

Example 2.3: Let us consider the continuous relaxed view
of the PN system in Fig. 1 with Buf1, Buf2 > 0. The flow
of the transitions will be:

• Under infinite servers semantics
f1(τ) = λ1 · m[M1]
f2(τ) = λ2 · m[p1]
f3(τ) = λ3 · min {m[p2],m[Buffer1]}
· · ·

• Under finite servers semantics
m[M1] > 0 =⇒ f1(0) = λ1; f10(0) = λ10

m[p1] = 0 =⇒ f2(0) = min {λ2, f1} = min {λ2, λ1}
m[p2] = 0; m[Buffer1] > 0 =⇒ f3(0) =
min {λ3, f2} = min {λ3, λ2}
· · ·

Remark 2.4: The constant λj associated to the transition
tj has a different meaning under each semantics: it is the
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Fig. 1. Continuous mono-T-semiflow reducible net system used in Example 2.3.

firing rate of a transition in the case of infinite servers
semantics and it is a maximal firing speed in the case of
finite servers semantics (it is the product of the number of
the servers and the firing rate of one server).

Piecewise linear behaviors are obtained, either under finite
or infinite servers semantics. Under finite servers semantics
the behavior is changed when a place is emptied; under
infinite servers semantics the change happens when the place
that gives the minimum marking into a synchronization is
changed. In both situations, the switching between the linear
system is given by an internal event.

Under infinite servers semantics, nonlinearity appears due
to synchronizations (|•t| > 1). One linear system is defined
by the set of arcs in Pre constraining the firing of the
transitions.

Definition 2.5: Let Σ = 〈N ,λ,m0〉 be a timed contPN
and m a reachable marking. It will be said that the arc (p, t)

constraints the dynamic of t at m iff: f [t] = λ[t] · m[p]
Pre[p,t] .

Definition 2.6: A configuration of Σ at m is a set of
(p, t) arcs, one per transition, constraining the dynamic of
the system.

Abusing notation, through this paper a configuration will
also represent the set of places that are contained in the
configuration. Each configuration corresponds to one linear
system that can govern the evolution of the contPN system
under infinite servers semantics.

The number of configurations is given by the net structure:

γ =
∏
t∈T

|•t|

We denote by equilibrium configuration a (possible) con-
figuration corresponding to a (possible) steady state marking,
where a steady state marking is the solution of ṁ(τ) = 0.
If the net is consistent and all the transitions are fireable at
least once then m is an equilibrium marking iff is solution
of the following system [11]:⎧⎨

⎩
BT · m0 = BT · m
C · fss = 0
fss ≥ 0

(3)

where BT is a basis of P-semiflow and fss defined as in
(1).

client 1 client 2

k−servers

client 1 client 2

k

(a) (b)

Fig. 2. Petri net with implicit (a) and explicit (b) servers.

A crucial question is: given a PN, how to decide the better
semantics to use in a given case? For example, looking at the
PN system in Fig. 1, if Buf1 = Buf2 = 5, the reachability
tree has 55125 nodes. Increasing the size of these buffers
makes impractical the computation of the reachability tree.
A fluidification of the model may be a solution, but which
semantics approximates better the discrete PN model?

In generalized stochastic PNs a transition can model one
server (single server semantics), ”k” servers working in
parallel (multiple servers semantics) or an infinite number of
servers (infinite servers semantics). To simulate ”k” servers
for a transition a new place is added to the model marked
with ”k” tokens, as in Fig. 2. Hence, in discrete nets, finite
servers semantics can be simulated by infinite servers, just
adding these places [12]. Moreover, sometimes they are even
redundant, as happens for example in the net in Fig. 1.
So, assuming these ”servers places” are made explicit, both
semantics are equivalent. However, their continuous approx-
imations are not equal, because finite servers semantics is
hybrid at the conceptual level: considers infinite ”clients
tokens” and finite number of servers. It is not immediate
to decide which one is better.

Through this paper we will always assume that the places
that model the servers are made explicit.

III. MONOTONICITY AND FLUIDIFICATION

In this section an interesting property of contPNs is stud-
ied, namely monotonicity w.r.t. firing rate λ. This property
is checked in the case of mono-T-semiflow nets.

Definition 3.1: A PN is mono-T-semiflow if it is conser-
vative, consistent and has only one T-semiflow, X , normal-
ized for ti (i.e. X[ti] = 1).

347



Definition 3.2: A contPN system 〈N ,λ,m0〉 is mono-
tone in steady-state with respect to λ if ∀λ1,λ2 with λ1 ≤
λ2 the steady-state throughput of the system 〈N ,λ1,m0〉
is less than or equal to the steady-state throughput of the
system 〈N ,λ2,m0〉.

Under infinite servers semantics, from the flow definition
in (1) it is easy to observe that if the vector λ is multiplied
by a constant k > 1 then the flow will be also multiplied by
k. An increase of the flow by k is obtained also when the
initial marking of the net is multiplied by k. But what occurs
if only some components of λ are increased? Monotonicity
w.r.t. λ does not always hold, but the following can be stated:

Theorem 3.3: Let 〈N ,λ,m0〉 be a mono-T-semiflow
contPN system under infinite servers semantics. If every
possible equilibrium configuration contains the support of
a P-semiflow then 〈N ,λ,m0〉 is monotone in steady state
with respect to λ.

Proof: Let λ1 ≤ λ2, m0 ≥ 0, f1 the steady-state
flow for the net system 〈N ,λ1,m0〉 and m1 the corre-
sponding steady-state marking. Let y1 be the P-semiflow
included. Let f2 be the steady-state flow for the net system
〈N ,λ2,m0〉, m2 the steady-state marking and y2 the P-
semiflow included.

Let us focus on f2 and y2. Every place pj2 ∈ ||y2||
restricts the flow of one output transition, denoted by tj2
and the flow can be written as:

f2[tj2] = λ2[tj2] ·
m2[pj2]

Pre[pj2, tj2]

Using the P-semiflow y2, we can write the token conser-
vation law for every marking taking m2 from the previous
equation:

X

pj2∈||y2||

y2[pj2]·
Pre[pj2, tj2 ] · f2[tj2]

λ2[tj2]
=

X

pj2∈||y2||

y2[pj2]·m1[pj2]

Now, m1[pj2] is not necessarily the marking that limits the
flow of the transition tj2 in the case of f1, but obviously it is
greater than or equal to the marking that limits the transition:

X

pj2∈||y2||

y2[pj2]·m1[pj2] ≥
X

pj2∈||y2||

y2[pj2]·
Pre[pj2, tj2 ] · f1[tj2]

λ1[tj2]
≥

≥
X

pj2∈||y2||

y2[pj2] ·
Pre[pj2, tj2 ] · f1[tj2]

λ2[tj2]

The net is mono-T-semiflow, so f1 = k1 ·X , f2 = k2 ·X
where X > 0 is a T-semiflow and we obtain:

X

pj2∈||y2||

y2[pj2] ·
Pre[pj2, tj2 ] · X[tj2]

λ2[tj2]
· (k2−k1) ≥ 0 =⇒ k2 ≥ k1

�

Unfortunately, in general cases, the monotonicity depends
on the initial marking m0.

Example 3.4: Let us consider the contPN in Fig. 3. This
net is mono-T-semiflow, with X = [1, 1, 1]. The net has 4
configurations: C1 = {p1, p2, p3}, C2 = {p1, p3, p4}, C3 =
{p2, p3, p4} and C4 = {p3, p4}. The P-semiflows are: y1 =
p1 + p2 + p3 and y2 = p1 + 4 · p3 + p4, therefore we have
two configurations that contain a P-semiflow (C1 and C2), one

p1

p2 p3

p4

3

2

2

t1

t2 t3

Fig. 3. Mono-T-semiflow net used in Example 3.4.

configuration that contains a P-flow (C3) (but no P-semiflow)
y3 = y1 − y2 and one configuration that does not contain
any P-flow (C4).

1) Let m0 = [1, 1, 0, 15]. For this marking the configu-
ration C4 cannot be an equilibrium one. If it were, p4

should limit the flow of t1 and t2. Since the net has
one T-semiflow ([1,1,1]) in steady state f1 = f2, and
taking into account the weights (f1 = m4

2 = f2 = m4),
m4 = 0. Steady state flow satisfies f1 = f2 = f3 that
implies m3 = 0. Considering the second P-semiflow
m1 = 16, which is impossible because using the first
P-semiflow m2 and/or m3 should be negative.
Assume now that C3 is the equilibrium configuration.
From the first P-semiflow: m1 + m2 + m3 = 2 =⇒
m1 ≤ 2;m2 ≤ 2;m3 ≤ 2 but m1 ≥ m4 (the
flow of t1 is restricted by p4) then m4 ≤ 2. Using
the second P-semiflow we obtain m1 ≥ 6 which is
impossible. Thus for m0 the only possible equilibrium
configurations are C1 and C2. Both contain P-semiflows
and using Theorem 3.3 the contPN system with this
initial marking is monotone with respect to λ.

2) Let m0 = [15, 1, 1, 0]. C4 cannot be an equilibrium
configuration because in that case m3 = m4 = 0, and
then m1 = 19 (from the second P-semiflow). From the
first P-semiflow m2 should be negative (m2 = y1 −
m1 − m3 = 17 − 19 − 0 = −2).
The configuration containing a P-flow (C3) can be equi-
librium configuration, but non-existing a P-semiflow
gives that the net system is not be monotone. For
example, if λ1 = [1, 1, 1]T , the steady state mark-
ing is: m1 = [16, 0.5, 0.5, 1] and the flow: f1 =
[0.5, 0.5, 0.5]. Putting λ2 = [1, 2, 1]T ≥ λ1, the
steady-state marking is: m2 = [16.33, 0.22, 0.44, 0.88]
and the flow: f2 = [0.44, 0.44, 0.44]. Thus the net
system is not monotone w.r.t. λ.

3) Let m0 = [1, 15, 1, 0]. For λ1 = [2, 1, 1]T , C2 is the
equilibrium configuration: m1 = [1.25, 15, 0.75, 0.75]
and f1 = [0.75, 0.75, 0.75]. Making λ2 = [2, 2, 1]T ,
C4 is the corresponding equilibrium configuration with
m2 = [5, 12, 0, 0] and f2 = [0, 0, 0]. So, the contPN
system is not monotone w.r.t. λ. In this case a deadlock
is obtained.

According to Theorem 3.3, independently of the initial
marking, if all configurations contain a P-semiflow, then the
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underlying net system is monotone w.r.t. λ in steady state
∀m0. Moreover, we will prove that this P-semiflow condition
can be relaxed to P-flow (Corollary 3.7). Let us first consider
the following Lemma and Proposition.

Lemma 3.5: Let N be a consistent JF net. For every
P-flow y of N there exist some P-semiflow y′ such that
||y′|| ⊆ ||y||.

Proof: Dual of Theorem 9 of [7] (T-flows of CF nets).
�

Theorem 3.6: Let 〈N ,λ,m0〉 be a mono-T-semiflow
contPN system under infinite servers semantics. If
〈N ,λ,m0〉 is not monotone in steady state w.r.t. λ, then
there exists a configuration that does not contain any P-flow.

Proof: If 〈N ,λ,m0〉 is not monotone, applying The-
orem 3.3, an equilibrium configuration exists that does not
contain a P-semiflow. Assume that this equilibrium configu-
ration contains one P-flow (or more) and let us consider the
subnet N ′ formed by the set of transitions together with the
places that limit their flow in steady state. Let us call C′

the token flow matrix of this subnet. Since the original net is
mono-T-semiflow, then N ′ is consistent being a configuration
that is obtained by removing the places that do not restrict
the flow of any transition.

Using the previous Lemma, N ′ has a join. Let us call tk
this transition. To simplify, let us assume pi and pj are the
input places of tk that belong to the configuration. Obviously,
only one place restricts the flow of tk. Let us assume pi to
be this one; thus pj restricts the flow of another transition.

If we consider now that tk is restricted by pj and the
other transitions of the subnet by the same places, we obtain
another configuration (possible a non-equilibrium one) in
which place pi was removed. This reasoning can be repeated
with all the P-flows. Clearly, this new configuration does not
contain any P-semiflow (from hypothesis) or P-flow. �

Therefore:
Corollary 3.7: Let 〈N ,λ〉 be a continuous mono-T-

semiflow net under infinite servers semantics. If all configu-
rations contain a P-flow, then ∀m0 the underlying net system
is monotone w.r.t. λ in steady state.

An algorithm to compute all configurations that do not
contain a P-semiflow can be stated. We will give here the
schema, and a more efficient algorithm will be provided in
a future work. The idea here is to use boolean equations
in order to find configurations (covers of the transitions by
arcs connected to its input places) that do not contain a P-
semiflow. Any P-semiflow will provide a boolean equation.
Moreover, if a transition is not a join (|•ti| = 1) its input
place must belong to all configurations (is an essential cover).
Therefore, for every synchronization we should have another
boolean equation ensuring that at least one input place is
taken.

Let γi be a boolean variable: γi = 1 iff pi belongs to
one solution. Let us consider the net in Fig. 3. It has two P-
semiflow: y1 = p1+p2+p3 and y2 = p1+4·p3+p4, so two
boolean equations negating them in the set of solutions are
obtained: γ1 ·γ2 ·γ3 = 0 and γ1 ·γ3 ·γ4 = 0. In order to cover
transitions we need additional equations. For t1: γ1 +γ4 = 1

and the same for t2: γ2 + γ4 = 1. Clearly, p3 being the
only input place in t3 is an essential cover thus γ3 = 1. The
following system of boolean equations is obtained:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1 · γ2 · γ3 = 0 (a)
γ1 · γ3 · γ4 = 0 (b)
γ1 + γ4 = 1 (c)
γ2 + γ4 = 1 (d)
γ3 = 1 (e)

(4)

From (4.e), taking into account (4.a) and (4.b), γ1 ·
(γ2 + γ4) = 0. Using (4.d): γ1 = 0, thus γ2 = � and
γ4 = 1. In summary: γ1 = 0, γ2 = �, γ3 = 1 and γ4 = 1 tell
us that the net has two configurations (C1 = {p3, p4}, C2 =
{p2, p3, p4}) that do not contain the support of a P-semiflow.
Depending on the initial marking these configurations can or
cannot be equilibrium configurations and the monotonicity
may be lost (see Example 3.4).

IV. COMPARISON OF SERVERS SEMANTICS FOR CONTPN

In this section we will compare the throughput of a
continuous net system under infinite and finite servers se-
mantics for the subclass of mono-T-semiflow nets. As we
said, the servers should be made explicit because otherwise
the comparison is inappropriate.

In [5] a branch and bound algorithm is provided to com-
pute upper and lower bounds of the steady-state throughput.
Nevertheless, let us consider a more relaxed computation:

γ = max {y · PD|y · C = 0,y · m0 = 1,y ≥ 0} (5)

where PD(p) = max
t∈p•

P re(p,t)·X(t)
λ(t) and X the T-semiflow

normalized for a transition ti.
Let 〈N ,m0〉 be a mono-T-semiflow net and γ the solution

of LPP (5). According to [5] and [13] the throughput in
steady state verifies fss ≤ 1

γ
X for continuous infinite

servers semantics and discrete system, respectively. More-
over, this bound is reached in the continuous system iff
the steady-state configuration contains the support of a P-
semiflow [5]. Therefore:

Proposition 4.1: [5] Let 〈N ,λ,m0〉 be a mono-T-
semiflow net system. Discrete throughput is less than or
equal to the continuous infinite servers semantics throughput
if all steady-state configurations contains the support of a
P-semiflow.

Hence, if the steady state configuration contains the sup-
port of a P-semiflow, the upper bound of the contPN system
under infinite servers semantics is equal to the throughput of
the system and is superior to the throughput of the discrete
net. Moreover, if the net system is live, the throughput of the
contPN system under finite servers semantics is greater than
or equal to the throughput under infinite servers semantics.
This permits to order these values.

Proposition 4.2: Let 〈N ,λ,m0〉 be a live mono-T-
semiflow contPN system. The throughput in steady-state
under finite servers semantics is greater than or equal to the
throughput under infinite servers semantics.
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Proof: The net is mono-T-semiflow so the throughput
in steady-state should be α ·Xi, where Xi is the T-semiflow
normalized for ti. Under finite servers semantics at least
one transition should be strongly enabled in steady state
(otherwise, the net is not live) and the throughput will be
its maximal firing speed. Therefore, this α is maximal and
under infinite servers semantics the throughput will be less
than or equal to this value. �

The liveness analysis of autonomous and timed continuous
systems is studied in [14] for the subclass of mono-T-
semiflow nets. According to Proposition 4.1 and Proposi-
tion 4.2, the following can be stated:

Theorem 4.3: Let 〈N ,λ,m0〉 be a live mono-T-semiflow
Petri net system with all equilibrium configuration containing
a P-semiflow. The continuous model under infinite servers
semantics provides a better approximation of any T-timed
interpreted discrete model than the continuous model under
finite servers semantics.

In general, the P-semiflow included in the configurations
are difficult to study since the number of configurations
may be very large. However, there are net subclasses for
which it is immediate. For example, for structurally live and
bounded EQ nets (thus conservative, consistent and the rank
of the token flow matrix is equal to the number of conflicts
minus one [6]). In fact, they contain a P-semiflow in every
configuration [6] and can be transformed into equivalent
CF nets [5]. Therefore the conditions of Theorem 4.3 are
satisfied.

Corollary 4.4: Let 〈N ,λ,m0〉 be a structurally live and
structurally bounded EQ net system. Infinite servers se-
mantics provides a better continuous approximation of the
discrete system throughput.

More general net classes exist for which this result holds
too. For example, it holds for the non mono-T-semiflow
net in Fig. 1. Nevertheless, there exist cases in which the
fluidified model under finite servers semantics presents a
smaller deviation from the discrete throughput. Even more,
there are net systems such that the continuous throughput is
not an upper bound of the discrete model.

Example 4.5: Let us return to the net in Fig. 3 with
m0 = [15, 1, 1, 0]. We saw before that for the net system
C3 = {p2, p3, p4} is an equilibrium configuration that does
not contain any P-semiflow. Consider this model as finite
servers semantics with 2 servers in each transition and
maximal firing speed λ = [4, 2, 2]. The steady state flow will
be equal to 2, which is also the (upper) bound [15]. Under
infinite servers semantics, λ = [2, 1, 1] and places modeling
the servers should be added. The steady-state flow obtained
by simulation is 0.75 and the bounds (lower and upper) are
0.67 and 2. As discrete, the steady-state throughput is 1.55
and clearly finite servers semantics is better in this case.

In some cases (mono-T-semiflow reducible nets [5]), timed
continuous nets can be transformed into mono-T-semiflow.
For T-semiflow reducible nets, the visit ratio does not depend
on the initial marking, but is defined by the net structure
and the rates associated to transitions. Therefore, the results
presented here hold for the more general class of mono-T-
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Fig. 4. Equivalent mono-T-semiflow net of the contPN in Fig. 1 (λ∗ =
λ1 + λ10, α = λ1
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, β = λ10
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semiflow reducible nets.

V. CASE STUDY: A MANUFACTURING SYSTEM

We have seen that in general it is not possible to give
an answer regarding the continuous servers semantics which
approximates better the discrete behavior. Performance of a
flexible manufacturing system is compared here.

Let us consider the production system presented in Fig. 1
that has the following P-semiflows: y1 = p1 + p2 + M1 +
p9 + p10 (corresponds to the state of machine M1), y2 =
p3+Buffer1+p11 (Buffer 1), y3 = p4+p5+M2+p12+p13

(machine M2), y4 = p6 + Buffer2 + p14 (Buffer 2) and
y5 = p7 + p8 + M3 + p15 + p16 (machine M3). We have
computed simulations for the continuous model under infinite
and finite (single-server) servers semantics using λ = 1,
Buf1 = Buf2 = 10 and we compare it with the results
obtained in the case of discrete net system. This model is not
mono-T-semiflow but can be transformed into an equivalent
mono-T-semiflow net (see Fig. 4) without changing the
loading/scheduling policy for the underlying manufacturing
system. In fact it has two T-semiflows that correspond to two
production lines and for the particular value of λ1 = λ10,
the ”global” T-semiflow of net in Fig. 1 will be X = 1.
Therefore, in steady state all the transitions will run at the
same speed.

Measuring the flow of transition T7 we have obtained the
following results: Th(T7) = 0.186 for the discrete model,
Th(T7) = 0.2 for the continuous model under infinite servers
semantics and Th(T7) = 1 for the continuous model under
finite servers semantics. The results are showing clearly that
continuous infinite servers semantics fits much better with
the discrete results.

This net is mono-T-semiflow reducible and (as it will be
seen afterwards) the equilibrium configuration contains a P-
semiflow. Therefore, the throughput of the system will be
given by the slowest P-semiflow. Moreover the net system is
live and in that case the exact throughput of the continuous
system under infinite server semantics can be computed in
polynomial time (is equal with the LPP bound (Eq. (5))) [5].
Hence, infinite servers semantics is a better approximation
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than finite servers semantics which is too optimistic in this
case.

In this example, every configuration contains a P-semiflow.
This can be checked writing the boolean system of equations
as explained before for the net in Fig 3 and verifying the
absence of solution. Let us try to find a configuration that
does not contain the support of a P-semiflow. Starting with
the P-semiflow corresponding to M3 (i.e. y5 = p7 + p8 +
M3+p15+p16), the places p7, p8, p15, p16 are essential covers
(because have only one output transition) so should belong to
the configuration. In order to not include this P-semiflow, the
place M3 should be not taken, forcing us to include p6 and
p14 in order to restrict the flow of t7 and t16. Now, taking
into account the P-semiflow y4 = p6 + Buffer2 + p14,
Buffer2 cannot be taken, so p5 and p13 are needed to limit
the flow of t6 and t15 respectively. p4 and p12 are essential
covers and will be taken. Observing y3 = p4 + p5 + M2 +
p12 + p13, M2 cannot be taken, and so p3 and p11 have to
be in the configuration. Watching to y2 = p3 + Buffer1 +
p11, place Buffer1 will not belong to the configuration.
But then, p2, p1,M1, p10, p9 have to be in the configuration.
However, all these places are the support of a P-semiflow (the
one corresponding to the state of the first machine), y1 =
p1 + p2 + M1 + p9 + p10. This means that no configuration
without P-semiflow exists.

VI. CONCLUSIONS

Mono-T-semiflow contPN systems are under discussion
in this paper. First, the monotonicity with respect to firing
rate λ is studied. We prove that if all possible equilibrium
configurations contain the support of a P-semiflow then
the net exhibits this monotonicity. In the second part, a
comparison between the two most used firing semantics for
timed contPN system is provided trying to see which one is
better. A ”good” firing semantics for timed continuous Petri
nets should provide a time evolution ”similar” to the discrete
model. Being a relaxation, an identical result is practically
impossible to obtain. In this paper most used semantics in
the literature, namely infinite and finite servers semantics are
compared. For mono T-semiflow reducible contPN systems
with all equilibrium configuration containing the support of a
P-semiflow we have shown in Section III that infinite servers
semantics is always a better approximation. Nevertheless, in
the actual level of knowledge, in general it is difficult to
answer to this question. In any case, studying many systems
it appears in practice that infinite servers semantics is usually
superior to finite servers semantics. To illustrate this, a real
system modeled with PNs is presented. An interpretation of
this result for these particular cases has been done. Finally,
a preliminary method for computing all configurations not
containing any P-semiflow based on boolean equations have
been presented. Even so, this method will be generalized and
improved from a computational point of view.
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[5] J. Júlvez, L. Recalde, and M. Silva, “Steady-state performance evalu-
ation of continuous mono-T-semiflow Petri nets,” Automatica, vol. 41,
no. 4, pp. 605–616, 2005.

[6] E. Teruel and M. Silva, “Structure theory of equal conflict systems,”
Theoretical Computer Science, vol. 153, no. 1-2, pp. 271–300, 1996.

[7] E. Teruel, J. M. Colom, and M. Silva, “Choice-free Petri nets: A model
for deterministic concurrent systems with bulk services and arrivals,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 27, no. 1, pp.
73–83, 1997.

[8] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed
graphs,” Journal on Computer Systems Science, vol. 5, pp. 72–79,
1971.

[9] M. Silva and L. Recalde, “On fluidification of Petri net models: from
discrete to hybrid and continuous models,” Annual Reviews in Control,
vol. 28, no. 2, pp. 253–266, 2004.

[10] M. Silva, E. Teruel, and J. Colom, “Linear algebraic and linear
programming techniques for the analysis of P/T net systems,” LCNS,
vol. 1, no. 1941, pp. 309–373, 1998.

[11] C. Mahulea, A. Ramı́rez, L. Recalde, and M. Silva, “Steady state
control, zero valued poles and token conservation laws in continuous
net systems,” in Workshop on Control of Hybrid and Discrete Event
Systems. Miami, USA: J.M. Colom, S. Sreenivas and T. Ushio, eds.,
June 2005.

[12] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis, Modelling with Generalized Stochastic Petri Nets. Wiley, 1995.

[13] J. Campos and M. Silva, “Structural techniques and performance
bounds of stochastic Petri net models,” in Advances in Petri Nets 1992,
ser. Lecture Notes in Computer Science, G. Rozenberg, Ed. Springer,
1992, vol. 609, pp. 352–391.
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