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1. Introduction. Let X be a locally compact finite-dimensional Hausdorff

space, and let J1 be a periodic map of prime period p operating on X. Let

L denote the fixed point set of T, and let Y denote the orbit decomposition

space of X and T, which has as elements the sets [T^x) \ i = 0, 1, • • -,p — i]

for xÇzX. Let us consider first the case in which X is a finite complex, T is

simplicial, and the natural decomposition mapf:X—*Yis simplicial and there-

fore a homeomorphism on each simplex of X. Let v be a simplex of Y. If

f~l{v)(ZL, then/-1(zj) contains exactly one simplex. Otherwisef~1(v) contains

exactly p simplexes. As a consequence x(X) + (p—i)x(L)=px(Y), where %

indicates the Euler characteristic. The similarity of this formula to a result

of G. T. Whyburn [8; p. 202].(1) concerning interior maps on 2-manifolds will

be noted.

The main purpose of this paper is to provide an analogue of this formula

under more general circumstances. We use for X and T any pair satisfying

the requirements of the first sentence, with the restriction that the Cech

homology groups Hn(X), with the integers mod p as coefficient group, are

all finitely generated. We prove that the same formula then holds if we de-

fine x(4) tobe £( —l)*dimiJ¡(4) whenever this is defined, where dim Hi{A)

denotes the minimum number of generators of .77,(4) (that is, its dimension

as a vector space over the integers mod p).

We use P. A. Smith's theory of special homology groups [4; 5; 6] to ob-

tain the formula. We base our usage of the special groups on two exact

homomorphism sequences, which we obtain in §§2 and 3. The first of these

sequences, sequence (A), is implicit in the work of Smith (cf. [4]). However,

the second, sequence (B), appears to be new. It is basic for our purpose in

that it relates the structure of the special groups Hn and H"m.

In §4, we prove the main theorem. We also verify that £ dim Hi(L)

ïS £ dim Hi(X). This result is closely related to results of Smith [5; p. 170]

and of Richardson and Smith [2; p. 619].

In §5, we point out some applications of our results. The main theorem

has as a consequence, of course, a theorem concerning existence of fixed

points. This theorem generalizes the fixed point theorem of Smith [3]. We

also prove that if X has the homology groups of an M-sphere over the integers

mod p, p an odd prime, and if G is an abelian transformation group of order
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pa, then the set L of points fixed under each 7~GG has the homology groups

of an r-sphere where n — r is even(2). This solves a problem pointed out by

Smith, who proved a weaker theorem for a = l and a form of this theorem

for the general case [7].

It must be noted that, throughout the paper, if T is periodic of period

p in a given discussion, then all homology groups in the same discussion will

have the integers mod p as coefficient group.

2. Special homology groups for simplicial maps. We treat in this section

the special homology groups for simplicial periodic maps. To provide a

notational basis, we give first the definitions of the special groups. These are

due to Smith [4; 5; 6] and Richardson and Smith [2].

We assume throughout this section a finite complex X and a simplicial

periodic map T on X of prime period p. We denote by L the fixed point set

of T. We shall assume that £ is a subcomplex of X.

Denote by CniX), ZniX), £„(X), and HniX) the group of n-chains,

M-cycles, bounding «-cycles, and the »-homology group of X with coefficient

group Ip, the group of integers mod p. Denote by d the boundary operator.

Define Z0(X) to be the set of all xGZ0(X) with coefficient sum 0. Define

HoiX)=Z0iX)/BoiX). We denote by Zn(X, L), B%(X, L), and Hn(X, L) the
group of «-cycles of X mod L, and so on.

Let bit) denote the polynomial 1—/. Then ô(£) = l — T will denote a

chain mapping of CniX) into itself for each n. We abbreviate ô(£) by b. Also,

for each positive integer i, we have the chain mapping bl = bliT). Since the

coefficient group is Ip, we have <r = bp-1 = l + T+ ■ ■ ■ +£p_1 and 5P = 0

[4, p. 614]. We use p to designate anyone of the chain mappings b*,i= 1, • • -,

p—1. If p = b\ then define p = bp~\ Hence pp = pp = 0.

Define C„iX)=[x\x<ECniX), px = 0]. Note that C„(I)CCÎ(Z); hence

C„(L)CC£(X)forallp.

The proof of the following basic property may be found in Richardson

and Smith [2, p. 616].

(2.1) We have x£CniX) if and only if there exists a<EC„iX), bECniL)

with x=pa-\-b.

DenneZniX) = CZiX)nZniX),BiiX)=diCn+liX)),H>niX)=ZniX)/BniX).
For p = 0, we also define Z\(X) =Z0(X)nCg(Z) and Ën(X) =Zg(X)/£g(Z).

We note explicitly another basic property, due to Smith [4, p. 357] and

Richardson and Smith [2, p. 617]:

(2.2) // pa+bEZ„iX), where aGC„iX), b<ECniL), then pa and b are

(2) After this paper was submitted, recent work of S. D. Liao, A theorem on periodic maps

of homology spheres, Bull. Amer. Math. Soc. Abstract 57-5-420, to appear in Ann. of Math.,

came to the author's attention. Liao proves that if one adds the requirement that X be compact

and have finitely generated integral cohomology groups and drops the restriction that p be

odd, then n — r is even or odd according as T is orientation preserving or orientation reversing.
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cycles. If pa+bEBn(X), then pa<EBpn(X) and 6£ß„(L).

We use also the "relative" special groups. Define C„{X, L) = [x\x(ECn(X),

x = py for some y], Zn{X, L) = Cpn{X, L)i\Zn(X), Bn(X, L)=d(Cp+1(X, L)),
and Hpn(X, L) =Zn(X, L)/Bn(X, L). It is useful to note that x£Zn(X, L) if

and only if x£C£(X), dx is contained in L, and x is 0 on each simplex of

L [4, p. 356]. It should also be noted that our symbol HP(X, L) is equivalent

to either the symbol §npl{X) or £)np{X) of Smith [4, pp. 358 and 363].

Definition. Let p\x:£Z£+1(X, L). Then p{dx) = dpx = 0. Hence dx(£-Zn(X).

The function px—>dx induces a homomorphism a:Hp+1(X, L)^>H¡¡(X). It is

clear that a maps H{{X, L) into HP0{X).

The inclusion x—>x of C^(X) into Cn(X) generates a homomorphism of

Hl(X) into Hn(X), which we denote by ß:Hl(X)-^Hn(X). We note that ß
maps HP0(X) into H0(X).

Moreover, the chain mapping y—>py of Cn(X) into Cn{X, L) induces a

homomorphism of Hn(X) into Hpn(X, L) which we indicate by y:Hn(X)
->H>(X, L).

The proof that each of these is a well-defined homomorphism is straight-

forward. The homomorphisms a and ß are due to Smith [4, pp. 358-359].

Theorem 2.3. The sequence

-► Hn+1(X, L) ^ Hn(X) i> H„(X) ^ //„(.Y, £)->••■
(A) -+ H0(X, L) -> 0

is exact. If L^O and if X is connected, then HP{X), Ho(X) may be replaced by

HP(X), S0(X) respectively and the sequence is still exact.

Proof. The proofs that ßa = 0, yß = 0, ay = 0 are trivial and will be omitted.

Let now x£kernel ß. If pa+b represents x we then have pa-\-b=dc for some

chain c. Then d(pc) = p(dc) =0, so that pc(£Zn(X, L). If pc represents y

(-¡zHñ+1(X, L), then a(y) =x. Hence image a = kernel ß.

Next suppose x £ kernel y. Then if a represents x we have pa — dpc for some

chain c. Hence p(a—dc)=0, so that a —dc£Z£(X). If a — dc represents y

E.H^(X), then ß{y) =x and image ß = kernel y.

Now let x£kernel a. If pa represents x, then da = d{pc-\-d) for some c

in X and d in Z. Then a—pc — d(E.Zn(X). If a — pc — d represents y£ii„(X),

then 7(y) =#. Then image 7 = kernel a and exactness is proven.

Suppose now that X is connected and that L^O. Then 7J0(^0=0. To

prove the latter part of the theorem, we must prove HP(X, L) =0 and that

a\Hp(X, L)->H~P(X) is onto. To prove a onto, let xEHp0(X). Then ß(x)

£7Jo(A^), so ß(x) =0. Then there exists y£.Hp(X, L) with a{y) =x. To prove

HP(X, L)=Q, it is sufficient to prove that if v is a vertex of X — L, then

pv = d(pc) for some chain c. Let a denote a vertex of L. Let c£Ci(X) be such

that dc = v — a. Then dpc =*pv — pa = pv, so that H^X, L) = 0.
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Definitions. Let m be one of the numbers 2, 3, • • • , p — 1. We note

that CÜX, L)CCiaiX, L). For if x = b"-1c<EC5n(X, L), then x = bp~mibm-lc)

GC^m(X, L). The inclusion of C^(X, L) into C^X, L) generates a homo-

morphism t:Hl(X, L)-+HsnmiX, L).

The transformation x—>bx of C^X, £) into Cn™~ iX, L) generates a

homomorphism of Hf^iX, L) into Hnm~ (X, L) which we denote by 17.

The transformation 5*—+1c-*a5'—c of Zlm~\X, L) into Z^X, L)

generates a homomorphism of H¡,m~ (X, £) into i?^+1(X, £) which we indi-

cate by r. For if bp-™+lc<EZnm~\X, L), then

dô c = 5(35      c) = 0,    so    55      cGZ„(X).

But 3op-"'c = 0 on L, so döp-"!cGZ£(X, L).

Let us now prove the existence of r. Suppose bp~m+1x and Sp_m+1y repre-

sent the same element of J?£m-I(X, L). Then for some c

bp~m+1x — b"-m+1y = 3(5p_",+1c),

so that bibp-mx-bp'my — bbp-mc) =0. Then

b"-'"x - bp-my - db"-lc = b"-la + b by (2.1).

Operating with d, dbp~'nx — dbp~my =dbp~1a since the left-hand side is con-

tained in X — L. Therefore dbp~mx and dbp~my represent the same element of

IIniX, L).Sot is well-defined.

Theorem 2.4. The sequence

-► HniX, L) i» hTíX, L) A Hn"~ (X, L) -4 fl'_i(-X", Z)
(B)

—> • • • ts exact.

Proof. To prove that 77$ = 0, let bp~lc represent an element x of H„iX, L).

Then ï)£(x) is represented by ô(Sp_1c) = bpc = 0. Hence 77^ = 0. To prove tt¡ = 0,

let bp~mc represent xG-#T"(X, L). Then 5p_m+1c represents 17 (x) and dbp~mc

represents rrj(x). But 5p_mc is a cycle, so Ti7(x) =0. To prove £t = 0, let ôî'-"î+1î:

represent an element xQHnm~1iX, L). Then dbp~mc represents £r(x) in

#f(X, L). But then fc-(x) =0.
Next, let xGkernel 77. If x is represented by 5p_,"c, then bp~m+1c = dbp-m+1b

for some chain b. Then o(5p-OTc-d5p-"1&) =0 and d = bp-mc-dbp-mb^ZsniX, L).

For dÇaZiiX) and d is 0 on L. If yGi?l(X, L) is represented by d, then it

follows that £(y) =x, and hence image £ = kernel 77.

Let xGkernel r. If x is represented by Sp_m+1c, then dbp~mc = dibp-1b) for

some chain 6. Then dibp-mc-b*-lb) =0, so that d = bp-mc-bp-lb^.HnmiX, L).

But ôd = 5p-"I+1c-5pè=5p-"1+1c. Hence if yG-HfXX, L) is represented by d,

then r/(y) = x. Hence kernel r = image 77.

Finally, let xGkernel £. Then if bp_1c represents x, we have bp~1c = dbp~mb
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for some chain b. Operating on both sides with 5, we have dôp~m+ib = àpc = 0.

Hence 5p-m+1beZnm~\X, L). Suppose ôp—+15 represents yEHsnm~\X, L).

Then dhp~mb = 8p~1c represents r(y) so that r(y)=x. Hence exactness is

proven.

3. The special groups for locally compact spaces. Let Ibea compact

Hausdorff space and let T be a periodic map on X of prime period p. By a

covering of X will be meant a finite open covering. We denote by [Uß] the

collection of primitive special coverings of X[i, pp. 350-353]. Denote by Xß

the nerve of Uß. Then there is generated a simplicial periodic map Tß on A%

defined by Tß(u) = T(u) for each vertex u of X,,. If Up refines U\, then there

exists a projection ir^x : X„—*X\ such that w^xTp^TxTr^ [4, p. 351 ] (such a

projection is called a T-projection). We call L„ the fixed point set of Tß.

We have for each U„ the exact sequence

(A,)       -> HUi{Xß, Lß) %■ hI(X,) ^ BniX,) %■ HPn(X„ L„) -* • • • .

If Up refines U\ then a ^-projection 7r„x defines a set of homomorphisms of

the exact sequence (A,,) into the exact sequence (Ax) [4, p. 361 ]. That these

homomorphisms are independent of the particular ^-projection 7rMx has been

proved by Smith [4, p. 360]. That the generated homomorphisms commute

with a, ß, y follows from the relations 7rM\d = Ô7r„x and -kß\p = pirMx- We note

that each (A„) is made up of compact (actually finite) groups. So we may

consider the inverse limit of the exact sequences (A„) [l, pp. 694-695], con-

nected by the homomorphisms generated by the ^-projections 7r„x. We de-

note the exact sequence of inverse limits by

(A) -> Hn+1(X, L) A Hn(X) 4- Hn{X) -^ H'(X, L) -> • • •  ,

which serves to define a, ß, y as well as the p-homology groups. The defini-

tions for the groups and for a, ß have been given by Smith [4].

Theorem 3.1. If X is a compact Hausdorff space, and if T is a periodic

map on X of prime period p, then (A) is exact. Moreover, if X is connected and

Lt^Q, then (A) remains exact when IIP0{X), Ha(X) are replaced by Bq(X),

Ho(X).

Proof. The exactness follows from a general theorem on inverse limits of

exact homomorphism sequences of compact groups [l, p. 695].

Moreover, for each U„ we have the exact sequence

(B,,) • * • —* HniXp, LfJ —> Hn {Xß, Lp) —> Hn     (Xß, Lß) —> íí„_1(XJU, L,,) —► • • • .

If Up refines U\, then since TTp\d=dir¡1\ and irß\p=pTTß\, the map 7r„x generates

a set of homomorphisms of the exact sequence (B„) of compact groups into

the exact sequence (Bx). The homomorphism is independent of the particular
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F-projection 7r„x [4, p. 360]. Let

(B)     -► HniX, L) X HTiX, L) A HT' (X, L) A hLi(X, L) -*• • • •

denote the exact sequence of inverse limits of the exact sequence (B„), which

serves to define £, 77, r. Then, as in (3.1),

Theorem 3.2. If X is a compact Hausdorff space, and if T is periodic

of prime period p, then the sequence (B) is exact.

For the remainder of the section, we shall assume that X is a locally com-

pact Hausdorff space, and that T is a periodic map of prime period p on X.

Let [Af,] denote the collection of compact subsets of X with TiAß) =AI¡. Note

that if A is any compact subset of X, then A\jTiA){J • • ■ \jTp~1iA) is a

compact invariant subset. That is, if [A ] denotes the collection of compact

subsets of X partially ordered by inclusion, then [Aß] is cofinal in [A]. Let

now A„ contain A\. Denote by Tß the periodic map Z"| ̂ 4^. Let f\ß denote the

inclusion map of ^4x into Aß. Then obviously Tßf\ll=f\„T\. Denote the fixed

point set of T„ by Lß; that is, Lß=AllC\L. According to a construction of

Smith [4, p. 370], /x„ generates homomorphisms of the special homology

groups of A\, T\ into those for Aß, Tß. We have the exact sequences

(AM)     -► Hn+iiA,,, L„) % HliAJ -£ Hn(A„) % HniAm £,)-»•••',

(B„)     -► HniA,, Lß) -^ HTiA,, L,) % Hr' (A„, L,) -3 ff»_i(if, LM) -»

of (3.1) and (3.2).

For ^4xC^4mi Ah generates a set of homomorphisms of iA\) into G4„)> and

of iB\) into iBß). To note commutativity, see the remarks by Smith [6, p.

370]. We define the direct limit of the exact homomorphism sequences iAu),

(Bm) by

(A)      -► Hn+liX, L) A HniX) A HniX) A HniX, L) -> - • ■ ,

(B) • • • -* HniX, L) -^ HTiX, L) A hT'' (X, L) A h'+1(X, L) -» • • ■ .

Let us clarify the last statement. Define H„iX, L) to be the direct limit

of the system [H„iA„, Lß);f{ß] where f\„ denotes the inclusion of A\'mtoA»

and where /xM denotes the generated homomorphism of Hn\A\, L\) into

HniAß, Lf). Similarly for the other special groups and for ii„(X). Then de-

fine a, ß, and so on as the homomorphisms induced on these as in [l, p. 689],

where a is generated by ctß, ß by /3M, and so on. It should be noted that

HniX) is then essentially the group of Cech cycles on compact subsets of X

modulo the Cech cycles which bound on compact subsets of X.
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Theorem 3.3. If X is a locally compact Hausdorff space and if T is a peri-

odic map on X of prime period p, then the sequences (A) and (B) are exact.

Moreover, (A) is exact if we replace HP(X), H0(X) by H^X), HQ(X) respec-

tively if H0(X) = 0 and Ly^O.

The proof follows from [l, p. 689].

We say that a locally compact Hausdorff space X is finite-dimensional

if and only if there exists an integer n such that if 4 is any compact subset of

X, then the dimension of 4 (in the covering sense) is less than n.

We note here three important results of P. A. Smith that we use. We let

X be a finite-dimensional locally compact Hausdorff space, and let T be a

periodic map of prime period p. The results have been proved by Smith for

the compact case; they may then be extended in a straightforward manner

to the locally compact case.

(3.4) There exists an integer k such that for i>k all the groups HP{X, L)

vanish [4, p. 362, Remark 9.5];

(3.5) Hi(X) is isomorphic with the direct sum of HP(X, L) and Hf(L)

[4, p. 363];
(3.6) If Y denotes the orbit decomposition space and if L* denotes the

subset of F generated by L, then H,(Y, L*)~H*(X, L) [6, p. 144, Theorems

3.19 and 3.20].
It should be noted that in [6], in which the proof of (3.6) is given for the

compact case, there is a standing hypothesis that every open subset of X is

an F„. It may be seen, however, that this property was not used in the proof

of (3.6).
4. The main theorem. If C is a vector space over the field F, then we de-

note by dim C the dimension of the vector space over F. If [C,|î = 0,

+ 1, ■ ■ • ] is a sequence of finite-dimensional vector spaces all but a finite

number of which vanish, then we define k{C) to be  £( —1)* dim C,-.

The following lemma is essentially the same as a result of Kelley and

Pitcher [1, p. 688].

Lemma 4.1. Let

■ ■ ■ —> Ki+i —>Gi —► Hi —> K¡ —► • • •

be an exact sequence of vector spaces and linear operators. If G i and K, are finite-

dimensional, then so is 7J¿. If all the elements are finite-dimensional and all but a

finite number of them vanish, then k(H) =k(G) +k(K).

Proof. For purposes of proof, we consider an exact sequence

fi+l li
■ ■ ■  —> C-I+i > L,i » Of_i —► • • •   ,

where each C, is a vector space over F, and/,- is linear. Then, C,/kernel/i

«image /,-.  By exactness, we have kernel /¿ = image fi+i, and so dim  C<
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= dim/,+i(C¿+i)-r-dim/i(C¿). If each C< is finite-dimensional and almost all

vanish, it clearly follows that 2^(~ 1)* dim C¿ = 0. The lemma follows.

Theorem 4.2. Let X be a finite-dimensional locally compact Hausdorff

space, and let T be a periodic map of prime period p on X. Suppose that the

vector spaces iJ,(X) are of finite dimension for each i. Let L be the fixed point

set of X, and let Y denote the orbit decomposition space of X, T. Then all the

vector spaces iT,(Z-) and HAY) are of finite dimension and

X(X) + ip- l)x(L) = Px(Y),

where

XÍA) = £(-!)«"dim Jft(il).

Proof. We use first the exact sequence (A)

-> HPi+AX, L) -» H-iX) -» H AX) -» H'(X, L) -*> * • ■ .

Suppose it has been proved that the vector spaces HiiX, L) are finite-dimen-

sional for all p (and hence all p) and for all is^n + l. It then follows from

Lemma 4.1 that HUX) is finite-dimensional for all p and all i^n since both

J/P+I(X, L) and IIAX) are finite-dimensional. We would then have that

HiiX) is finite-dimensional for all p and all içzn. But for n sufficiently large,

all the groups HiiX, L)=0 for i>n by (3.4). Hence by induction all the

groups HiiX) are finite-dimensional. But then so are the vector spaces

HAL), they being isomorphic with subspaces of HUX). Moreover, the groups

HAY, L*) are finite-dimensional, being isomorphic with HfiX, L) by (3.6).

But then, using the homology sequence of the pair (F, L*),

-► HAL*) -> HAY) -> HAY, L*) -» • • • ,

we see that all the entries except possibly the vector spaces HA Y) are finite-

dimensional. But then by Lemma 4.1 all the entries are finite-dimensional.

Moreover

k(H(Y)) = k(H(L*)) +  k(H(Y, L*))

= k(H(L)) +   k(H'(X, I))

so that (i) kiH\X, L))=k(H(Y))-k(H(L)).
Using Lemma 4.1 on (A) for p=irwe obtain

k(H(X)) - KWiX)) + k(H'(X, D)

= k(H(L)) + KWiX, I)) + KH'iX, L)).

Using Lemma 4.1 on (B) we obtain

k(H»M(X, L)) = k(H*(X, L)) + kiH^-\X, L)).
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Using this equation for i = 2, ■ ■ ■ , p— 1, we get

k(H"(X, L)) -   k(HSP~\X, £,)) = (p - l)k(Hs(X, L)).

Returning to (i) we then get

k{H{X)) = k(H(L)) + pk(Hs(X, L)).

Using (i), and changing notation, we get the desired theorem.

Corollary 4.3. Using the notation of the above theorem, we have x(X)

= x(£) mod p.

Theorem 4.4. Let Xbea locally compact finite-dimensional Hausdorff space.

Let T denote a periodic map on X of prime period p, and denote by L the fixed

point set of T. Then for each nonnegative integer n, we have £™ dim H((L)

^ £; dim Ht(X).

Proof. We prove that for each n and each p, dim H^(X) + £"+i dim H{(L)

^ £™ dim Hi(X). Suppose this has been proved for n + i. Then consider (A) ;

-* Hn+1(X, L) ^ H»(X) -^ Hn(X) ->•••.

By exactness we have

dim HPn(X) g dim H„+i(X, L) + dim Hn{X)

Ú dim 7^+1(X) - dim H»+1(L) + dim Hn(X);

using the induction hypothesis, we obtain

00 00

dim Hn(X) + £ dim ff,-(L) ̂  £ dim H{(X).
B+l B

We note that this inequality reduces to 0^0 for n sufficiently large. The

theorem then follows from the remark that dim Hn(L) ^dim H^{X).

5. Some applications. The following is a generalization of a theorem of

Smith [3].

Theorem 5.1. Let X be a locally compact finite-dimensional Hausdorff

space. Let Tbea periodic map on X of period pa, where p is prime. If the groups

Hn(X) are finitely generated and if £(—1)' dim Hn(X)9£0 mod p, then T

has at least one fixed point.

Proof. Let us consider the case a = l. Then by (4.3) we have x(^0

= x(L) mod p, and moreover the groups Hn(L) are finitely generated. Then

by an inductive device used often by Smith [3; 6], we have also in the gen-

eral case x(X)=x(L) mod p, and the theorem follows.

It is convenient in the following theorem to agree, following Smith [4,

p. 366], that the empty set is a (—1)-sphere.
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Theorem 5.2. Let Xbea locally compact finite-dimensional Hausdorff space.

Let G be an abelian transformation group on X, of finite order pa where p is an

odd prime. Suppose X has the homology groups of an n-sphere over Ip. Let L

denote the set of all xGX with 7\x) =x for all TÇzG. Then L has the homology

groups of an r-sphere, r^n, and n — r is even.

Proof. As Smith has pointed out [7, p. 358], it is sufficient to prove such a

theorem for a = 1, since the fixed point set L inherits all the properties postu-

lated for X. That L has the homology groups of an r-sphere for some r ^ n

has been proved by Smith [4, p. 366]. A proof could also be easily established

using Theorems 4.2 and 4.4. Now by Corollary 4.3, we have x(X)

= XÍL) mod p. Since X and L are homological spheres and p is odd, then

XÍX)=xiL). Hence l + (— l)"=l + (— l)r and n — r is even.
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