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ON PERIODIC AND MULTIPLE AUTOREGRESSIONS'

By MARCELLO PAaGaNO
Sidney Farber Cancer Institute

A methodology is presented for analyzing periodic autoregressions which is
also applicable when inferring the second order properties of periodically
correlated processes. In addition, capitalizing on the connection between peri-
odic and multiple autoregressions, a method is set forth for analyzing the latter,
which overcomes the usual requirements of a large number of both parameters
and computer storage locations. This is achieved by introducing an orthogonal
parametrization for multiple autoregressions.

1. Introduction. Given a time series {Y(¢); t =0,"*x 1,- - - } whose second
order moments exist, define its mean function, m(f) = EY(¢), and its covariance
kernel, R(s, £) = E{Y(s) — m(s)}{Y(¥) — m(s)}. A class of nonstationary
processes which readily lends itself to analysis, and is of practical importance (see
[9], [5], [16], [17]) is the class of periodically correlated processes (see [2]).

DEerFINITION.  The process Y(-) is said to be periodically correlated of period d, if
for some positive integer d and for all integers s, ¢,

m(t) =m(t +d), R(s,t)=R(s+d t+d).

Since we propose dealing with the second order properties of the process,
without loss of generality take m(r) = 0.

Periodically correlated processes are not only of interest in their own right, but,
because of their connection with multivariate covariance stationary time series,
they also provide insight into and modeling facility for these series. This claim is
based, in the main, upon the following construction: define the jth component of
the d-dimensional vector X(¢) by (see [2]),

(1.1) X(t)=Y(j+d(t—1))
and the covariance kernel of X(-) by
Ri(s, 1) = EX,(5)X,(0),

By noting that 1<j,k<d s,t=0,%1,---

(1.2) Ry (s, t) = R(j + ds, k + dr),

THEOREM. (Gladyshev [2]). The process Y(-) is periodically correlated of period d
if, and only if, the process X(-) is covariance stationary.
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This theorem shows that, although not covariance stationary, the process Y(-),
nonetheless, does not deviate too much from stationarity; and, in fact, its second
order properties may be deduced from those of X(-).

We can further capitalize on this connection but in the other direction: given a
covariance stationary process X(-) define the associated periodically correlated
process, Y(-), by (1.1). This is especially useful when X(-) is a multiple autoregres-
sion. For then by investigating Y(-), we actually effect an easily calculated
orthogonal decomposition of the process X(-), thus achieving the usual gain in
simplicity and power associated with orthogonalization. These points are amplified
in the remainder of the paper.

2. Autoregressions.  Given a sample X(1),- - -, X(7T) from a d-dimensional
zero mean covariance stationary time series with spectral density matrix f(w),
—7 < w < 7, the problem is to estimate f(-). Under some very mild restrictions on
J(+), [7], it can be written as the spectral density of an infinite order autoregression.
Parzen [13] thus proposes treating the sample as one from a pth order autoregres-
sion,

2.1 X(t) + Z2_,A()X(t = j) = &(v)

where Cov(e(?)) = =, and by choosing p large enough, f(-) can be arbitrarily
closely approximated. Parzen [15] gives a method for choosing p which accommo-
dates both the numerical approximation, which argues for a large p, and the
requisite statistical estimation, which argues for a small p. The autoregressive
approximants have been used in practice with success (see [4], [14] and references
therein, also in geophysics [17] where a closely analogous method, the method of
maximal entropy, is used). For these reasons it seems important to study autore-
gressive processes.
The periodically correlated analogue of an autoregression is given by (see [5]),

DEFINITION. A process Y(-) is said to be a periodic autoregression of period d

and order (p,, - - -, p,) if for all integers ¢,

(22) Y(1) + 20,0,() Y(e = Jj) = &(1)

where the &(-) are uncorrelated with mean zero and EeX(f) = 62 p, = p, 4 07 =
012+d’ and o,()) = a,, () j =1, ,p,.

THEOREM 1. If X(-) and Y(-) are associated by (1.1), then X(-) is an autoregres-
sion of order p with positive definite X if, and only if, Y(-) is a periodic autoregression
of period d and order (p,, - - - , p,) with positive o7, - - -, o2, and, p = max,[(p; —
7)/d]l + 1, where, for integral j, [x] = j for j < x <j + .

Proor. If Y(-) is a periodic autoregression of order (p,, - - - , p,) then it may
be written as (see Theorem 3)
(23) LX(t) + ZP A () X(t —j) =€(1)

where L is a unit (ones on the diagonal) lower triangular matrix, p satisfies the
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condition of the theorem, and the ¢’(-) are uncorrelated with a diagonal covariance
matrix, E¢'(1)e'’(r) = D = diag(e?, - - - , 02). Therefore,

X(1) + 2P, A()X(t — j) = &(1)
where
A(./) = L_IA,(j) Jj=L---,p
e(r) = L7'¢(¢) t=0,+1,---,
and the &(-) are thus uncorrelated and have covariance matrix = = L~ 'DL 7,

which is positive definite since D is.
Conversely, suppose

X(1) + 2., A()X(1 — j) = &(1)
where the &(-) are uncorrelated with positive definite covariance matrix . Define
the unique modified Cholesky decomposition of = by = = LDL7, where L is unit
lower triangular and D is positive definite diagonal, D = diag(a?, - - - , 62). Then
L~ is unit lower triangular and X(-) satisfies

L7X(0) + S, A G)X(t — ) = (1)

where A'(j) = L™'4(j),j = 1,..., and the &(f) = L~ '&(r), and are thus uncorre-
lated with diagonal positive definite covariance matrix, proving the theorem. []

Note that without too much difficulty we could accommodate a process for
which Z is singular.

DEFINITION. A process Y(-) is said to be a covariance stationary periodic
autoregression if it is a periodic autoregression and, furthermore, the associated
vector process X(-), (1.1), is covariance stationary.

As usual (cf. [3], page 21, footnote) by a stationary multiple autoregression, we
mean a process X(-) which obeys (2.1) and admits to an expression, in the mean
square sense, in terms of the “past” &(+), i.e.,

X(1) = &(t) + Z7-B(k)e(t — k).
For this to be true, the zeroes of the determinantal polynomial, det(l, +
2?_,4(j)z’) must lie outside the unit circle.

One of the values of an autoregressive process is, of course, the facility with
which one may perform linear prediction. It can easily be shown, see [19], that the
least squares predictor of Y(z + k), for positive integer 4, on the basis of Y(¢),
Y¢—=1),---, is

Y(t + hlt) = 2720 y(D Y (e + b = jlt) = Z2zpo, y(DY(t + h =)

if Y(-) is a covariance stationary periodic autoregression. To obtain the prediction
error, one must formally solve (see (3.8)),

Y(t + ) = =500, () Y(t + h = j) + e(t + h) = S7_o B, 4(K)e(t + h — k)
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with B, ,(0) = 1, in which case
E{Y(t+ hlt) = Y(¢ + h)}* = ShZ BAw(K) 0P p—i-
A side benefit is that the above method yields a solution to the problem of pre-

dicting only a subset of X(¢ + 1), X(# +2),- - -, in terms of X(¢), X(z — 1)
,+ -+, for an autoregressive X(-).

3. Parameter estimation. Given a sample Y(1), - - -, Y(T) from a zero mean
Gaussian covariance stationary periodic autoregression of order (p,, - - - , p,) and
period d, we wish to make an inference about the parameters «,(/) and ojz,
j=1,-++,p,k=1,---,d We show that the results of Mann and Wald [6]
extend to this case.

To simplify the notation we take T = Nd, where N is a natural number. Then

the problem is equivalent to having a sample X(1), - - - , X(N) from a stationary
autoregression, where X(+) and Y(-) are related by (1.1). So, define

3.1 Ry(k,v) = N7'Z7_oY(k + &) Y(v + d))

where m = [N — max(k, v)/d), fork=1,---,dyo=0,1,---, T—k—1

LemMma 1. If Y(-) is a periodically correlated Gaussian process, then, with
Ry (k, v) defined by (3.1), as T — oo, the Ry(k, v) converge almost surely and in
mean square to R(k, v), and
(32) N Cov{Ry(ky, 1)), Ry(ky, 03)} = 272 o {R(ky, ky + du)R(v,, v, + du)

+ R(ky, v, + du)R(vy, k, + du)}.
Furthermore, N %(RN(k, v) — R(k, v)) are asymptotically Gaussian, with zero mean

and the above covariance function, for k =1,- - - ,dand v=0,1,- - -, q for any
fixed q.

Proor. By using (1.1) and (1.2) and Gladyshev’s theorem, we see that the
consistency and asymptotic covariance are merely an extension of Slutsky’s result;
see [3], pages 209, 210. The asymptotic normality follows from [3], page 228. []

In a periodic autoregression, the a and o are related to the covariance kernel R
in a modified Yule-Walker form:

THEOREM 2. If Y(-) is a covariance stationary periodic autoregression of order

(Py* * * » py) With covariance kernel R(-, - ), then for k =1, - - - , d, and using the
Kronecker delta,
(3.3) R(k, k — v) + S 0, ())R(k — j, k — v) = 8,407, v>0

ProOF. We must first show that
Y(1) = =210 ()Y (2 = )j) + (1) = e(t) + ZF-, B(k)e(t — k).

This result is immediately available from Theorem 1. Therefore, for positive v,
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Y(¢t — v) is uncorrelated with &(¢). Multiplying both sides of (2.2) by Y(¢ — v) and
taking expected values yields the theorem. []

We are thus immediately led to Fisher-consistent estimators of the & and o?; in
(3.3) replace the R by the appropriate R, and solve the resulting linear equations.
We proceed to find the properties of these estimators.

If Y(+) is a periodically correlated process, denote by 9 the Fisher information
matrix, and by 9(a, B) the element in this matrix corresponding to the parameters
a and B.

THEOREM 3. If Y(+) is a Gaussian covariance stationary periodic autoregression of
order (p,, - * + , py), then the information matrix is block diagonal,

$(eu()), an(1)) = 8mR(k = Jjs k = 1)/ 0,
$(al)), 02) = 0 ‘
§(0i, 07) = 8/ 207,
forj=1,---,p, =1+ ,p . k,m=1---,d.
Proor. Using (1.1) then,
LX(1) + 222, A()X(t — j) = &(1)

where
L, = o (k = j), J<k
Ayi(v) = o (dv + k — j), v=12---,p
and p as in Theorem 1. Then, defining D = diag(o?, - - - , 62), and,
G(z) = L + 22_14(j)7, z=e",

we have that the spectral density matrix of the X(-) process is

flw) = G~ Y(z2)DG~*(z)/2m,
where (minus) the asterisk denotes the (inverse of the) complex conjugate trans-
pose. We have, see [18], that

(3.4) 4(a, ,8)=21;f"_,,t(af_ faf ' )(w) do.

Let E, denote the d-dimensional square matrix w1th a one in the (j, k) component
and zeroes elsewhere. Then

of ! et oD
(3.5) 3, (o) = E; G *27° + G*DE,f:
af ! _ .
(3.6) f E,G~* + G*DE,f, Jj<k
-1
(3.7) s ~f=—G*E4G™*/q;.

0,
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Using the formula,
(3.8) G (z)= L'+ 3% ,B(k)z¥,
where the B(+) decay exponentially to zero because of the assumption on the zeroes
of det(G(z)), we see that the terms of the form
tr [T, EyG “E,, G T le=ivrme iy = 0

forallk,j,m,nif v+ u # 0,and for k >, jorm > nif v + u = 0 (see [10]). Upon
substitution of the appropriate (3.5), (3.6) and/or (3.7) into (3.4), and some
straightforward algebra, the proof follows. []

If, with the R, defined in (3.1), we define the @ and 6 as solutions to the normal
equations,

(3.9) Ry(k, k = v) + 2,8, (j/)Ry(k — j, k — v) = 8,467
forv=0,---,p,andk =1,- - -, d, and the vectors &, = (a,(1), - - - , &(p))’,
then,
THEOREM 4. If Y(1), - - -, Y(T) is a sample from a covariance stationary Gaus-
sian periodic autoregression of order (p,, - + - , p,), then the & and G defined by (3.9)
1
are almost surely consistent estimators (T — ). And N2(¢, —a,) k=1,---,d

have an asymptotic distribution which is Gaussian with mean zero and covariance
matrix 7', where § is the appropriate block of the information matrix given in
Theorem 3. Thus the estimators are, in this sense, asymptotically efficient.

Proor. The consistency follows from Lemma 1 and Theorem 2. To show the

asymptotic distribution, as in [12], we have from (3.3) and 3.9) fork =1, --,d
andv=1,---,p,
(3.10)

7eoRn(k = jo k — o){&()) — a ()}
= 2_J;Jk=0(xk(j){1zN(k _j9 k — D) - R(k —j9 k- U)}
defining ¢,(0) = &,(0) = 1. From Lemma 1 the random variables on the right of

(3.10) are asymptotically Gaussian with mean zero. To find their asymptotic
covariance matrix, consider for v, and v, positive,

szf':oszéoak,(jl)akz(jz) Cov{Ry(ky — ji, ki — v)), Ry(ky — jp, ky — )}
= 013,8k,, sz(kl — v,k — vy),

from Lemma 1 and a repeated application of (3.3). Now, from Lemma 1 and
Cramér’s theorem, ([1] page 254) the random variables on the left of (3.10) have the
same joint asymptotic distribution as

22 oR(k = j, k= o) { &) — a()},
o=1- -,po and k=1---.d

and the theorem is proved. []
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A noteworthy result contained in the last two theorems is that, asymptotically,
the &, k= 1,- - -,d, are independent. Thus, when analyzing a multivariate
autoregression, the parametrization in terms of the a,, as opposed to the A(j) in
(2.1), allows us to analyze each channel separately.

A further advantage to dealing with the «,, as opposed to the A()), is a practical
one. Since the different orders of the channels are nor necessarily such that
dp=p.—k+ 1, k=1,---,d, we can model a multivariate autoregression of
order p (with A(p) # 0) with fewer than d% + d(d + 1)/2 parameters, and we
thus have a general methodology for systematically reducing the number of
parameters required. The number of parameters in terms of the A(j) can be
sizable; for example, if d = 12 (monthly data), to introduce some correlation
structure into the data at the lowest level, a zero order autoregression, would
require 78 parameters; if a zero order is judged inadequate (if the spectrum should
not be flat) then a first order would require 222 parameters. This is the difficulty
expressed by Whittle [18], “ . . . of analyzing a d-tuple series [which] may be said to
increase roughly as d? (the number of auto- and cross-correlograms which must be
calculated, and the order of the number of parameters to be estimated), while the
number of observations increases only as 4.” In terms of the a;, we overcome this
difficulty; for example, we can obtain a nonflat spectrum with only one of the a,
nonzero, «,(1). It could be said that we have defined multiple autoregressions of
noninteger orders.

4. Discussion. Viewing a multiple autoregression as a periodic autoregression
clearly displays the effects of prewhitening each channel before doing a joint
analysis. If the prewhitening is done with an autoregressive filter on each channel,
then this can be viewed as, first, fitting a periodic autoregression with
o (d), ¢, 2d), - - -, k=1,---,d, as the only nonzero coefficients, and, second,
performing a periodic autoregression on the residuals. An alternative approach
would be to include a subset regression option when fitting the periodic autoregres-
sion (such as in [8], for example) and this would obviate the need for prewhitening.

In analyzing atmospheric data, Jones and Brelsford [5] achieved a reduction in
the number of parameters by expanding the « in Fourier series,

4.1) o (J) = Z7_o{ ¢y, cos2mnk /d) + s, sin(2wnk /d)},

taking m small (relative to d/2), arguing that the a were slowly varying (with
respect to k) and periodic of period d. Using the asymptotic distribution in
Theorem 4, one can obtain efficient estimators of the ¢’s and s’s by performing a
weighted regression of the &, in (3.9), on the ¢’s and s’s (as in [11]). Indeed, these
estimators are not too different from those in [5] but this approach would provide a
method for systematically testing the hypothesis exhibited in (4.1).

The Gaussian assumptions made in Section 3 can clearly be relaxed. Another
generalization can be achieved by considering periodically correlated g-dimen-
sional vector processes Y(-), in which case X(:) would be a dg-dimensional
covariance stationary time series [2].
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