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ON PERIODIC SOLUTIONS OF NONLINEAR
DIFFERENTIAL EQUATIONS WITH SINGULARITIES

A. C LAZER AND S. SOLIMINI

ABSTRACT. Necessary and sufficient conditions for existence of periodic solu-
tions of differential equations containing singularities are given. Our theorems
apply to u" + l/ua = h(t) = h(t + T) for all a > 0 and to u" - l/uQ = h(t)
if a > 1, and for this case a > 1 is an essential condition.

1. In this note we consider a class of second order scalar differential equations
with periodic forcing, zero damping, and a restoring force which becomes infinite at
a finite displacement, which we take to be zero. We give a necessary and sufficient
condition for the existence of a periodic solution for equations in this class. Our
first theorem will show that if h(t) is continuous and T-periodic, then for all a > 0
there exists a positive T-periodic solution of

(1.1) u"(t) + l/u(t)a = h(t)

if and only if h(t) has a positive mean value. Our second theorem will show that if
a > 1, then the repulsive type equation

(1.2) u"(t) - l/u(t)a = h(t)

has a positive T-periodic solution if and only if h(t) has a negative mean value.
In the last section, we show that this result is the best possible, by showing that

for any a, 0 < a < 1, we can choose h so that h has negative mean value and the
equation has no T-periodic solution.

Our methods consist of sub- and super-solution arguments and truncation argu-
ments based on a priori upper and lower bounds of periodic solutions which permit
reduction to the case of bounded nonlinearities and the application of the results
in [3] (see also [1, p. 121 or 4, p. 23]).

2. In this section we consider a general class of problems which includes (1.1)
with a > 0.

THEOREM 2.1. Let g be a real valued continuous function defined on (—00,0) U
(0,oo) such that g(£) —> 0 as |£| —> 00, g(£) —> +00 oí ^ -» 0+, g(£) —> —00
as £ —► 0—, and g(tl)(, > 0 for £ ^ 0. Let h(t) be defined and continuous for
—00 < t < 00 and satisfy h(t) = h(t + T) for some T > 0. A necessary and
sufficient condition that there exists a T-periodic solution of

(2.2) u*"(t) + g(u(t)) = h(t)
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is that

(2.3) f   h(s)ds 7^0
./o

Before proving the theorem let us make clear that by a solution of (2.2) we mean
a C2-function which satisfies the differential equation.

PROOF. Suppose u(t) is a T-periodic solution of (2.2). Since u(t) ^ 0 for all t
the assumptions on g imply that g(u(t)) is either always positive or always negative.
Integrating both sides of (2.2) from t = 0 to t = T we obtain

(2.4) /    h(t)dt= f   g(u(t)) dt ¿ 0.
Jo Jo

Therefore (2.3) is necessary for the existence of a T-periodic solution.
Conversely, suppose that (2.3) holds. We shall consider only the case

(2.5) ii   h(t)dt = ho>0

and show that this implies the existence of a positive T-periodic solution of (2.2).
The proof that ho < 0 implies the existence of a negative T-periodic solution of
(2.2) is similar.

If e > 0 is chosen so small that g(e) — h(t) > 0 for all t, then the constant function
u»(i) = £ is a sub-solution of the boundary value problem given by equation (2.2)
and T-periodic boundary conditions since

u*"(t) + g(u.(t))>h(t).

(See, for example, [2] for a discussion of the method of sub- and super-solutions
applied to problems with periodic boundary conditions.) To prove the existence
of a positive periodic solution of (2.2) it is only necessary to find a T-periodic C2
function u*(t) such that

(2.6) u*"(t) + g(u*(t))<h(t)

and u*(t) < u*(t) for all T. (u*(t) is a super-solution.)
Since the continuous T-periodic function h(t) — hr, has mean value zero, there

exists a C2-function w(t) which is T-periodic such that w"(t) = h(t) - ho- Using
the fact that <j(£) —* 0 as £ —> +oo we may choose a constant c > 0 so large that
u*(t) = c + w(t) > u,(t) for all t and g(u*(t)) < ho for all t. It then follows that
(2.6) holds and by earlier remarks this proves the existence of a T-periodic solution
u(t) of (2.2).

3. In this section we consider a class of problems which includes (1.2) if a > 1.
Here we use a truncation argument which also applies to equations of the type

(1.1), provided a > 1, and which gives the existence of a T-periodic C1-function u
which is strictly positive everywhere and which solves the equation in a weak sense
for every h G Lx(0, T). Analogously one can get negative solutions of (1.2). We use
|| • ||p to indicate the Lp norm on [0,T],
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PROPOSITION 3.1. Let u be a T-periodic distribution and let u" G LA(0,T).
Then if one indicates by (u")+ (resp. (u")~) the positive (resp. negative) part of
u", then for both the + and the — sign one has

(3-2) IkHoo < IK«'it\±\li-

<3-5)

PROOF. Let in be a point of minimum for u. Therefore, since u G C1, one has

(3.3) u'(i0) - u'(i0 + T) = 0.

We fix t G [in, to + T] and obtain

(3.4) u'(t) =  f u"(s)ds <  f (u"(s))+ds < j °     (u"(s))+ds = ||(u")+||i,
J to J to J to

and analogously

rt rto+T rto+T
u'(t) = /       (u"(s)) ds = - (u"(s)) ds>- (u"(s))+ ds

Jto + T Jt Jt
rto+T

>-/ (u"(s))+ds = -\\(u")+h-
Jt0

(3.4) and (3.5) give the estimate (3.2) for the + sign. Interchanging u with —u, one
proves (3.2) with the — sign.    D

The preceding result gives an a priori bound from below for any classical positive
T-periodic solution of

(3.6) u" - g(u) = hit),

where g is a positive function defined on (0, +oo) such that

(<7i) lim g(s) = +00, /   g(x)dx = +oo.
»^0+ Jo

LEMMA 3.7. Let (gi) hold. Then for any constant M > 0 there exists a con-
stant e > 0 such that for any T-periodic continuous function h such that \\h\\x < M
and any T-periodic positive classical solution u of (3.6) one has

(3.8) Vi G R : u(t) > £.

PROOF. Let £ G R+ be such that

(3.9) Vx < £ : g(x) > T~lM.

If one integrates both sides of (3.6) one has

(3.10) f   g(u(t))dt= [   -h(t)dt<M,
Jo Jo

and therefore by (3.9) one sees that there exists £i G R such that iz(ii) > £. Now
fix e > 0 in such a way that

(3.11) /  g(x)dx>2M2.
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Multiplying both sides of (3.6) by u' and integrating between ii and t we get

f u"(s)u'(s)ds- f g(u(s))u'(s)ds= [ h(s)u'(s)ds.
Jt,. JtL Jtt

Since ||w'||oo < ll(ff(u) + ^)_l|i < ll^~lli < M because g(u) > 0 and from (3.2), we
see that for t G [tx, ti + To]

\(u'(t))2 -huXh))2 - ¡Ut] g(x)dx<M
1 ¿ Ju{U)

and finally
/•u(ti)

Ju(t)
g(x)dx<M2+i-U'^))2 <2M2.

U(t) 2

Since u(t\) > £ and g is positive, from (3.11) one gets u(t) > e.    D
REMARK. The assumption (¡71) has been used in the previous lemma only in

order to determine £ and £ in such a way that (3.9) and (3.11) hold. Therefore the
estimate is verified only provided (3.9) and (3.11) are true, and g could be defined
in all R. Moreover only (3.9) is affected by the values taken by g at the left side of
£. This last observation is the point on which the truncation used in the following
theorem is based.

THEOREM 3.12. Let h G Lx(0,T) be given and assume h to be T-periodic in
R. Suppose that (gi) holds and that g > 0 and

(3.13) lim   g(x) = 0.
X—>-)-00

Then (3.6) has a T-periodic weak solution iff f0 h(t) dt < 0.

PROOF. The necessity comes immediately from (3.10) since g is positive. For
the sufficiency, first assume h continuous and let M > ||A||i. We fix £,£ in such a
way that (3.9) and (3.11) hold. Then put

-, v       Í 9(s)    if s > £,
( g(e)    if £ < s,

defining in this way g on R. Since (3.9) is of course preserved if we change g with
g then by Lemma 3.7 and the subsequent remark we know that the solutions of

(3.14) u"-g(u) = h

are bounded below by £ and therefore they are precisely the positve solutions of
(3.6). The resonance theorem proved in [3] states that (3.14) has a T-periodic
solution provided

1   fT-g(e) =    hm   -g(x) < -        h<   hm   -g(x) = 0
X—* — CO 1    Jq x—>-f-oo

and this last condition is verified by the assumptions which we are making and by
(3.9). Finally if h is not continuous let (hn)n be a sequence of continuous functions
which converges to h in L1(0,T), and let M > \\hn\\i Vn G N. Then find £ and
£ according to (3.9)-(3.11) and define the truncation g.  For any n the first part
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of the theorem provides a solution un of u" — g(u) = hn, such that un > s.  By
standard arguments one can pass to the limit and get a solution of (3.6).    G

Let us remark that Proposition 3.1 is also useful in order to solve other kinds
of periodic equations with positive nonlinearities. If for instance / is positive and
lim3^+00 f(x) = 0, lims^_oo f(s) = +oo (e.g. f(s) = e~3), given any £i G R such
that one has /(£) > T_1||/i||i for a given h G T1(0, T) and £ < £i, then any positive
solution of

(3.15) u" - f(u) = h

verifies the estimate £i — T||/i||i < u(t) for all t in R.
The same estimate holds if / is replaced by /, where

J(3)     \f(s) iffc-THfcllK*.
Replacing / by /, by the results in [3], one can solve (3.15) if

lim   -7(a) = -/(&_ T||A||i)<¿ /   h<   lim   -7(a) = 0.
S—> —OO 1     Jr. S—*+00

This last condition is verified provided fQ h < 0.    Of course this condition is
necessary if / is strictly positive everywhere.

4. In this last section we show that the result in the previous theorem cannot
be extended to (1.2) for 0 < a < 1. More generally we assume that g is strictly
positive and that

(¡72) lim g(s) — +00,       lim   g(s) — 0,      /   g(s) ds < +00.
s—>0+ s-f + oo J0

If g verifies (¡72) we have

THEOREM 4.1. VT > 0 3M0 > 0 such that VM > M0 3h, a continuous T-
periodic negative function, such that (3.6) has no solution and — fQ h = M.

PROOF.  For simplicity we let h be a step function; a small regularization of h
does not affect the computations below.  We take h = —e~1Mx[t1,ti+e]i where £
is a small positive real number and X[t1,t1+e] denotes the characteristic function of
the interval [£1, ii + e] for t\ G R. Suppose u solves (3.6) and fix £ G R such that
(3.9) holds.  As in Lemma 3.7 we see, using (3.10), that maxu > £.  Of course £
depends only on M. By the result in Proposition 3.1, |u'| is bounded by M. Since
h — 0 in [0,T]\[ii,£i + e], we have that in this interval u" = g(u) + h = g(u) > 0.
Thus, the point of maxu must belong to [t\, t\ + e\. Collecting all this information
we have

inf    u>£-£M> £/2,
[*i,ti+e]

provided we choose £ < M_1£/2. We also choose £ so small that £max3>£/2 ç(s) <
M/2. We have

rti+e rti+e rti+e
(4.2) u'(tx+e)-u'(tx) = /        u"(s)ds= h(s)ds+ g(s)ds<

Jtl Jtl Jtl
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Therefore |u'(i)| > M/4 for t — tx or for í = tx+e. Assume that \u'(tx +e)\ > M/4
and for simplicity of notation let ¿i = 0.

We also observe that if we fix £' such that sups>£, g(s) < T~XM, by Proposi-
tion 3.1 and by (3.10) we have sup it < £' + TM, and £' also does not depend on
M > M. Let t0 be a point of min u on [0, T]. In [0, e]

u" = g(u) +h< £_1M/2 - £~XM < 0,

so io G [e, T], and therefore h — 0 in [e, to]. Multliplying (3.6) by u' and integrating
between £ and zj0 we get

/•«(e) ri'+TM
u'(£)2 - u'(to)2 = 2 /        g(s) ds<2 g(s) ds,

Ju(t0) Jo

which implies

rí'+TM M2
(4-3) Jo g(s)ds>—.

The assumption (¡72) clearly implies that the left-hand side of (4.3) is a sublinear
function of M, so (4.3) is definitely false for M large and the theorem is proved.
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