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ABSTRACT Error performance is considered as one of the most important performance measures, and
deriving the closed-form expressions for efficient modulation techniques over generalized fading channels
is important for future cellular systems. In this paper, the performance of a dual-hop amplify-and-forward
multi-relay system with best relay selection is analyzed over independent and non-identically distributed
(i.n.i.d.) Nakagami-m fading links with both integer and non-integer fading parameters. The impact of
practical constraints of imperfect channel state information (CSI) and non-linear power amplifier (NLPA)
at each of the relays are considered. Closed-form expressions for the outage probability are derived for both
integer and non-integer fading parameters, and asymptotic analysis on the outage probability is performed to
obtain the diversity order of the considered multi-relay system. Based on the cumulative distribution function
approach, average symbol error rate (ASER) expressions for general order hexagonal QAM, general order
rectangular QAM, and 32-cross QAM schemes are also derived. The comparative analysis of ASER for
various QAM schemes with different constellations is also illustrated. Furthermore, the impact of the number
of relays, fading parameter, channel estimation error, and non-linear distortion on the system performance
is also highlighted. Finally, the derived analytical results are validated through Monte-Carlo simulations.

INDEX TERMS Nakagami-m, multi-relay, imperfect CSI, non-linear power amplifier (NLPA), hexagonal
QAM (HQAM), rectangular QAM (RQAM), cross QAM (XQAM).

I. INTRODUCTION

Cooperative communication has gained enormous attention
in current and future wireless systems due to its improved
spectral efficiency, enhanced coverage and link capacity.
Cooperative relaying has been considered in IEEE 802.16j/m,
3GPP LTE-Advanced and can be viewed as a promising
solution for 5G and beyond systems [1]. To exploit the advan-
tages of relaying systems, there are various relaying schemes
such as amplify-and-forward (AF), decode-and-forward (DF)
and compress-and-forward (CF), amongst which AF is pre-
ferred due to its low cost, easy deployment and low sig-
nal processing resources requirement. Further, the statistical
behavior of the wireless links is characterized by independent
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and non-identically distributed (i.n.i.d.) Nakagami-m fading
which is a versatile channel model and is used to model
variety of fading environments such as single sided Gaus-
sian distribution (m = 1/2) and Rayleigh distribution
(m = 1) as its special cases. It can closely approximate
the Hoyt and Rician distributions, and is also suitable for
characterizing channel fading worse than Rayleigh fading
(0.5 ≤ m < 1) [2].

Further, adaptive transmission has become important
scheme in present and future wireless communication sys-
tems due to adaptive modulation and coding, and optimum
power utilization is adopted in many applications such as dig-
ital broadcasting over cable line, high definition TV (HDTV)
broadcasting services, telephone line modems due to its
increased data throughput and spectral efficiency [3]. Thus,
for optimum utilization of limited bandwidth, adaptive usage
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of different modulation schemes is mandatory for system’s
efficiency and economy.
Hence, for further data-rate enhancement with optimum

spectral efficiency, higher order modulation techniques such
as the family of quadrature amplitude modulations (QAM)
(i.e. squared QAM (SQAM), rectangular QAM (RQAM),
cross QAM (XQAM) and hexagonal QAM (HQAM)) have
gained increased attention due to their high power and band-
width efficiency. RQAM is a versatile modulation scheme
due to the inclusion of SQAM, orthogonal binary frequency
shift keying (OBFSK), quadrature phase shift keying (QPSK)
and multi-level amplitude shift keying (ASK) as its spe-
cial cases. RQAM is efficiently used in various applica-
tions such as high speed mobile communication systems,
telephone-line modems, microwave communications, asym-
metric subscriber loop etc [2]. However, for odd number of
constellation points, RQAM is not a good choice and an opti-
mum XQAM constellation is preferred due to its lower peak
and average power. The XQAM constellation is formed by
modifying the RQAM constellation with the removal of outer
corner points and arranging them such that the peak and aver-
age power of the constellation is reduced. With this, XQAM
provides at-least 1 dB SNR gain over RQAM scheme [4].
XQAM scheme has been adopted in different practical sys-
tems such as XQAM constellations with 5-15 bits are pre-
ferred in asymmetric digital subscriber line (ADSL) and
very high bit-rate digital subscriber line (VDSL). Further,
32-XQAM and 128-XQAM are preferred in digital video
broadcasting-cable (DVB-C) [5]. The increasing demand for
high-data rates directs towards the formation of optimum two
dimensional (2D) hexagonal lattice based constellation which
is referred as HQAM. HQAM has the densest 2D packing
with optimum Euclidean distance between the points even
for the higher order constellations with lower peak to average
power ratio (PAPR) and provides considerable SNR gain over
the other QAM schemes [6]–[8].

A. RELATED WORK

In the literature, considerable work on the average symbol
error rate (ASER) performance of various QAM schemes has
been reported [2], [6], [8]–[14] for different wireless relaying
or non-relaying systems over various fading scenarios with
perfect channel state information (CSI).
In [2], exact ASER expressions of RQAM, π/4-QPSK

and differentially encoded QPSK (De-QPSK) are derived
for a non-relaying multi-branch selection combining (SC)
receiver system over i.n.i.d. Nakagami-m fading channels.
For a multi-relay system, closed-form expressions of ASER
for HQAM, XQAM, RQAM, π/4-QPSK and De-QPSK
are derived in [6] over i.n.i.d. Nakagami-m fading chan-
nels. In [10], bit error rate (BER) performance of hierar-
chical QAM constellations is analyzed. For this, generic
exact expressions of BER for the 4/M-QAM (square and
rectangular) constellations are derived over the additive
white Gaussian noise (AWGN) channel. In [11], closed-form
expressions of ASER for RQAM and XQAM schemes are

derived for a dual-hop DF relaying system over η − µ and
κ − µ fading channels. In [12], closed-form expressions of
ASER for variousM -ary QAM and phase shift keying (PSK)
schemes, and channel capacity are derived for a non-relaying
multi branch system with SC receiver over independent and
identically distributed (i.i.d.) η−µ channels. In [13], symbol
error probability (SEP) expression for general order HQAM
scheme is derived for a non-relaying system over Rayleigh
distributed channel. In [14], ASER performance of triangular
QAM (TQAM) (special case of HQAM) is analyzed for a
non-relaying system over AWGN channel.

In practice, perfect knowledge of CSI at all the com-
munication nodes is not feasible, which introduces channel
estimation error (CEE) at the nodes. CEE has significant
detrimental impact on the system performance which can-
not be ignored [15], [16]. Thus, over the years, researchers
have also analyzed the impact of CEE on various relaying
systems. In [7], closed-form expressions for the outage prob-
ability, asymptotic outage probability and ASER of HQAM
and RQAM schemes are derived for a single relay AF net-
work over i.n.i.d. Nakagami-m fading links with imperfect
CSI. In [17], performance analysis of an AF multi-relay
system with selection cooperation is shown over Rayleigh
distributed channel with imperfect CSI. For a two-way AF
relaying system, finite-SNR diversity-multiplexing trade-off
over Nakagami-m fading channels with imperfect CSI is
shown in [18]. In [19], for a fixed-gain single and opportunis-
tic AF relaying system, accurate SEP expressions of M -ary
PSK over Rayleigh fading channels with imperfect CSI are
derived. In [20], power allocation and relay selection for an
AF multi-relay system with imperfect CSI are investigated.

While moving towards 5G and beyond systems, with the
increasedmultimedia applications throughwireless channels,
the bandwidth requirement has increased. This increased
bandwidth requirement makes the design of a linear power
amplifier (PA) very difficult. In cooperative relaying, high
PAPR occurs not only in uplink but also in downlink due
to the presence of non-linear PA (NLPA) at relays1 which
introduces significant non-linear distortion (NLD) in the
received signal. Therefore, studying the impact of NLDon the
system performance is important from perspective of system
design. Thus, researchers have also observed the impact of
NLD on the performance of various cooperative relaying
systems [21]–[27].
In [22], performance of a single relay AF orthogonal fre-

quency division multiplexing (OFDM) system is analyzed
for maximum ratio combining (MRC) receiver over i.n.i.d.
Nakagami-m fading links with NLPA at the relay. For a
multi-relay AF OFDM system, closed-form expressions for
the outage probability and ASER of RQAM scheme are
derived in [23] by considering NLPA at the relays. In [24],
performance of a single relay AF OFDM system is analyzed
for SC and MRC receivers over Rayleigh distributed links

1In general, relays are small units like user equipments which have less
signal processing resources.
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by considering an NLPA at the relay. In [25], for a two-way
non-linear fixed and variable gain single AF relay system,
closed-form expressions of the outage probability are derived
over Rayleigh fading channels. For a multi-relay AF OFDM
system with SC receiver, closed-form expressions of out-
age probability, asymptotic outage probability and ASER of
SQAM scheme are derived in [26] with NLPA at relays.
For the first time, combined impact of the outdated CSI and

NLD have been observed in [27] on relaying system. In [27],
impact of NLD of high PA (with different PA models) has
been shown on the performance of a multi-relay system using
opportunistic relay selection with outdated CSI. However,
the analysis is limited to Rayleigh distributed channel model
and average bit error rate expressions are derived for general
order PSK, PAM and SQAM schemes only. This renders the
work in [27] limited to singular fading, and recent power
efficient modulation schemes have not been considered.

B. CONTRIBUTIONS

To the best of authors’ knowledge, ASER analysis of var-
ious QAM schemes (HQAM, RQAM and XQAM) for a
multi-relay system over a generalized fading channel (i.n.i.d.
Nakagami-m fading) with imperfect CSI, and NLPA at
the relays is not available in the literature. For the first
time, in this work, an AF multi-relay system over i.n.i.d.
Nakagami-m fading links with both integer and non-integer
fading parameters is considered2 where signals from the best
relay, and source-to-destination (S − D) links are finally
combined using MRC at the destination. Further, imperfect
CSI, and NLPA at the relays are considered.
From this prospective, major contributions of this paper

are:
• End-to-end instantaneous SNR of the considered AF
multi-relay system is derived which comprises of the
CEE due to the imperfect CSI, and NLD due to the
presence of NLPA at the relays.

• Closed-form expressions for the lower-bound (LB) of
the outage probability over i.n.i.d. Nakagami-m fading
links with integer as well as non-integer valued fading
parameters are derived and asymptotic analysis on the
outage probability is performed in high SNR regime to
obtain the diversity order of the considered system. Fur-
ther, impact of the NLPA on the outage performance is
observed by considering various threshold SNRs for the
outage probability. Additionally, impact of the number
of relays (N ), and placement of the relays on the outage
performance is also illustrated.

• Based on the CDF approach, closed-form LB expres-
sions of the ASER for general order HQAM, general
order RQAM and 32-XQAM schemes are derived. Fur-
ther, a comparative analysis of ASER for various QAM
schemes with different constellations is presented.

2In the literature, most of the work is limited to integer value of fading
parameter for the Nakagami-m distributed links. However, in practice, fading
parameter m can take any arbitrary value. Thus, in this work, we focus on
both integer and non-integer values of fading parameters for generality and
completeness.

• Impact of fading parameter (m), number of relays (N ),
CEE and NLD is highlighted on the system performance
and useful insights have been obtained.

Rest of the paper is organized as follows. In Section II,
the considered system and channel models are presented.
Section III consists of the outage probability analysis of the
considered system. Asymptotic analysis on the outage proba-
bility is shown in Section IV. In Section V, ASER expressions
for various QAM schemes with different constellation orders
are derived. Theoretical and simulation results are presented
in Section VI. Finally, conclusions are drawn in Section VII.
Notations: Nak(mi, �i) represents the Nakagami-m distri-

bution with fading severity mi and average power �i. x ∼

CN (0, �x) represents a complex Gaussian random variable
with 0 mean and variance �x . F(·), f (·) and u(·), denote the
cumulative distribution function (CDF), probability density
function (PDF) and unit-step function of a random variable,
respectively. P(·), E[·], (·)∗, Ŵ(·), Ŵ(·, ·) and ϒ(·, ·) repre-
sent the probability, statistical expectation operator, complex
conjugate, complete, upper incomplete, and lower incom-
plete gamma functions, respectively. B(·, ·), 1F1(·; ·; ·) and
2F1(·, ·; ·; ·) represent the Beta function, confluent hyperge-
ometric function of first kind and Gaussian hypergeometric
function, respectively.

II. SYSTEM AND CHANNEL MODELS

In this work, a dual-hop AF multi-relay system with the best
relay selection is considered. The end-to-end communication
between the source S and the destination D is accomplished
through a direct S − D link, and through N indirect links
using R1,R2, . . . ,RN relay nodes as shown in FIGURE 1.
All the nodes are equipped with single antenna and com-
municate in half-duplex mode. Further, all the nodes are
assumed synchronized at the symbol levels. Statistical behav-
ior of the ith link3 is considered to be i.n.i.d. frequency flat
complex Nakagami-m with uniform large scale path-loss.
Amplitude of the ith link’s channel coefficient (hi) is modeled

FIGURE 1. Dual-hop multi-relay AF system with best relay selection and
NLPA at the relay.
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asNak(mi, �i). Distance of the ith link between the two nodes
is represented by di. It is considered that all the relay nodes
are placed in proximity, and hence, inter-relay distance is very
small as compared to the distances of the relays from S andD.

CSI at the relay and destination nodes is assumed to be
unknown and hence, minimum mean squared error (MMSE)
estimation is performed at Rn and D. Let ĥi be the estimate of
hi. Thus, according to MMSE, equality hi = (ĥi + ei) holds
between them where ei is the CEE which can be modeled
as ei ∼ CN (0, �ei ). From the principal of orthogonality,
estimation error for optimum MMSE is orthogonal to the
channel realization hi, i.e., E[eih∗

i ] = 0 which corresponds
to �hi = �̂hi +�ei [17]. The variance of CEE is considered

as �ei = �hi
(1+ργ0�hi )

. Hence, �̂hi =
ργ0�

2
hi

(1+ργ0�hi )
, where γ0 =

Ps/�0 represents the average transmit SNR, and ρ > 0
represents the quality of channel estimation [18].

In the first transmission phase, S transmits information sig-
nal (X ) with source power (Ps) to Rn and D, simultaneously.
Thus, the respective signals received at the nth relay and D
will be

ysrn =
√

Ps(ĥsrn + esrn )X + nsrn , (1)

ysd =
√

Ps(ĥsd + esd )X + nsd , (2)

where ni ∼ CN (0, �0) is the AWGN associated with the
ith link with identical noise variance �0. During the second
phase of transmission, Rn amplifies the signal received from

S with an amplification factor Gn =
√

Pr
Ps(|ĥsrn |2+�esrn )+�0

.

Thus, signal at nth relay will be y′Rn = Gnysrn . Further,
NLPA is considered at each of the relays which can be
modeled as a memoryless function. According to the exten-
sion of the Bussgang’s theorem, output of a memoryless
non-linear system can be expressed as the summation of the
attenuated replicas of the input signal with an uncorrelated
noise signal [27]–[29]. Hence, output of the NLPA can be
expressed as

yRn = K0y
′
Rn

+ ND, (3)

where K0 is constant and ND ∼ CN (0, �ND ) is the
NLD [22], [24], [26], [27], [30]. Closed-form expressions of

K0 and �ND are K0 = 1 − e
−
(

A2sat
Pr

)

+ Asat
√
π

2
√
Pr

erfc
(

Asat√
Pr

)

and

�ND = Pr (1 − e
−
(

A2sat
Pr

)

− |K0|2), respectively for the com-
monly used soft envelop limiter (SEL) PA model [22], [30].
Here Asat represents the saturation amplitude of the PA and
erfc(·) is the complementary error function.
Finally, output of the NLPA is forwarded to D. Thus,

the signal received from the nth relay to D can be expressed

3The i ∈ (sd, srn, rnd), where 1 ≤ n ≤ N denotes the indexing of relays.

as

yrnd = yRn (ĥrnd + ernd ) + nrnd

= GnK0
√

Ps(ĥsrn + esrn )(ĥrnd + ernd )X + nrnd

+GnK0(ĥrnd + ernd )nsrn + (ĥrnd + ernd )ND. (4)

Thus, instantaneous end-to-end SNR of S − Rn −D link can
be written as (5), as shown at the bottom of this page, where

γ̂srn = Ps|ĥsrn |2
�0

and γ̂rnd = PrK
2
0 |ĥrnd |2
�0

represent the instanta-
neous estimated gains of S−Rn andRn−D links, respectively.

Further, γpa = PrK
2
0

�0
represents the instantaneous gain of the

PA. Similarly, Lsrn = (1+ εrnd ) and Lrnd = (1+ εsrn ), where
εsrn = Ps�esrn

�0
and εrnd = PrK

2
0�ernd
�0

.
For moderate and high SNRs, for mathematical tractability,

term (γpaLsrnLrnd + γ̂rndLrnd + γ̂srnεrnd + Lrndεrnd ) can be
ignored from (5) by assuming that both the estimation errors
and noise variances are small in practice [17], [18], [31].
Thus, for moderate and high SNRs, (5) can be approximated
as

γsrnd = γ̂srn γ̂rndγpa

γ̂srnγpaLsrn + γpaγ̂rndLrnd + γ̂srn γ̂rnd
. (6)

To make the analysis mathematically tractable, γsrnd can
be further approximated with its lower-bound (LB) and
upper-bound (UB) as

γ LBsrnd ≤ γsrnd ≤ γUBsrnd
, (7)

where

γ LBsrnd = 1

3
min

( γ̂srn

Lrnd
, γpa,

γ̂rnd

Lsrn

)

, (8)

γUBsrnd
= min

( γ̂srn

Lrnd
, γpa,

γ̂rnd

Lsrn

)

. (9)

Similarly, instantaneous SNR of S − D link can be given as

γsd = γ̂sd

Lsd
, (10)

where γ̂sd = Ps|Ĥsd |2
�0

, Lsd = (1 + εsd ) and εsd = Ps�esd
�0

.
Finally, the best relay is selected andMRCbetween nth best

relay and S − D links is performed at the destination. Thus,
end-to-end SNR at D can be given as

γe2e = γsd + γ ∗
srnd

. (11)

where γ ∗
srnd

= argmax
n∈{1,...,N }

{γsrnd }.

γsrnd = γ̂srn γ̂rndγpa

γ̂srnγpaLsrn + γpaγ̂rndLrnd + γ̂srn γ̂rnd + γpaLsrnLrnd + γ̂rndLrnd + γ̂srnεrnd + Lrndεrnd
. (5)
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III. OUTAGE PROBABILITY

Outage probability is one of the important performance mea-
sures which is mainly used in slow fading scenario. Outage
probability is defined as the probability that the end-to-end
SNR of the considered system reaches below a predefined
threshold (γth). LB of the outage probability (for the consid-
ered UB of the end-to-end SNR (γUBe2e )) can be given as

P
LB
out (γth) = P(γUBe2e ≤ γth)

= P((γsd + argmax
n∈{1,...,N }

{γUBsrnd
}) ≤ γth)

=
∫ ∞

0
fγsd (x)Fγ ∗

srnd
(γth − x)dx, (12)

where fγsd (·) and Fγ ∗
srnd

(·) represent the PDF of direct S −
D link and the CDF of the best indirect S − Rn − D link,
respectively.
Theorem 1:Depending upon the value of fading parameter,

outage analysis is categorized into two following cases:

A. INTEGER VALUED FADING PARAMETER

For integer valued fading parameter, closed-form expression
for the LB of the outage probability can be expressed as

P
LB
out (γth) = 1

Ŵ(msd )
ϒ(msd ,C3γth) +91γ

(j+k−l)
th

× e−C2γth
[

Ŵ
(

msd + l, γmax(C3 − C2)
)

−Ŵ
(

msd + l, γth(C3 − C2)
)

]

, (13)

where 91 =
∑N

n=1
∑n(msrn−1)

j=0

∑n(mrnd−1)
k=0

(

N
n

)

(−1)nϕnj ϕ
n
k

× C
msd
3

Ŵ(msd )
η
j
1η

k
2

∑j+k
l=0

(

j+k
l

)

(−1)l(C3 − C2)−(msd+l), C2 =
n(η1 + η2), C3 = msd (1+εsd )

¯̂γsd
, η1 =

(

msrnLrnd
¯̂γsrn

)

, η2 =
(

mrndLsrn
¯̂γrnd

)

and γmax = max(0, γth − γ̄pa).

B. NON-INTEGER VALUED FADING PARAMETER

For the non-integer valued fading parameter, closed-form
expression for the LB of the outage probability can be
expressed as

P
LB
out (γth) =

∞
∑

g=0

C
msd+g
3

Ŵ(msd+g+1)
e−C3γthγ

msd+g
th +92γ

(C5−i1)
th

×e−C4γth
[

Ŵ(msd + i1, (C3 − C4)γmax)

−Ŵ(msd + i1, (C3 − C4)γth)
]

, (14)

where 92 = C
msd
3

Ŵ(msd )

∑N
n=1

(

N
n

)
∑n

p=0

(

n
p

)
∑n

p1=0

(

n
p1

)

(−1)(n+p+p1)
∑∞
υ1=0

∑∞
υ2=0 ψ

p
υ1ψ

p1
υ2

∑∞
i1=0(−1)i1

(

C5
i1

)

(C3 −
C4)−(msd+i1),C4 = (pη1+p1η2) andC5 = (υ1+υ2+pmsrn+
p1mrnd ).

Proof: See Appendix A.

IV. ASYMPTOTIC OUTAGE PROBABILITY

In this Section, asymptotic analysis on the outage probability
is performed to obtain the diversity order of the considered
multi-relay system.
Theorem 2: As the outage probability consists of the term

γmax = max(0, γth − γ̄pa), asymptotic analysis on the outage
probability is performed for two cases when γth < γ̄pa, and
when γth > γ̄pa to illustrate the impact of NLD caused by the
NLPA on the system performance.
Case 1: For γth < γ̄pa
For the considered case, closed-form asymptotic outage

probability expression for the arbitrary value of fading param-
eter can be given as

P
asym
out (γth) ≈

N
∑

n=0

n
∑

j=0

n
∑

k=0

(

N

n

)(

n

j

)(

n

k

)

(−1)n+j+k

×B(jmsrn + kmrnd + 1,msd )

× (C3γth)msd

Ŵ(msd )

(η1γth)jmsrn

(msrn !)j
(η2γth)kmrnd

(mrnd !)k
. (15)

In (15), asymptotic outage probability is derived for γth <
γ̄pa which depends upon N , msd , msrn , mrnd , C3, η1 and η2.
Further, C3, η1 and η2 depend on CEE coefficients Lsd , Lsrn
and Lrnd , respectively. For perfect CSI case, there is no CEE
and hence, Li = 1 as εi = 0 due to �ei = 0. Therefore,
from (15) we can conclude that the diversity order of the
considered system for γth < γ̄pa is [msd +N min(msrn ,mrnd )]
with perfect CSI consideration depends on N , msd , msrn and
mrnd .

For imperfect CSI,
(

�ei = �hi
(1+ργ0�hi )

)

→ 0 for high
transmit SNR (γ0 → ∞). Thus, the diversity order remains
same as in perfect CSI case, since the variance of CEE is
dependent on the SNR. However, degradation in the outage
performance is observed.
Case 2: For γth > γ̄pa
For the considered case, closed-form expression for the

asymptotic outage probability for arbitrary value of fading
parameter can be given as

P
asym
out (γth) ≈

C
msd
3

msd !
(

1 − γ̄pa

γth

)msd
. (16)

From (16), it is clear that the asymptotic outage prob-
ability consists of msd and C3. Thus, considering perfect
CSI, from (16) it is concluded that the diversity order of the
considered system is msd and is independent of N , msrn and
mrnd . For imperfect CSI, �ei → 0 as γ0 → ∞. Hence,
the same diversity order is achieved with some degradation
in the outage performance.

Proof: See Appendix B.

V. ASER ANALYSIS

A CDF based generalized ASER expression for digital mod-
ulation technique is given as

Ps(e) = −
∫ ∞

0
P

′
s(e|γ )Pout (γ )dγ, (17)
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where P ′
s(e|γ ) represents the first derivative of the condi-

tional SEP
(

Ps(e|γ )
)

for the received SNR. To make the
ASER analysis mathematically tractable, LB of the outage
probability (PLB

out (γ )) is considered. Thus, the LB expressions
for the ASER for various QAM schemes are shown below:

A. HEXAGONAL QAM

Theorem 3:

1) INTEGER VALUED FADING PARAMETER

For integer valued fading parameter, analytical ASER expres-
sion for the general order HQAM scheme can be given as
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, (18)

where
4 = eγpa(C3−C2)

∑msd+l−1
l1=0

(C3−C2)l1
l1!

∑l1
u=0

(

l1
u

)

(−γpa)(l1−u),
F(θ, φ) = C

msd
3 Ŵ(msd+θ )

msd !(C3+φ)(msd+θ ) 2F1

(

1,msd + θ;msd + 1; C3
C3+φ

)

,

G(θ, φ) = Ŵ(msd + l)(C2 + φ)−(j+k−l+θ )ϒ(j + k − l +
θ, (C2+φ)γpa),H(θ, φ) = Ŵ(msd + l)(C3 + φ)−(j+k+u−l+θ )

Ŵ(j+ k + u− l + θ, (C3 + φ)γpa), and I(θ, φ) =
(C3−C2)msd+lŴ(msd+j+k+θ )
(j+k−l+θ)(C3+φ)(msd+j+k+θ ) 2F1

(

1,msd + j + k + θ; j + k −
l + θ + 1; C2+φ

C3+φ

)

. Further, α, τ and τc are constants defined
in [13], [32] and their different values are used to select
various HQAM constellations.

2) NON-INTEGER VALUED FADING PARAMETER

For non-integer valued fading parameter, ASER expression
for the general order HQAM scheme can be given as
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(19)

where C6 =
∑∞

g=0
C
msd+g
3

Ŵ(msd+g+1) , 93 = Ŵ(msd +
i1)

∑∞
g=0

1
Ŵ(msd+i1+g+1)e

(C3−C4)γpa (C3 − C4)(msd+i1+g)
∑∞

q1=0

(

msd+i1+g
q1

)

(−γpa)q1 , I1(θ, φ) = Ŵ(msd + g +
θ )(φ+C3)−(msd+g+θ ), I2(θ, φ) = (C3−C4)(msd+i1)Ŵ(C5+θ+msd )

Ŵ(C5−i1+θ )(C3+φ)(C5+θ+msd ) 2

F1

(

1, (C5 + θ +msd ); (C5 − i1 + θ + 1); C4+φ
C3+φ

)

, I3(θ, φ) =
Ŵ(C5 − i1 + θ )(C4 + φ)−(C5−i1+θ ) and I4(θ, φ) = Ŵ((C5 +
msd + g− q1 + θ ), (C3 + φ)γpa)(C3 + φ)−(C5+msd+g−q1+θ ).

Proof: See Appendix C.

B. RECTANGULAR QAM

Theorem 4:

1) INTEGER VALUED FADING PARAMETER

For integer valued fading parameter, ASER expression for the
general order RQAM scheme can be given as
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, (20)

where p0 = 1 − (1/MI ), q0 = 1 − (1/MQ), a0 =
√

6/((M2
I − 1) + (M2

Q − 1)λ2), b0 = λa0, and λ = dQ/dI

represents the ratio of quadrature and in-phase decision dis-
tances. Also, MI and MQ represent respectively the in-phase
and quadrature phase constellation points.
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2) NON-INTEGER VALUED FADING PARAMETER

For non-integer valued fading parameter, ASER expression
for the general order RQAM scheme can be given as
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Proof: See Appendix D.

C. CROSS QAM

Theorem 5:

1) INTEGER VALUED FADING PARAMETER

For integer valued fading parameter, ASER expression for
32-XQAM scheme can be given as

P
X
e = 1

8

[

3

2

√

χ

π

[

F

(1

2
, χ

)

+91

{

G

(1

2
, χ

)

+4H

(1

2
, χ

)

− I

(1

2
, χ

)}]

+
√

χ

2π

[

F

(1

2
, 2χ

)

+91

{

G

(1

2
, 2χ

)

+4H
(1

2
, 2χ

)

− I

(1

2
, 2χ

)

}

]

+ 23χ

π

∞
∑

r=0

(1)r
r !(1.5)r

χ r

×
[

F
(

r + 1, 2χ
)

+91
{

G
(

r + 1, 2χ
)

+4H
(

r + 1, 2χ
)

− I
(

r + 1, 2χ
)}

]

]

, (22)

where χ = 48/(31M − 32).

2) NON-INTEGER VALUED FADING PARAMETER

For non-integer valued fading parameter, ASER expression
for 32-XQAM scheme can be given as
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Proof: See Appendix E.

VI. THEORETICAL AND SIMULATION RESULTS

In this Section, theoretical and simulation results of the out-
age probability, asymptotic outage probability and ASER for
the HQAM, RQAM and XQAM schemes are presented to
demonstrate the performance of the considered multi-relay
system. For analysis, Ps = Pr = 0.5 is used. Further,
�i = 1/dai where a linear network geometry dsr + drd =
1 with dsr , drd ∈ (0, 1) and path-loss factor a = 4 is
considered. A SEL power amplifier model with saturation
amplitude Asat = 1 is considered at each of the relays whose
average SNR is γ̄pa = 17.5 dB for Ps = Pr = 0.5.
Various infinite series present in the analytical lower-bound
outage probability expression (14), which also reflect in the
ASER expressions of HQAM, RQAM and XQAM schemes
for the non-integer fading parameter consideration. However,
to obtain numerical values for the derived expressions, these
infinite series must be truncated to some finite values. Trun-
cation is performed in such a manner that reduces computa-
tional complexity with considerable accuracy. Thus, infinite
summations g, i1, υ1 and υ2 are truncated to fixed finite values
G1, I1, V1 and V2, respectively, and G1 = 50, I1 = 30 and
V1 = V2 = 10 are considered for considerable accuracy with
acceptable computational complexity.
In FIGURE 2, theoretical, simulation and asymptotic out-

age probability against transmit SNR are compared for vari-
ous threshold SNRs (10 dB, 20 dB). For comparison, various
values of mi, N , and NLPA at the relays are considered
for perfect CSI (ρ = ∞), and imperfect CSI (ρ = 1)
cases. For all the considered cases, simulation results match
the theoretical results which validates the derived theoretical
outage probability. Further, the theoretical results are always
below the simulation results which justifies the LB of the
outage probability. To obtain diversity order of the considered
system, asymptotic analysis on the outage probability is also
performed for γth < γ̄pa and for γth > γ̄pa cases. Considering
perfect CSI, from the analysis it is observed that for γth < γ̄pa,
diversity order is [msd + N min(msrn ,mrnd )] which depends
on msd , msrn , mrnd and N . For γth > γ̄pa, diversity order of
the considered network is msd which depends only on msd
and hence, there is no impact of msrn , mrnd and N on the
outage performance. Further, for imperfect CSI (ρ = 1),
diversity order remains same as in perfect CSI condition for
both the cases (i.e. for γth < γ̄pa and γth > γ̄pa) (since
variance of CEE depends on SNR). However, degradation in
outage performance is observed for all the considered cases
with imperfect CSI as also reported in [7]. From FIGURE 2,
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FIGURE 2. Comparison of theoretical, simulation and asymptotic results of outage probability with perfect and imperfect CSI, and NLPA at the relays.

FIGURE 3. Comparative analysis of outage probability against normalized relay distance dsr with perfect CSI (left) and imperfect CSI (right) cases, in the
presence of NLPA at the relays.

it is observed that to obtain an outage probability of 10−4

for γth < γ̄pa (γth = 10 dB) and for mi = 1, around 8 dB
SNR gain is achieved with the increase in N from 1 to 2. For
N = 1, around 6.7 dB and 10 dB SNR gains are achieved
with the increase in mi from 1 to 3/2 and 1 to 2, respectively
for perfect as well as imperfect CSI cases. Further, to achieve
10−4 outage probability, approx. 3 dB degradation in SNR
is observed for imperfect CSI (ρ = 1) over perfect CSI
case for all the combinations of mi and N . For γth > γ̄pa
(γth = 20 dB), there is no impact of relay selection, and
outage performance improves only with the increase in msd .
Thus, it can be concluded that the improvement in the outage
performance is more with the increase in mi than N specially
in the presence of NLPA at the relays.

In FIGURE 3, comparative analysis of theoretical results
for the outage probability against normalized relay distance

dsr is illustrated for perfect CSI (left) as well as imperfect
CSI (right) cases. For analysis, various combinations of msrn ,
mrnd and msd , and different values of N with NLPA at the
relays are considered. From analysis, it is observed that for
γth < γ̄pa and for msrn = mrnd (integer as well as non-integer
values), optimum relay placement must be in the middle of S
andD, irrespective of the values ofmsd . However, for unequal
values of msrn and mrnd , relay should be placed closer to S or
D for higher value of mrnd or msrn , respectively. Moreover,
for γth > γ̄pa, diversity order of the considered network is
msd . Thus, the outage performance is affected by only msd
and there is no impact of the relay selection and the relay
placement.

In FIGURE 4 and FIGURE 5, comparison of theoretical
and simulation results of ASER for the 16-HQAM with
perfect CSI and imperfect CSI, respectively are illustrated
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FIGURE 4. Comparison of theoretical and simulation results of ASER for 16-HQAM with perfect CSI, and NLPA at the relays.

FIGURE 5. Comparison of theoretical and simulation results of ASER for 16-HQAM with imperfect CSI, and NLPA at the relays.

for different values of mi and N with NLPA at the relays.
From FIGURE 4 and FIGURE 5, it is observed that for
all the considered cases, theoretical results match well with
the simulation results which validates the derived theoretical
results. Further, LB of the theoretical results is also justified
as it is always below the simulation results. From FIGURE
4 and FIGURE 5, it is observed that for mi = 1 and N = 1,
approximately 0.5 dB SNR degradation is received to obtain
ASER of 10−4 for the 16-HQAM when NLPA is considered
over LPA at the relays, for perfect as well as imperfect CSI
cases. For mi = 1 and N = 2, for ASER of 10−4 for
16-HQAM, approx. 1.77 dB and 1.90 dB SNR degrada-
tion is observed for perfect CSI and imperfect CSI cases,

respectively with NLPA over LPA at the relays. Further, for
perfect CSI, keeping mi = 1 and increasing N from 1 to 2,
SNR gain of around 7.18 dB is achieved for 10−4 ASER
with LPA consideration which is reduced to 5.80 dB with
NLPA consideration. At high SNR, the ASER performance
deteriorates further and negligible improvement in ASER
performance is received for higher order QAM constellations
with the increase in N , in presence of NLPA. For perfect
CSI, keeping N = 1 and increasing mi from 1 to 2, SNR
gain of approx. 8.215 dB and 7.822 dB is observed for 10−4

ASER of 16-HQAM for LPA and NLPA, respectively at the
relays. For non-integer valued fading parameter with perfect
CSI, keeping mi = 3/2 and increasing N from 1 to 2, SNR
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FIGURE 6. Comparison of theoretical and simulation results of ASER for 4 × 2-RQAM with perfect CSI, and NLPA at the relays.

gain of around 4.4 dB is achieved for 10−4 ASER with
LPA consideration which is reduced to 2.4 dB with NLPA
consideration. Further, for perfect CSI, keeping N = 1 and
increasing mi from 3/2 to 5/2, SNR gains of approx. 2.8 dB
and 2.54 dB are observed for 10−4 ASER of 16-HQAM for
LPA and NLPA, respectively at the relays.

Further, to achieve 10−4 ASER, approx. 3 dB SNR degra-
dation is observed for imperfect CSI case (ρ = 1) over the
perfect CSI case (ρ → ∞), for all the combinations of mi
and N and for both the LPA and NLPA considerations. Thus,
from the above discussion, it can be concluded that increase in
fading parameter mi provides higher SNR gain than increase
in N specially in case of NLPA at the relays. In case of NLPA
over LPA, SNR gain is reduced for all the combinations of
mi and N which reduces further for increasing constellation
orders in medium and high SNR regime.

In FIGURE 6, comparison of theoretical and simulation
results of ASER for 4×2-RQAM scheme with perfect CSI is
illustrated for different values of mi and N with NLPA at the
relays. In FIGURE 6, only the perfect CSI case is considered
since for imperfect CSI, similar ASER behavior is obtained
however, with approx. 3 dB decrease in SNR than perfect CSI
case for all the combinations of mi and N . From FIGURE 6,
it is observed that for all the considered cases, theoretical
results match well with the simulation results which validates
the derived theoretical results. Further, it is observed that
keeping mi = 1 and increasing N from 1 to 2, SNR gain of
around 7.019 dB and 6.985 dB are achieved to obtain 10−4

ASER of 4 × 2-RQAM for the respective LPA and NLPA
considerations at the relays. Further, keeping N = 1 and
increasing mi from 1 to 2, SNR gain of around 7.992 dB and
7.981 dB are achieved for ASER of 10−4 for 4×2-RQAM for
both LPA andNLPA considerations at the relays, respectively.

In FIGURE 7, comparison of theoretical ASER results for
4-HQAM and 64-HQAM with respective SQAM schemes is

shown for mi = 1 and different values of N , by considering
both perfect and imperfect CSI cases with NLPA at the relays.
From FIGURE 7, it is observed that for all the investigated
cases, ASER performance of 4-HQAM is slightly lower than
4-SQAM due to larger τ for HQAM with same α. How-
ever, for higher constellation order (M ), HQAM outperforms
SQAM due to higher values of α with relatively lower PAPR
than SQAM [6], [13]. From FIGURE 7, it is observed that for
mi = 1 and N = 1, 4-SQAM provides approx. 0.15 dB SNR
gain over 4-HQAM. However, with the increase in constel-
lation points M , HQAM perform better than SQAM and for
mi = 1 and N = 1, 64-HQAM provides approx. 0.5 dB gain
over 64-SQAM. Further, from FIGURE 7, it is clear that there
is no impact of NLD on the ASER performance of HQAM
and SQAM for lower order constellation M = 4. However,
impact of NLD increases with the increase in M from 4 to
16 to 64 which obliterates the impact of relay selection for
M = 64 (as can be seen from FIGURE 7.)
In FIGURE 8, theoretical results of ASER for 32-HQAM,

32-XQAM and 8 × 4-RQAM are compared for different
values of mi and N with perfect CSI and NLPA at the
relays. It is observed that 32-XQAM provides improved
ASER performance than 8× 4-RQAM for all the considered
cases due to its lower PAPR than RQAM scheme. Further,
32-HQAM outperforms the 32-XQAM for all the considered
cases as observed in FIGURE 8. This shows the superiority
of HQAM over the other modulation schemes. For mi = 1
and N = 1, to obtain an ASER of 10−4, 32-HQAM provides
around 0.16 dB and 1.29 dB SNR gain over 32-XQAM and
8 × 4-RQAM schemes, respectively in the presence of LPA.
However, for mi = 1 and N = 1, to obtain an ASER of
10−4, 32-HQAM provides around 0.90 dB and 4.9 dB SNR
gain over 32-XQAM and 8×4-RQAM schemes, respectively
in the presence of NLPA. Thus, for mi = 1 and N = 1,
around 8.87 dB decrease in the SNR is obtained to achieve an
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FIGURE 7. Comparison of theoretical results of ASER for 4-HQAM and
64-HQAM with respective SQAM schemes, for mi = 1 in perfect and
imperfect CSI conditions with NLPA at the relays.

FIGURE 8. Comparative analysis of theoretical results of ASER for
32-HQAM, 32-XQAM and 8 × 4-RQAM schemes in perfect CSI conditions
with NLPA at the relays.

ASER of 10−4 for 32-HQAM with NLPA. Further, keeping
N = 1 and increasing mi from 1 to 3/2, respective SNR
gain of around 6.65 dB and 6.43 dB are obtained to achieve
10−4 ASER of 32-HQAM in the absence and presence of
NLPA. However, keeping mi = 1 and increasing N from 1
to 2, respective SNR gain of around 7.25 dB and 0.07 dB
are obtained at ASER of 10−4 for 32-HQAM in both the
absence and presence of NLPA. Thus, increase inmi provides
significant gain in ASER performance as compared to the
increase in N for all the considered cases (especially in case
of NLPA where the impact of relay selection is negligible for
the higher order constellations.)

VII. CONCLUSION

In this paper, closed-form expressions of the outage prob-
ability, and ASER for general order HQAM, general order
RQAM and 32-XQAM schemes over Nakagami-m fading
links with both integer as well as non-integer fading param-
eter have been derived and compared for the considered
multi-relay system. Further, asymptotic analysis on the out-
age probability has been carried out to obtain the diversity
order of the considered system. Impact of the fading param-
eter, number of relays, NLD and CEE on the system perfor-
mance have also been illustrated. Due to the high data-rate
with optimum spectral efficiency and their applicability for
both the even and odd power of 2 constellations, these higher
order QAM schemes are expected to design more reliable,
flexible and efficient broadcasting and mobile communica-
tion systems.

APPENDIX A

LB of the CDF of indirect S − Rn −D link can be expressed
as

Fγ ∗
srnd

(γth) = P

(

argmax
n∈{1,...,N }

{γUBsrnd
} ≤ γth

)

= P

(

argmax
n∈{1,...,N }

min
( γ̂srn

Lrnd
, γ pa,

γ̂rnd

Lsrn

)

≤ γth

)

= 5N
n=1

{

1 − [1 − Fγ̂srn (Lrndγth)][1 − Fγ pa (γth)]

[1 − Fγ̂rnd (Lsrnγth)]
}

. (24)

For arbitrary value of fading parameter, CDF and PDF of
a Nakagami-m distributed link can be given as [33]

Fγi (x) =
[

1 − 1

Ŵ(m)
Ŵ

(

mi,
mix

γ̄i

)]

u(x),

fγi (x) =
[ 1

Ŵ(mi)

(mi

γ̄i

)mi
xmi−1e

−mix

γ̄i

]

u(x), (25)

respectively, where γ̄i represents the average SNR of the ith

link. Also, a fixed SNR of the NLPA is considered and hence,
γ̄pa = γpa. Thus, its CDF can be given as Fγpa (γth) = u(γth−
γ̄pa) [24]. Further, considering identical relays, substituting
the CDF of the ith link from (25) in (24) and after some
mathematical computations, we get

F∗
γsrnd

(γth)

=
[

1 +
N

∑

n=1

(

N

n

)

(−1)n
(Ŵ

(

msrn ,
msrn
¯̂γsrn

Lrndγth
)

Ŵ(msrn )

)n

×
(Ŵ

(

mrnd ,
mrnd
¯̂γrnd

Lsrnγth
)

Ŵ(mrnd )

)n

u(γ̄pa − γth)
]

u(γth). (26)

Proof of Theorem 1:

A. INTEGER VALUED FADING PARAMETER

For the integer valued fading parameter, upper incomplete
gamma function can be expanded as [34, (8.352.7)]. Thus,
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the CDF of the Nakagami-m distributed ith link can be
expressed as

Fγi (x) =
[

1 − e
−(

mix

γ̄i
)
mi−1
∑

l=0

1

l!
(mix

γ̄i

)l]

u(x). (27)

To solve (26), upper incomplete gamma function can be
expanded as [34, (8.352.7)]

(

Ŵ(mi, ηγ )

Ŵ(mi)

)n

= e−nηγ
[

mi−1
∑

µ=0

(ηγ )µ

µ!
]n
. (28)

The multinomial present in (28) can be expanded as
[

∑mi−1
µ=0 (δµγ

µ)
]n

=
∑n(mi−1)
µ=0 ϕnµγ

µ, where ϕnµ can be
recursively calculated as ϕn0 = (δ0)n, ϕn1 = n(δ1), ϕnn(mi−1) =
(δmi−1)n for 0 ≤ µ ≤ n(mi − 1), ϕnµ = 1

µδ0

∑µ

q=1

[

(qn−µ+
q)δqϕnµ−q

]

for 2 ≤ µ ≤ (mi−1) and ϕnµ = 1
µδ0

∑mi−1
q=1

[

(qn−
µ+ q)δqϕnµ−q

]

for mi ≤ µ ≤ n(mi − 1) where δµ = ηµ

µ! [6].
Thus, (26) can be further written as

F∗
γsrnd

(γth) =
[

1 +
N

∑

n=1

(

N

n

)

(−1)n
n(msrn−1)

∑

j=0

n(mrnd−1)
∑

k=0

ϕnj

×ϕnkη
j
1η

k
2γ

j+k
th e−C2γthu(γ̄pa − γth)

]

u(γth).

(29)

where η1 =
(

msrnLrnd
¯̂γsrn

)

and η2 =
(

mrndLsrn
¯̂γrnd

)

.

Substituting the PDF of S − D link from (25) and CDF of
S − Rn − D link from (29) in (12), we get

P
LB
out (γth) = Fγsd (γth) +

N
∑

n=1

(

N

n

)

(−1)n
n(msrn−1)

∑

j=0

×
n(mrnd−1)

∑

k=0

ϕnj ϕ
n
kη

j
1η

k
2e

−C2γth
C
msd
3

Ŵ(msd )

×
∫ γth

γmax

xmsd−1(γth − x)j+ke−(C3−C2)xdx. (30)

Further, solving the required integral with the help
of [34, (3.351)], closed-form expression for the LB of outage
probability can be expressed as (13).

B. NON-INTEGER VALUED FADING PARAMETER

For non-integer valued fading parameter, upper incomplete
gamma function can be expanded as [35, (36)]. Thus,
the CDF of the Nakagami-m distributed ith link can be
expressed as

Fγi (x) = e
−mi
γ̄i
x

∞
∑

g=0

1

Ŵ(mi + g+ 1)

(mix

γ̄i

)(mi+g)
u(x). (31)

To solve (26), upper incomplete gamma function can be
expanded as [35, (36)]
(

Ŵ(mi,2γ )

Ŵ(mi)

)n

=
[

1 −
∞
∑

g=0

e−2γ

Ŵ(mi + g+ 1)
(2γ )(mi+g)

]n
.

(32)

Using the binomial series expansion and invoking
[34, (0.314)], multinomial presents in (32) can be expanded

as
[

∑∞
υ=0(θυγ

υ )
]n

=
∑∞
υ=0 ψ

n
υγ

υ , where ψn
υ can be

recursively calculated as ψn
0 = (θ0)n, ψn

υ = 1
υθ0

∑υ
z=1(zn −

υ+z)θzψn
υ−z for υ ≥ 1 where θυ = 1

Ŵ(mi+υ+1)2
(mi+υ). Thus,

(26) can be further written as

F∗
γsrnd

(γth) =
[

1+
N

∑

n=1

(

N

n

) n
∑

p=0

(

n

p

) n
∑

p1=0

(

n

p1

)

(−1)(n+p+p1)

×
∞
∑

υ1=0

∞
∑

υ2=0

ψp
υ1
ψp1
υ2
γ
(υ1+υ2+pmsrn+p1mrnd )
th

× e−(pη1+p1η2)γthu(γ̄pa − γth)
]

u(γth). (33)

Substituting the PDF of S − D link from (25) and CDF of
S − Rn − D link from (33) in (12), we get

P
LB
out (γth) = Fγsd (γth) +

[ C
msd
3

Ŵ(msd )

N
∑

n=1

(

N

n

) n
∑

p=0

(

n

p

)

×
n

∑

p1=0

(

n

p1

)

(−1)(n+p+p1)
∞
∑

υ1=0

∞
∑

υ2=0

ψp
υ1
ψp1
υ2

×
∞
∑

i1=0

(−1)i1
(

υ1 + υ2 + pmsrn + p1mrnd

i1

)

× e−(pη1+p1η2)γthγ
(υ1+υ2+pmsrn+p1mrnd−i1)
th

×
∫ γth

γmax

x(msd+i1−1)e−(C3−(pη1+p1η2))xdx. (34)

Further, solving the required integral with the help
of [34, (3.351.1)], closed-form expression for the LB of
outage probability can be expressed as (14).

APPENDIX B

PROOF OF THEOREM

For asymptotic analysis, outage probability expression is
approximated at high SNR (γ0 → ∞) which corresponds
to ( ¯̂γi → ∞). To do this, high SNR approximation of the ith

link’s CDF is substituted in (24) by incorporating the high
SNR approximation of lower incomplete gamma function
(for integer as well as non-integer valued fading parameters)
as ϒ(m, z) ≈

z→0
( z

m

m
) [36]. Thus, (24) can be modified as

F∗
γsrnd

(γth) ≈
[

1 +
N

∑

n=1

(

N

n

)

(−1)n

×
(

1 − (η1γth)msrn

msrn !
u(γth)

)n(

1 − (η2γth)mrnd

mrnd !
u(γth)

)n

× u(−γth + γ̄pa)
]

u(γth). (35)

At high SNR, PDF of the S −D link can be approximated as

fγsd (x) ≈
(msd

γ̄sd

)msd xmsd−1

Ŵ(msd )
u(x). (36)
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Thus, substituting fγsd (x) from (36) in (12) along with the
approximated value of Fγ ∗

srnd
(γth − x) from (35), outage

probability can be approximated as

P
asym
out (γth) ≈

N
∑

n=0

n
∑

j=0

n
∑

k=0

(

N

n

)(

n

j

)(

n

k

)

(−1)n+j+k

×
C
msd
3

Ŵ(msd )

η
jmsrn
1

(msrn !)j
η
kmrnd
2

(mrnd !)k
∫ γth

γmax

xmsd−1(γth − x)(jmsrn+kmrnd )dx. (37)

Case 1: For γth < γ̄pa
Solving (37) for γth < γ̄pa, closed-form expression of the

asymptotic outage probability is shown in (15).
Case 2: For γth > γ̄pa
Closed-form expression of the asymptotic outage probabil-

ity can be given as (16).

APPENDIX C

The conditional SEP expression for M-ary HQAM scheme in
AWGN channel can be given as [13]

P
H
s (e|γ ) = Q(

√
αγ )

[

τ − 2τcQ
(

√

αγ /3
)

]

+ 2/3τcQ
2
(

√

2αγ /3
)

, (38)

where α, τ and τc are constants defined in [13] and their dif-
ferent values are used to select various HQAM constellations.
Substituting the Gaussian Q-function Q(z) = 1

2

[

1− erf( z√
2
)
]

in (38), we obtain

P
H
s (e|γ ) =

(

1 − erf
(√

αγ
2

))[

τ
2 − τc

2

(

1 − erf
(√

αγ
6

))]

+ τc
6

(

1 − erf
(√

αγ
3

))2
. (39)

Utilizing (a) first order derivative of error function, d
dz
erf(z) =

2√
π
e−z

2
[37, (7.1.19)], (b) expansion of error function,

erf(z) = 2z√
π
e−z

2
1F1(1, 32 , z

2) [37, (7.1.21)], first order
derivative of (39) can be expressed as

P
′H
s (e|γ ) = γ−1/2

[1

2

√

α

2π
(τc − τ )e−

αγ
2 − τc

3

√

α

3π

× e−
αγ
3 + τc

2

√

α

6π
e−

αγ
6

]

+ 2τcα

9π
e−

2α
3 γ

1F1

(

1; 3
2
; α
3
γ

)

− τcαe
− 2α

3 γ

2
√
3π

[

1F1

(

1; 3
2
; α
2
γ

)

+ 1F1

(

1; 3
2
; α
6
γ

)]

. (40)

Proof of Theorem 3:

A. INTEGER VALUED FADING PARAMETER

Substituting the respective values of P ′H
s (e|γ ) and

PLB
out (γ ) from (40) and (13) in (17) and solving the

required integrals with the help of [34, (3.351.1), (3.351.2),
(6.455.1), (6.455.2)], closed-form expression for the ASER
of general order HQAM can be expressed as (18).

B. NON-INTEGER VALUED FADING PARAMETER

Substituting the respective values of P ′H
s (e|γ ) and PLB

out (γ )
from (40) and (14) in (17) and solving the required inte-
grals with the help of [34, (3.351.1), (3.351.2), (3.351.3),
(6.455.1)], closed-form expression for the ASER of general
order HQAM can be expressed as (19).

APPENDIX D

For MI × MQ-ary QAM scheme, a generalized conditional
SEP expression for AWGN channel can be given as [2]

P
R
s (e|γ )
= 2

[

p0Q(a0
√
γ )(1 − 2q0Q(b0

√
γ )) + q0Q(b0

√
γ )

]

,

(41)

where p0 = 1 − (1/MI ), q0 = 1 − (1/MQ), a0 =
√

6/((M2
I − 1) + (M2

Q − 1)λ2), b0 = λa0, and λ = dQ/dI

represents the ratio of quadrature and in-phase decision dis-
tances. Also, MI and MQ represent respectively the in-phase
and quadrature phase constellation points. Further, substitut-
ing Q(z) = 1

2

[

1 − erf( z√
2
)
]

in (40) and using [37, (7.1.21)],
first order derivative of (41) can be expressed as

P
′R
s (e|γ )

= γ− 1
2

[a0p0(q0 − 1)√
2π

e−
a20γ
2 + b0(p0 − 1)q0√

2π
e−

b20γ
2

]

−a0b0p0q0

π
e−

(a20+b20)γ
2

×
[

1F1

(

1; 1.5;
a20γ

2

)

+ 1F1

(

1; 1.5;
b20γ

2

)]

. (42)

Proof of Theorem 4:

A. INTEGER VALUED FADING PARAMETER

SubstitutingP ′R
s (e|γ ) andPLB

out (γ ) from (42) and (13), respec-
tively in (17) and solving the required integrals with the
help of [34, (3.351.1), (3.351.2), (6.455.1), (6.455.2)], final
expression for the ASER of general order RQAM scheme can
be expressed as (20).

B. NON-INTEGER VALUED FADING PARAMETER

SubstitutingP ′R
s (e|γ ) andPLB

out (γ ) from (42) and (14), respec-
tively in (17) and solving the required integrals with the
help of [34, (3.351.1), (3.351.2), (3.351.3) (6.455.1)], final
expression for the ASER of general order RQAM scheme can
be expressed as (21).

APPENDIX E

The conditional SEP expression for 32-XQAM scheme in
AWGN channel can be given as [6]

P
X
s (e|γ ) = 1

8

[

26Q(
√
2χγ ) + Q(2

√
χγ ) − 23Q2(

√
2χγ )

]

,

(43)
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where χ = 48/(31M − 32). The first order derivative of (43)
can be derived as

P
′X
s (e|γ ) = −1

8

[3

2

√

χ

π

e−χγ
√
γ

+
√

χ

2π

e−2χγ

√
γ

+23χ

π
e−2χγ

1F1

(

1; 3
2
;χγ

)]

. (44)

Proof of Theorem 5:

A. INTEGER VALUED FADING PARAMETER

Substituting the respective values of P ′X
s (e|γ ) and PLB

out (γ )
from (44) and (13) in (17), and solving the required inte-
grals using [34, (3.351.1), (3.351.2), (6.455.1), (6.455.2)],
final expression for the ASER of 32-XQAM can be expressed
as (22).

B. NON-INTEGER VALUED FADING PARAMETER

Substituting the respective values of P ′X
s (e|γ ) and PLB

out (γ )
from (44) and (14) in (17), and solving the required inte-
grals using [34, (3.351.1), (3.351.2), (3.351.3), (6.455.1)],
final expression for the ASER of 32-XQAM can be expressed
as (23).
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