ON PERIODIC MAPS AND THE EULER CHARACTERISTICS OF ASSOCIATED SPACES

BY
E. E. FLOYD

1. Introduction. Let X be a locally compact finite-dimensional Hausdorff space, and let T be a periodic map of prime period p operating on X. Let L denote the fixed point set of T, and let Y denote the orbit decomposition space of X and T, which has as elements the sets $\left[T^{i}(x) \mid i=0,1, \cdots, p-1\right.$] for $x \in X$. Let us consider first the case in which X is a finite complex, T is simplicial, and the natural decomposition map $f: X \rightarrow Y$ is simplicial and therefore a homeomorphism on each simplex of X. Let v be a simplex of Y. If $f^{-1}(v) \subset L$, then $f^{-1}(v)$ contains exactly one simplex. Otherwise $f^{-1}(v)$ contains exactly p simplexes. As a consequence $\chi(X)+(p-1) \chi(L)=p \chi(Y)$, where χ indicates the Euler characteristic. The similarity of this formula to a result of G. T. Whyburn [8; p. 202]. ${ }^{1}$) concerning interior maps on 2-manifolds will be noted.

The main purpose of this paper is to provide an analogue of this formula under more general circumstances. We use for X and T any pair satisfying the requirements of the first sentence, with the restriction that the Cech homology groups $H_{n}(X)$, with the integers $\bmod p$ as coefficient group, are all finitely generated. We prove that the same formula then holds if we define $\chi(A)$ to be $\sum(-1)^{i} \operatorname{dim} H_{i}(A)$ whenever this is defined, where $\operatorname{dim} H_{i}(A)$ denotes the minimum number of generators of $H_{i}(A)$ (that is, its dimension as a vector space over the integers $\bmod p$).

We use P. A. Smith's theory of special homology groups $[4 ; 5 ; 6]$ to obtain the formula. We base our usage of the special groups on two exact homomorphism sequences, which we obtain in $\S \S 2$ and 3 . The first of these sequences, sequence (A), is implicit in the work of Smith (cf. [4]). However, the second, sequence (B), appears to be new. It is basic for our purpose in that it relates the structure of the special groups H_{n}^{δ} and H_{m}^{σ}.

In §4, we prove the main theorem. We also verify that $\sum \operatorname{dim} H_{i}(L)$ $\leqq \sum \operatorname{dim} H_{i}(X)$. This result is closely related to results of Smith [5; p. 170] and of Richardson and Smith [2; p. 619].

In $\S 5$, we point out some applications of our results. The main theorem has as a consequence, of course, a theorem concerning existence of fixed points. This theorem generalizes the fixed point theorem of Smith [3]. We also prove that if X has the homology groups of an n-sphere over the integers $\bmod p, p$ an odd prime, and if G is an abelian transformation group of order

[^0]p^{a}, then the set L of points fixed under each $T \in G$ has the homology groups of an r-sphere where $n-r$ is even ${ }^{2}{ }^{2}$. This solves a problem pointed out by Smith, who proved a weaker theorem for $a=1$ and a form of this theorem for the general case [7].

It must be noted that, throughout the paper, if T is periodic of period p in a given discussion, then all homology groups in the same discussion will have the integers $\bmod p$ as coefficient group.
2. Special homology groups for simplicial maps. We treat in this section the special homology groups for simplicial periodic maps. To provide a notational basis, we give first the definitions of the special groups. These are due to Smith $[4 ; 5 ; 6]$ and Richardson and Smith [2].

We assume throughout this section a finite complex X and a simplicial periodic map T on X of prime period p. We denote by L the fixed point set of T. We shall assume that L is a subcomplex of X.

Denote by $C_{n}(X), Z_{n}(X), B_{n}(X)$, and $H_{n}(X)$ the group of n-chains, n-cycles, bounding n-cycles, and the n-homology group of X with coefficient group I_{p}, the group of integers mod p. Denote by ∂ the boundary operator. Define $\tilde{Z}_{0}(X)$ to be the set of all $x \in Z_{0}(X)$ with coefficient sum 0 . Define $\tilde{H}_{0}(X)=\tilde{Z}_{0}(X) / B_{0}(X)$. We denote by $Z_{n}(X, L), B_{n}(X, L)$, and $H_{n}(X, L)$ the group of n-cycles of $X \bmod L$, and so on.

Let $\delta(t)$ denote the polynomial $1-t$. Then $\delta(T)=1-T$ will denote a chain mapping of $C_{n}(X)$ into itself for each n. We abbreviate $\delta(T)$ by δ. Also, for each positive integer i, we have the chain mapping $\delta^{i} \equiv \delta^{i}(T)$. Since the coefficient group is I_{p}, we have $\sigma \equiv \delta^{p-1}=1+T+\cdots+T^{p-1}$ and $\delta^{p}=0$ [4, p. 614]. We use ρ to designate any one of the chain mappings $\delta^{i}, i=1, \cdots$, $p-1$. If $\rho=\delta^{i}$, then define $\bar{\rho}=\delta^{p-i}$. Hence $\rho \bar{\rho}=\bar{\rho} \rho=0$.

Define $C_{n}^{p}(X)=\left[x \mid x \in C_{n}(X), \rho x=0\right]$. Note that $C_{n}(L) \subset C_{n}^{o}(X)$; hence $C_{n}(L) \subset C_{n}^{\rho}(X)$ for all ρ.

The proof of the following basic property may be found in Richardson and Smith [2, p. 616].
(2.1) We have $x \in C_{n}^{p}(X)$ if and only if there exists $a \in C_{n}(X), b \in C_{n}(L)$ with $x=\bar{\rho} a+b$.

Define $Z_{n}^{p}(X)=C_{n}^{p}(X) \cap Z_{n}(X), B_{n}^{p}(X)=\partial\left(C_{n+1}^{p}(X)\right), H_{n}^{p}(X)=Z_{n}^{p}(X) / B_{n}^{p}(X)$. For $p=0$, we also define $\tilde{Z}_{0}^{\rho}(X)=\tilde{Z}_{0}(X) \cap C_{0}^{\rho}(X)$ and $\tilde{H}_{n}^{\rho}(X)=\tilde{Z}_{0}^{\rho}(X) / B_{0}^{o}(X)$.

We note explicitly another basic property, due to Smith [4, p. 357] and Richardson and Smith [2, p. 617]:
(2.2) If $\bar{\rho} a+b \in Z_{n}^{p}(X)$, where $a \in C_{n}(X), b \in C_{n}(L)$, then $\bar{\rho} a$ and b are

[^1]cycles. If $\bar{\rho} a+b \in B_{n}^{\rho}(X)$, then $\bar{\rho} a \in B_{n}^{\rho}(X)$ and $b \in B_{n}(L)$.
We use also the "relative" special groups. Define $C_{n}^{p}(X, L)=\left[x \mid x \in C_{n}(X)\right.$, $x=\bar{\rho} y$ for some $y], Z_{n}^{\rho}(X, L)=C_{n}^{\rho}(X, L) \cap Z_{n}(X), B_{n}^{\rho}(X, L)=\partial\left(C_{n+1}^{\rho}(X, L)\right)$, and $H_{n}^{\rho}(X, L)=Z_{n}^{\rho}(X, L) / B_{n}^{\rho}(X, L)$. It is useful to note that $x \in Z_{n}^{\rho}(X, L)$ if and only if $x \in C_{n}^{p}(X), \partial x$ is contained in L, and x is 0 on each simplex of L [4, p. 356]. It should also be noted that our symbol $H_{n}^{\rho}(X, L)$ is equivalent to either the symbol $\mathfrak{S}_{\rho I}^{n}(X)$ or $\mathfrak{S}_{\rho}^{n}(X)$ of Smith [4, pp. 358 and 363].

Definition. Let $\bar{\rho} x \in Z_{n+1}^{\rho}(X, L)$. Then $\bar{\rho}(\partial x)=\partial \bar{\rho} x=0$. Hence $\partial x \in Z_{n}^{\bar{\rho}}(X)$. The function $\bar{\rho} x \rightarrow \partial x$ induces a homomorphism $\alpha: H_{n+1}^{\rho}(X, L) \rightarrow H_{n}^{\bar{\rho}}(X)$. It is clear that α maps $H_{1}^{\rho}(X, L)$ into $\widetilde{H}_{0}^{\rho}(X)$.

The inclusion $x \rightarrow x$ of $C_{n}^{\bar{\rho}}(X)$ into $C_{n}(X)$ generates a homomorphism of $H_{n}^{\bar{\rho}}(X)$ into $H_{n}(X)$, which we denote by $\beta: H_{n}^{\bar{\rho}}(X) \rightarrow H_{n}(X)$. We note that β maps $\widetilde{H}_{0}^{\tilde{\rho}}(X)$ into $\widetilde{H}_{0}(X)$.

Moreover, the chain mapping $y \rightarrow \bar{\rho} y$ of $C_{n}(X)$ into $C_{n}^{\rho}(X, L)$ induces a homomorphism of $H_{n}(X)$ into $H_{n}^{\rho}(X, L)$ which we indicate by $\gamma: H_{n}(X)$ $\rightarrow H_{n}^{\rho}(X, L)$.

The proof that each of these is a well-defined homomorphism is straightforward. The homomorphisms α and β are due to Smith [4, pp. 358-359].

Theorem 2.3. The sequence
(A)

$$
\begin{aligned}
\cdots & \rightarrow H_{n+1}^{\rho}(X, L) \xrightarrow{\alpha} H_{n}^{\bar{\rho}}(X) \xrightarrow{\beta} H_{n}(X) \xrightarrow{\gamma} H_{n}^{\rho}(X, L) \rightarrow \cdots \\
& \rightarrow H_{0}(X, L) \rightarrow 0
\end{aligned}
$$

is exact. If $L \neq 0$ and if X is connected, then $\overline{H_{0}^{\rho}}(X), H_{0}(X)$ may be replaced by $\tilde{H}_{0}^{\bar{p}}(X), \tilde{H}_{0}(X)$ respectively and the sequence is still exact.

Proof. The proofs that $\beta \alpha=0, \gamma \beta=0, \alpha \gamma=0$ are trivial and will be omitted. Let now $x \in$ kernel β. If $\rho a+b$ represents x we then have $\rho a+b=\partial c$ for some chain c. Then $\partial(\bar{\rho} c)=\bar{\rho}(\partial c)=0$, so that $\bar{\rho} c \in Z_{n}^{\rho}(X, L)$. If $\bar{\rho} c$ represents y $\in H_{n+1}^{\rho}(X, L)$, then $\alpha(y)=x$. Hence image $\alpha=\operatorname{kernel} \beta$.

Next suppose $x \in$ kernel γ. Then if a represents x we have $\bar{\rho} a=\partial \bar{\rho} c$ for some chain c. Hence $\bar{\rho}(a-\partial c)=0$, so that $a-\partial c \in Z_{n}^{\bar{\rho}}(X)$. If $a-\partial c$ represents y $\in H_{n}^{\bar{p}}(X)$, then $\beta(y)=x$ and image $\beta=$ kernel γ.

Now let $x \in$ kernel α. If $\bar{\rho} a$ represents x, then $\partial a=\partial(\rho c+d)$ for some c in X and d in L. Then $a-\rho c-d \in Z_{n}(X)$. If $a-\rho c-d$ represents $y \in H_{n}(X)$, then $\gamma(y)=x$. Then image $\gamma=$ kernel α and exactness is proven.

Suppose now that X is connected and that $L \neq 0$. Then $\tilde{H}_{0}(X)=0$. To prove the latter part of the theorem, we must prove $H_{0}^{\rho}(X, L)=0$ and that $\alpha: H_{1}^{\rho}(X, L) \rightarrow \tilde{H}_{0}^{\bar{\rho}}(X)$ is onto. To prove α onto, let $x \in \tilde{H}_{0}^{\bar{\rho}}(X)$. Then $\beta(x)$ $\in \tilde{H}_{0}(X)$, so $\beta(x)=0$. Then there exists $y \in H_{1}^{\rho}(X, L)$ with $\alpha(y)=x$. To prove $H_{0}^{\rho}(X, L)=0$, it is sufficient to prove that if v is a vertex of $X-L$, then $\bar{\rho} v=\partial(\bar{\rho} c)$ for some chain c. Let a denote a vertex of L. Let $c \in C_{1}(X)$ be such that $\partial c=v-a$. Then $\partial \bar{\rho} c=\bar{\rho} v-\bar{\rho} a=\bar{\rho} v$, so that $H_{0}^{\rho}(X, L)=0$.

Definifions. Let m be one of the numbers $2,3, \cdots, p-1$. We note that $C_{n}^{\delta}(X, L) \subset C_{n}^{\delta m}(X, L)$. For if $x=\delta^{p-1} c \in C_{n}^{\delta}(X, L)$, then $x=\delta^{p-m}\left(\delta^{m-1} c\right)$ $\in C_{n}^{\delta m}(X, L)$. The inclusion of $C_{n}^{\delta}(X, L)$ into $C_{n}^{\delta m}(X, L)$ generates a homomorphism $\xi: H_{n}^{\delta}(X, L) \rightarrow H_{n}^{\delta^{m}}(X, L)$.

The transformation $x \rightarrow \delta x$ of $C_{n}^{\delta m}(X, L)$ into $C_{n}^{\delta m-1}(X, L)$ generates a homomorphism of $H_{n}^{\delta m}(X, L)$ into $H_{n}^{\delta m-1}(X, L)$ which we denote by η.

The transformation $\delta^{p-m+1} c \rightarrow \partial \delta^{p-m} c$ of $Z_{n}^{\delta m-1}(X, L)$ into $Z_{n-1}^{\delta}(X, L)$ generates a homomorphism of $H_{n}^{\delta m-1}(X, L)$ into $H_{n+1}^{\delta}(X, L)$ which we indicate by τ. For if $\delta^{p-m+1} c \in Z_{n}^{\delta m-1}(X, L)$, then

$$
\partial \delta^{p-m+1} c=\delta\left(\partial \delta^{p-m} c\right)=0, \quad \text { so } \quad \partial \delta^{p-m} c \in Z_{n}^{\delta}(X) .
$$

But $\partial \delta^{p-m} c=0$ on L, so $\partial \delta^{p-m} c \in Z_{n}^{\delta}(X, L)$.
Let us now prove the existence of τ. Suppose $\delta^{p-m+1} x$ and $\delta^{p-m+1} y$ represent the same element of $H_{n}^{\delta m-1}(X, L)$. Then for some c

$$
\delta^{p-m+1} x-\delta^{p-m+1} y=\partial\left(\delta^{p-m+1} c\right),
$$

so that $\delta\left(\delta^{p-m} x-\delta^{p-m} y-\partial \delta^{p-m} c\right)=0$. Then

$$
\begin{equation*}
\delta^{p-m} x-\delta^{p-m} y-\partial \delta^{p-1} c=\delta^{p-1} a+b \tag{2.1}
\end{equation*}
$$

Operating with $\partial, \partial \delta^{p-m} x-\partial \delta^{p-m} y=\partial \delta^{p-1} a$ since the left-hand side is contained in $X-L$. Therefore $\partial \delta^{p-m} x$ and $\partial \delta^{p-m} y$ represent the same element of $H_{n}^{\delta}(X, L)$. So τ is well-defined.

Theorem 2.4. The sequence

$$
\begin{equation*}
\cdots \rightarrow H_{n}^{\delta}(X, L) \xrightarrow{\xi} H_{n}^{\delta^{m}}(X, L) \xrightarrow{\eta} H_{n}^{\delta^{m-1}}(X, L) \xrightarrow{\tau} H_{n-1}^{\delta}(X, L) \tag{B}
\end{equation*}
$$

$\rightarrow \cdots$ is exact.
Proof. To prove that $\eta \xi=0$, let $\delta^{p-1} c$ represent an element x of $H_{n}^{\delta}(X, L)$. Then $\eta \xi(x)$ is represented by $\delta\left(\delta^{p-1} c\right)=\delta^{p} c=0$. Hence $\eta \xi=0$. To prove $\tau \eta=0$, let $\delta^{p-m} c$ represent $x \in H_{n}^{\delta m}(X, L)$. Then $\delta^{p-m+1} c$ represents $\eta(x)$ and $\partial \delta^{p-m_{c}}$ represents $\tau \eta(x)$. But $\delta^{\rho-m} c$ is a cycle, so $\tau \eta(x)=0$. To prove $\xi_{\tau}=0$, let $\delta^{p-m+1} c$ represent an element $x \in H_{n}^{\delta m-1}(X, L)$. Then $\partial \delta^{p-m} c$ represents $\xi \tau(x)$ in $H_{n}^{\delta^{m}}(X, L)$. But then $\xi \tau(x)=0$.

Next, let $x \in$ kernel η. If x is represented by $\delta^{p-m} c$, then $\delta^{p-m+1} c=\partial \delta^{p-m+1} b$ for some chain b. Then $\delta\left(\delta^{p-m} c-\partial \delta^{p-m} b\right)=0$ and $d=\delta^{p-m} c-\partial \delta^{p-m} b \in Z_{n}^{\delta}(X, L)$. For $d \in Z_{n}^{\delta}(X)$ and d is 0 on L. If $y \in H_{n}^{\delta}(X, L)$ is represented by d, then it follows that $\xi(y)=x$, and hence image $\xi=$ kernel η.

Let $x \in$ kernel τ. If x is represented by $\delta^{p-m+1} c$, then $\partial \delta^{p-m} c=\partial\left(\delta^{p-1} b\right)$ for some chain b. Then $\partial\left(\delta^{p-m} c-\delta^{p-1} b\right)=0$, so that $d=\delta^{p-m} c-\delta^{p-1} b \in H_{n}^{\delta m}(X, L)$. But $\delta d=\delta^{p-m+1} c-\delta^{p} b=\delta^{p-m+1} c$. Hence if $y \in H_{n}^{\delta m}(X, L)$ is represented by d, then $\eta(y)=x$. Hence kernel $\tau=$ image η.

Finally, let $x \in$ kernel ξ. Then if $\delta^{p-1} c$ represents x, we have $\delta^{p-1} c=\partial \delta^{p-m} b$
for some chain b. Operating on both sides with δ, we have $\partial \delta^{p-m+1} b=\delta^{p} c=0$. Hence $\delta^{p-m+1} b \in Z_{n}^{\delta m-1}(X, L)$. Suppose $\delta^{p-m+1} b$ represents $y \in H_{n}^{\delta m-1}(X, L)$. Then $\partial \delta^{p-m} b=\delta^{p-1} c$ represents $\tau(y)$ so that $\tau(y)=x$. Hence exactness is proven.
3. The special groups for locally compact spaces. Let X be a compact Hausdorff space and let T be a periodic map on X of prime period p. By a covering of X will be meant a finite open covering. We denote by $\left[U_{\mu}\right]$ the collection of primitive special coverings of $X[4, \mathrm{pp} .350-353]$. Denote by X_{μ} the nerve of U_{μ}. Then there is generated a simplicial periodic map T_{μ} on X_{μ} defined by $T_{\mu}(u)=T(u)$ for each vertex u of X_{μ}. If U_{μ} refines U_{λ}, then there exists a projection $\pi_{\mu \lambda}: X_{\mu} \rightarrow X_{\lambda}$ such that $\pi_{\mu \lambda} T_{\mu}=T_{\lambda} \pi_{\mu \lambda}$ [4, p. 351] (such a projection is called a T-projection). We call L_{μ} the fixed point set of T_{μ}.

We have for each U_{μ} the exact sequence

$$
\left(\mathrm{A}_{\mu}\right) \quad \cdots \rightarrow H_{n+1}^{\rho}\left(X_{\mu}, L_{\mu}\right) \xrightarrow{\alpha_{\mu}} H_{n}^{\bar{\rho}}\left(X_{\mu}\right) \xrightarrow{\beta_{\mu}} H_{n}\left(X_{\mu}\right) \xrightarrow{\gamma_{\mu}} H_{n}^{\rho}\left(X_{\mu}, L_{\mu}\right) \rightarrow \cdots .
$$

If U_{μ} refines U_{λ} then a T-projection $\pi_{\mu \lambda}$ defines a set of homomorphisms of the exact sequence $\left(\mathrm{A}_{\mu}\right)$ into the exact sequence $\left(\mathrm{A}_{\lambda}\right)$ [4, p. 361]. That these homomorphisms are independent of the particular T-projection $\pi_{\mu \lambda}$ has been proved by Smith [4, p. 360]. That the generated homomorphisms commute with α, β, γ follows from the relations $\pi_{\mu \lambda} \partial=\partial \pi_{\mu \lambda}$ and $\pi_{\mu \lambda} \rho=\rho \pi_{\mu \lambda}$. We note that each (A_{μ}) is made up of compact (actually finite) groups. So we may consider the inverse limit of the exact sequences (A_{μ}) [1, pp. 694-695], connected by the homomorphisms generated by the T-projections $\pi_{\mu \lambda}$. We denote the exact sequence of inverse limits by

$$
\begin{equation*}
\cdots \rightarrow \dot{\hat{H}_{n+1}}(X, L) \xrightarrow{\boldsymbol{\alpha}} H_{n}^{\overline{\hat{p}}}(X) \xrightarrow{\boldsymbol{\beta}} H_{n}(X) \xrightarrow{\boldsymbol{\gamma}} H_{n}^{\boldsymbol{p}}(X, L) \rightarrow \cdots, \tag{A}
\end{equation*}
$$

which serves to define α, β, γ as well as the ρ-homology groups. The definitions for the groups and for α, β have been given by Smith [4].

Theorem 3.1. If X is a compact Hausdorff space, and if T is a periodic map on X of prime period p, then (A) is exact. Moreover, if X is connected and $L \neq 0$, then (A) remains exact when $H_{0}^{\bar{p}}(X), H_{0}(X)$ are replaced by $\widetilde{H}_{0}^{\bar{p}}(X)$, $\tilde{H}_{0}(X)$.

Proof. The exactness follows from a general theorem on inverse limits of exact homomorphism sequences of compact groups [1, p. 695].

Moreover, for each U_{μ} we have the exact sequence
$\left(\mathrm{B}_{\mu}\right) \cdots \rightarrow H_{n}^{\delta}\left(X_{\mu}, L_{\mu}\right) \xrightarrow{\xi_{\mu}} H_{n}^{\delta_{n}}\left(X_{\mu}, L_{\mu}\right) \xrightarrow{\eta_{\mu}} H_{n}^{\delta m-1}\left(X_{\mu}, L_{\mu}\right) \xrightarrow{\tau_{\mu}} H_{n-1}^{\delta}\left(X_{\mu}, L_{\mu}\right) \rightarrow \cdots$.
If U_{μ} refines U_{λ}, then since $\pi_{\mu \lambda} \partial=\partial \pi_{\mu \lambda}$ and $\pi_{\mu \lambda}=\rho \pi_{\mu \lambda}$, the map $\pi_{\mu \lambda}$ generates a set of homomorphisms of the exact sequence (B_{μ}) of compact groups into the exact sequence $\left(B_{\lambda}\right)$. The homomorphism is independent of the particular
T-projection $\pi_{\mu \lambda}$ [4, p. 360]. Let

$$
\begin{equation*}
\cdots \rightarrow H_{n}^{\delta}(X, L) \xrightarrow{\xi} H_{n}^{\delta^{m}}(X, L) \xrightarrow{\eta} H_{n}^{\delta m-1}(X, L) \xrightarrow{\tau} H_{n-1}^{\delta}(X, L) \rightarrow \cdots \tag{B}
\end{equation*}
$$

denote the exact sequence of inverse limits of the exact sequence $\left(B_{\mu}\right)$, which serves to define ξ, η, τ. Then, as in (3.1),

Theorem 3.2. If X is a compact Hausdorff space, and if T is periodic of prime period p, then the sequence (B) is exact.

For the remainder of the section, we shall assume that X is a locally compact Hausdorff space, and that T is a periodic map of prime period p on X. Let $\left[A_{\mu}\right]$ denote the collection of compact subsets of X with $T\left(A_{\mu}\right)=A_{\mu}$. Note that if A is any compact subset of X, then $A \cup T(A) \cup \cdots \cup T^{p-1}(A)$ is a compact invariant subset. That is, if $[A]$ denotes the collection of compact subsets of X partially ordered by inclusion, then $\left[A_{\mu}\right]$ is cofinal in $[A]$. Let now A_{μ} contain A_{λ}. Denote by T_{μ} the periodic map $T \mid A_{\mu}$. Let $f_{\lambda \mu}$ denote the inclusion map of A_{λ} into A_{μ}. Then obviously $T_{\mu} f_{\lambda \mu}=f_{\lambda \mu} T_{\lambda}$. Denote the fixed point set of T_{μ} by L_{μ}; that is, $L_{\mu}=A_{\mu} \cap L$. According to a construction of Smith [4, p. 370], $f_{\lambda \mu}$ generates homomorphisms of the special homology groups of A_{λ}, T_{λ} into those for A_{μ}, T_{μ}. We have the exact sequences
$\left(\mathrm{A}_{\mu}\right) \quad \cdots \rightarrow H_{n+1}^{\rho}\left(A_{\mu}, L_{\mu}\right) \xrightarrow{\alpha_{\mu}} H_{n}^{\dot{\beta}}\left(A_{\mu}\right) \xrightarrow{\beta_{\mu}} H_{n}\left(A_{\mu}\right) \xrightarrow{\gamma_{\mu}} H_{n}^{\rho}\left(A_{\mu}, L_{\mu}\right) \rightarrow \cdots$,
(B_{μ})

$$
\cdots \rightarrow H_{n}^{\delta}\left(A_{\mu}, L_{\mu}\right) \xrightarrow{\xi_{\mu}} H_{n}^{\delta_{n}^{m}}\left(A_{\mu}, L_{\mu}\right) \xrightarrow{\eta_{\mu}} H_{n}^{\delta_{n}^{m-1}}\left(A_{\mu}, L_{\mu}\right) \xrightarrow{\tau_{\mu}} H_{n-1}^{\delta}\left(A_{\mu}, L_{\mu}\right) \rightarrow \cdots
$$

of (3.1) and (3.2).
For $A_{\lambda} \subset A_{\mu}, f_{\lambda \mu}$ generates a set of homomorphisms of $\left(A_{\lambda}\right)$ into $\left(A_{\mu}\right)$, and of $\left(B_{\lambda}\right)$ into $\left(B_{\mu}\right)$. To note commutativity, see the remarks by Smith [$6, \mathrm{p}$. 370]. We define the direct limit of the exact homomorphism sequences $\left(A_{\mu}\right)$, $\left(B_{\mu}\right)$ by

$$
\begin{align*}
& \cdots \rightarrow H_{n+1}^{\rho}(X, L) \xrightarrow{\alpha} H_{n}(X) \xrightarrow{\beta} H_{n}(X) \xrightarrow{\gamma} H_{n}^{\rho}(X, L) \rightarrow \cdots, \tag{A}\\
& \cdots \rightarrow H_{n}^{\delta}(X, L) \xrightarrow{\xi} H_{n}^{\delta m}(X, L) \xrightarrow{\boldsymbol{q}} H_{n}^{\delta m-1}(X, L) \xrightarrow{\tau} H_{n+1}^{\delta}(X, L) \rightarrow \cdots . \tag{B}
\end{align*}
$$

Let us clarify the last statement. Define $H_{n}^{p}(X, L)$ to be the direct limit of the system $\left[H_{n}^{p}\left(A_{\mu}, L_{\mu}\right) ; f_{\lambda_{\mu}}^{1}\right.$] where $f_{\lambda_{\mu}}$ denotes the inclusion of A_{λ} into A_{μ} and where $f_{\lambda \mu}^{1}$ denotes the generated homomorphism of $H_{n}^{p}\left(A_{\lambda}, L_{\lambda}\right)$ into $H_{n}^{p}\left(A_{\mu}, L_{\mu}\right)$. Similarly for the other special groups and for $H_{n}(X)$. Then define α, β, and so on as the homomorphisms induced on these as in [1, p. 689], where α is generated by α_{μ}, β by β_{μ}, and so on. It should be noted that $H_{n}(X)$ is then essentially the group of Čech cycles on compact subsets of X modulo the Čech cycles which bound on compact subsets of X.

Theorem 3.3. If X is a locally compact Hausdorff space and if T is a periodic map on X of prime period p, then the sequences (A) and (B) are exact. Moreover, (A) is exact if we replace $H_{0}^{\bar{\rho}}(X), H_{0}(X)$ by $\widetilde{H}_{0}^{\bar{o}}(X), \widetilde{H}_{0}(X)$ respectively if $\widetilde{H}_{0}(X)=0$ and $L \neq 0$.

The proof follows from [1, p. 689].
We say that a locally compact Hausdorff space X is finite-dimensional if and only if there exists an integer n such that if A is any compact subset of X, then the dimension of A (in the covering sense) is less than n.

We note here three important results of P. A. Smith that we use. We let X be a finite-dimensional locally compact Hausdorff space, and let T be a periodic map of prime period p. The results have been proved by Smith for the compact case; they may then be extended in a straightforward manner to the locally compact case.
(3.4) There exists an integer k such that for $i>k$ all the groups $H_{i}^{p}(X, L)$ vanish [4, p. 362, Remark 9.5];
(3.5) $H_{i}^{\rho}(X)$ is isomorphic with the direct sum of $H_{i}^{\rho}(X, L)$ and $H_{i}(L)$ [4, p. 363];
(3.6) If Y denotes the orbit decomposition space and if L^{*} denotes the subset of Y generated by L, then $H_{i}\left(Y, L^{*}\right) \approx H_{i}^{\delta}(X, L)$ [6, p. 144, Theorems 3.19 and 3.20].

It should be noted that in [6], in which the proof of (3.6) is given for the compact case, there is a standing hypothesis that every open subset of X is an F_{σ}. It may be seen, however, that this property was not used in the proof of (3.6).
4. The main theorem. If C is a vector space over the field F, then we denote by $\operatorname{dim} C$ the dimension of the vector space over F. If $\left[C_{i} \mid i=0\right.$, $\pm 1, \cdots]$ is a sequence of finite-dimensional vector spaces all but a finite number of which vanish, then we define $k(C)$ to be $\sum(-1)^{i} \operatorname{dim} C_{i}$.

The following lemma is essentially the same as a result of Kelley and Pitcher [1, p. 688].

Lemma 4.1. Let

$$
\cdots \rightarrow K_{i+1} \rightarrow G_{i} \rightarrow H_{i} \rightarrow K_{i} \rightarrow \cdots
$$

be an exact sequence of vector spaces and linear operators. If G_{i} and K_{i} are finitedimensional, then so is H_{i}. If all the elements are finite-dimensional and all but a finite number of them vanish, then $k(H)=k(G)+k(K)$.

Proof. For purposes of proof, we consider an exact sequence

$$
\cdots \rightarrow C_{i+1} \xrightarrow{f_{i+1}} C_{i} \xrightarrow{f_{i}} C_{i-1} \rightarrow \cdots,
$$

where each C_{i} is a vector space over F, and f_{i} is linear. Then, $C_{i} /$ kernel f_{i} \approx image f_{i}. By exactness, we have kernel $f_{i}=\operatorname{image} f_{i+1}$, and so $\operatorname{dim} C_{i}$
$=\operatorname{dim} f_{i+1}\left(C_{i+1}\right)+\operatorname{dim} f_{i}\left(C_{i}\right)$. If each C_{i} is finite-dimensional and almost all vanish, it clearly follows that $\sum(-1)^{i} \operatorname{dim} C_{i}=0$. The lemma follows.

Theorem 4.2. Let X be a finite-dimensional locally compact Hausdorff space, and let T be a periodic map of prime period p on X. Suppose that the vector spaces $H_{i}(X)$ are of finite dimension for each i. Let L be the fixed point set of X, and let Y denote the orbit decomposition space of X, T. Then all the vector spaces $H_{i}(L)$ and $H_{i}(Y)$ are of finite dimension and

$$
\chi(X)+(p-1) \chi(L)=p \chi(Y)
$$

where

$$
\chi(A)=\sum(-1)^{i} \operatorname{dim} H_{i}(A) .
$$

Proof. We use first the exact sequence (A)

$$
\cdots \rightarrow H_{i+1}^{p}(X, L) \rightarrow H_{i}^{\bar{p}}(X) \rightarrow H_{i}(X) \rightarrow H_{i}^{\rho}(X, L) \rightarrow \cdots .
$$

Suppose it has been proved that the vector spaces $H_{i}^{p}(X, L)$ are finite-dimensional for all ρ (and hence all $\bar{\rho}$) and for all $i \geqq n+1$. It then follows from Lemma 4.1 that $H_{i}^{\vec{p}}(X)$ is finite-dimensional for all ρ and all $i \geqq n$ since both $H_{i+1}^{p}(X, L)$ and $H_{i}(X)$ are finite-dimensional. We would then have that $H_{i}^{\rho}(X)$ is finite-dimensional for all ρ and all $i \geqq n$. But for n sufficiently large, all the groups $H_{i}^{p}(X, L)=0$ for $i>n$ by (3.4). Hence by induction all the groups $H_{i}^{p}(X)$ are finite-dimensional. But then so are the vector spaces $H_{i}(L)$, they being isomorphic with subspaces of $H_{i}^{p}(X)$. Moreover, the groups $H_{i}\left(Y, L^{*}\right)$ are finite-dimensional, being isomorphic with $H_{i}^{\delta}(X, L)$ by (3.6). But then, using the homology sequence of the pair (Y, L^{*}),

$$
\cdots \rightarrow H_{i}\left(L^{*}\right) \rightarrow H_{i}(Y) \rightarrow H_{i}\left(Y, L^{*}\right) \rightarrow \cdots,
$$

we see that all the entries except possibly the vector spaces $H_{i}(Y)$ are finitedimensional. But then by Lemma 4.1 all the entries are finite-dimensional. Moreover

$$
\begin{aligned}
k(H(Y)) & =k\left(H\left(L^{*}\right)\right)+k\left(H\left(Y, L^{*}\right)\right) \\
& =k(H(L))+k\left(H^{\delta}(X, L)\right)
\end{aligned}
$$

so that (i) $k\left(H^{\mathrm{t}}(X, L)\right)=k(H(Y))-k(H(L))$.
Using Lemma 4.1 on (A) for $\rho=\sigma$ we obtain

$$
\begin{align*}
k(H(X)) & =k\left(H^{\delta}(X)\right)+k\left(H^{\sigma}(X, L)\right) \\
& =k(H(L))+k\left(H^{\delta}(X, L)\right)+k\left(H^{\sigma}(X, L)\right) \tag{ii}
\end{align*}
$$

Using Lemma 4.1 on (B) we obtain

$$
k\left(H^{\delta^{m}}(X, L)\right)=k\left(H^{\delta}(X, L)\right)+k\left(H^{\delta m^{-1}}(X, L)\right)
$$

Using this equation for $i=2, \cdots, p-1$, we get

$$
k\left(H^{\sigma}(X, L)\right)=k\left(H^{\delta^{p-1}}(X, L)\right)=(p-1) k\left(H^{\delta}(X, L)\right)
$$

Returning to (i) we then get

$$
k(H(X))=k(H(L))+p k\left(H^{\delta}(X, L)\right)
$$

Using (i), and changing notation, we get the desired theorem.
Corollary 4.3. Using the notation of the above theorem, we have $\chi(X)$ $=\chi(L) \bmod p$.

Theorem 4.4. Let X be a locally compact finite-dimensional Hausdorff space. Let T denote a periodic map on X of prime period p, and denote by L the fixed point set of T. Then for each nonnegative integer n, we have $\sum_{n}^{\infty} \operatorname{dim} H_{i}(L)$ $\leqq \sum_{n}^{\infty} \operatorname{dim} H_{i}(X)$.

Proof. We prove that for each n and each $\rho, \operatorname{dim} H_{n}^{\rho}(X)+\sum_{n+1}^{\infty} \operatorname{dim} H_{i}(L)$ $\leqq \sum_{n}^{\infty} \operatorname{dim} H_{i}(X)$. Suppose this has been proved for $n+1$. Then consider (A);

$$
\cdots \rightarrow H_{n+1}^{\rho}(X, L) \xrightarrow{\alpha} H_{n}^{\bar{\rho}}(X) \xrightarrow{\beta} H_{n}(X) \rightarrow \cdots
$$

By exactness we have

$$
\begin{aligned}
\operatorname{dim} H_{n}^{\bar{\rho}}(X) & \leqq \operatorname{dim} H_{n+1}^{\rho}(X, L)+\operatorname{dim} H_{n}(X) \\
& \leqq \operatorname{dim} H_{n+1}^{\rho}(X)-\operatorname{dim} H_{n+1}(L)+\operatorname{dim} H_{n}(X)
\end{aligned}
$$

using the induction hypothesis, we obtain

$$
\operatorname{dim} H_{n}(X)+\sum_{n+1}^{\infty} \operatorname{dim} H_{i}(L) \leqq \sum_{n}^{\infty} \operatorname{dim} H_{i}(X)
$$

We note that this inequality reduces to $0 \leqq 0$ for n sufficiently large. The theorem then follows from the remark that $\operatorname{dim} H_{n}(L) \leqq \operatorname{dim} H_{n}^{\dot{p}}(X)$.
5. Some applications. The following is a generalization of a theorem of Smith [3].

Theorem 5.1. Let X be a locally compact finite-dimensional Hausdorff space. Let T be a periodic map on X of period p^{a}, where p is prime. If the groups $H_{n}(X)$ are finitely generated and if $\sum(-1)^{i} \operatorname{dim} H_{n}(X) \neq 0 \bmod p$, then T has at least one fixed point.

Proof. Let us consider the case $a=1$. Then by (4.3) we have $\chi(X)$ $=\chi(L) \bmod p$, and moreover the groups $H_{n}(L)$ are finitely generated. Then by an inductive device used often by Smith $[3 ; 6]$, we have also in the general case $\chi(X)=\chi(L) \bmod p$, and the theorem follows.

It is convenient in the following theorem to agree, following Smith [4, p. 366], that the empty set is a (-1)-sphere.

Theorem 5.2. Let X be a locally compact finite-dimensional Hausdorff space. Let G be an abelian transformation group on X, of finite order p^{a} where p is an odd prime. Suppose X has the homology groups of an n-sphere over I_{p}. Let L denote the set of all $x \in X$ with $T(x)=x$ for all $T \in G$. Then L has the homology groups of an r-sphere, $r \leqq n$, and $n-r$ is even.

Proof. As Smith has pointed out [7, p. 358], it is sufficient to prove such a theorem for $a=1$, since the fixed point set L inherits all the properties postulated for X. 'That L has the homology groups of an r-sphere for some $r \leqq n$ has been proved by Smith [4, p. 366]. A proof could also be easily established using Theorems 4.2 and 4.4. Now by Corollary 4.3, we have $\chi(X)$ $=\chi(L) \bmod p$. Since X and L are homological spheres and p is odd, then $\chi(X)=\chi(L)$. Hence $1+(-1)^{n}=1+(-1)^{r}$ and $n-r$ is even.

Bibliography

1. J. L. Kelley and E. Pitcher, Exact homomorphism sequences in homology theory, Ann. of Math. vol. 48 (1947) pp. 682-709.
2. M. Richardson and P. A. Smith, Periodic transformations on complexes, Ann. of Math. vol. 39 (1938) pp. 611-633.
3. P. A. Smith, Fixed point theorems for periodic transformations, Amer. J. Math. vol. 63 (1941) pp. 1-8.
4. -_, Fixed points of periodic transformation, Appendix B in Lefschetz, Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27, New York, 1942.
5.——, Periodic and nearly periodic transformations, Lectures in Topology, 1941, pp. 159-190.
5. ——, Transformations of finite period, Ann. of Math. vol. 39 (1938) pp. 127-164.
6. -, Transformations of finite period IV. Dimensional parity, Ann. of Math. vol. 46 (1945) pp. 357-364.
7. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, New York, 1942.

University of Virginia, Charlottesville, Va.

[^0]: Presented to the Society, September 7, 1951; received by the editors June 5, 1951.
 $\left.{ }^{(}\right)$Numbers in brackets refer to the bibliography at the end of the paper.

[^1]: $\left.{ }^{(2}\right)$ After this paper was submitted, recent work of S. D. Liao, A theorem on periodic maps of homology spheres, Bull. Amer. Math. Soc. Abstract 57-5-420, to appear in Ann. of Math., came to the author's attention. Liao proves that if one adds the requirement that X be compact and have finitely generated integral cohomology groups and drops the restriction that p be odd, then $n-r$ is even or odd according as T is orientation preserving or orientation reversing.

