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SVAZEK 18 (1973) APLIKACE MATEMATIKY Clsto 1

ON PERIODIC SOLUTIONS OF SOME EQUATIONS
OF MATHEMATICAL PHYSICS

MaARrIE KOPACKOVA
(Received December 21, 1971)

This note is devoted to the problem of finding the 2z-periodic (in f) solutions
of equations

(1a) P, <(Z> PNy + Py (%) u(t, x) = f(, %), xe<0,ad

at) ox*m
A2m
(2 P, 9o (t,x) + P, g u(t,x) = ¢ f(t, x, 2u), xe<0,a)
ot) ox*m ot
with the boundary conditions
0%y 0*u
(]b) &AZ‘I; (1,0):5)5(1‘,0)20, k=0,],‘..,m—1,

where f is 2z-periodic in t, P,(&), P,(&) are polynomials of the orders s;, s, with
complex coefficients, P,(in) # 0 for # real. By Qu we denote the vector of certain
derivatives of u (see Remark 2). Many equations of physics are included in (1a)
and will be discussed in the end of the paper.

First, let the right hand side of (1a) be of the form f(t, x) = f,(x) exp (int), fa €
e C(<0, a)) and suppose the solution to be in the same form, i.e. u(t, x) = u,(x) .
. exp (int). Then u,(x) must satisfy the equation

(3a) Py(in) ul™(x) + Py(in) u,(x) = f,(x), x€<0,a>
and the boundary conditions
(3b) u0) = u™(@) =0, k=01,...,m—1.

Let us denote b = b(n) = — P,(in) [P,(in)] ™" and let By, Bays ++vr Buns Bt 15 -+ > Pom
be the roots of the equation

(4) P
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As B, B are roots of (4) (if B solves (4)) it is possible to arrange B, Bz, ---» By
Busi>--o Bamsothat Re f; 20, B,,; = —f;foerj = 1,2, ..., m. Using the notation
S{(x) = exp (B,;x) — exp (—B;x), C{(x) = exp (B;x) + exp (—B,x) we can formulate

Lemma 1. (a) If b & (—1)" (kn/a)®™ for every integer k, then for every continuous
Sunction f(x) on {0, a) there exists a unique solution u(x) of the equation

(5) u®(x) — bu(x) = f(x)

satisfying the boundary conditions (3b) and it is of the form

©  ux)= —j‘; {LK(x &) (&) d¢ + '[

o]

Ko - x8f(a -8 dé}
where
() K0 =BSfa =950 57@), 5 =241 - F).

(b) Let k be positive integer so that b = (—1)" (kn/a)®™ and let B, = ikn|a.
If f(x) is continuous function on {0, a) then the problem (5), (3b) has a solution
if and only if

®) j:f@) sin (—i fy(n) &) d& = 0

and it is of the form
©)  ulx) = —,i H:Kj(x, &) f(¢) d¢ + J:—ij(a — %, &) fla = &) df} +

+ B, jxsl(x — 9 f(8) 4 + Bsin (=i fu(n) ),

where B is an arbitrary constant.

(c) If b =0, f(x) is continuous on 0, @) then there exists a unique solution
u(x) of (5), (3b) and it is of the form

(10) u(x) = J:Ql(x — () de + j:gz(x, &) £(&) dt

where Qy, Q, are polynomials of the order 2m — 1. In all cases u(x) has 2m conti-
nuous derivatives.

Proof. It is known from the theory of ordinary differential equations that the
solution u(x) of (5) and (3b) is of the form (for b + 0)

) ) =[5 8,00 (5 = )} 88 + 3 Byeso (),

0o J=
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where the vector B = (Bl, B,, ..., BZ,,,) solves the system of equations

2m
(12) Z :Bj'Bj = 0iom-1y> 1 =0,1,...,2m — 1
i=1

(6, is Kronecker delta) and the vector B = (B, B,, ..., B,,,) is determined so that
u(x) satisfies the boundary conditions (3b), i.e. B solves the system of linear equations

(13) gﬁjzﬁj =0,
50 () B, = — [ 13 B3 exp [#fa — 01} 1) e
i= o J=1

k=0,1,...m—1.

As By; = —B; (j =1,2,..., m), m equations from (12) for I = 0,2,...,2m — 2
can be reduced to the system

(122) Y(B;+ B, ) =0, k=0,1,...,m—1,
i=1

which implies B, ; = —B; (j =1,2,..., m). Then the system of m equations for
=1,3,...,2m — | from (12) assumes the form

Y B2B;B;) = Sxm-1, k=0,1,..,m—1.
i=1
This system has the unique solution

20,8, = (< W B B B B W B B2 L1 - 0T

where W is Van der Monde determinant. Further, the first m equations of (13) are

(due to B, ; = —B;) of the same form as (12a) and hence —B; = B, ;. Substituting
these results into the last m equations of {13) we obtain the system
j‘;ﬂ?"[ﬁj Sl = - ; BB, Sa — &)]7(¢) dé
which has the solution
By = =Sy (a) W H(BL, ... Br) [ mg; l_i( 1)+t g g2k s (a — &) f(€) .

a m

Wies 1 (BT, - Br) dE = —S;’(a)j Y B, Sja ~ &) 5;(¢) d¢ =
o 1=1

- 57(a) j B S0 — 9 1(8) de
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if S,(a) + 0 while B; may be chosen arbitrarily if S,(a) = 0 and (8) holds (W,; is the
minor of W). Using this expression in (11) we get

ux) =3 B, {jxs,-(x 8 (2) dé - f“s‘,‘(a — &) 5,x) 574(@) £(2) dé}

Jj=1 0 0
in the case (a) and

a

() = 35,5 = 058 = "o - 95957 (@ ey g +

0 0

+ B, JXSI(X = &) f(&) d¢ + B Sy(x)

0

for (b). Dividing the second integral in these expressions into two parts f5 + ¢
and adding the integral (3 to the first one we get the formulas (6) and (9). (c) follows
easily from the theory of ordinary differential equations.

For b = b(n) we denote by N, the set of integers n such that there exists
je{l,2,..., m} which satisfies S,(a) = 0.

Lemma 2. Let the polynomials P,, P, satisfy one of the following conditions:
() sq > 533
(B) there exists a constant K > 0 so that

[Re (a pi(n))]* + [sin {Im (a p(n))}]* = K
forj=1,2,....,m and for n¢ N, sufficiently large;

(y) there exist constants C > 0, 0 < o < +00 so that cither

(0] 2 i g ) — (1 + £) 7] 2
or
min (a |m B(n) — In|) = C|n|™" for every j=1,2,...m

and for n¢ Ny large enough (the minimum is taken over all integers ).

Let f,eC(<0,a>), n=1,2,... satisfy in the case (b) of Lemma 1 the
assumption (8).

Then there exists a constant C such that for at least one solution u, of (3) the
inequality

(14 WP = ¢

nlfl—xz+(32“31)(k+ Df2m J‘a‘/n(‘;)] de
0

holds for x € €0, ay, k = 0, 1,...,2m — 1 with « = 0 in the cases (), (B).

Proof. By Lemma 1 (with b = b(n) = —P,(in) [Py(in)]™", f = [P,(in)]"' 1)
the solution u,(x) of (3) exists and is of the form (6), (9), or (10). As |P{in)| ~ |n|*
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for n - 400, i = 1,2, B; = Byn) from (7) may be estimated as follows

(15) lBj(ra)[" Clb(n)

(o) I 5, > s, then [b(n)] - 0 for |n] - +oc which implies |b(n)] @ < n/2 for n
large enough and ‘

1S(&)] = 2{[sh (Re (B;&))]* + [sin (Im (B,E)]*}'* = [Sj(a)] for Ee<0.a).

As [S(a — x)|, |C(a — x)| £ const. for b(n) bounded we can write

i\

(Gm= DM > C|n|(27s00=12m (¢ positive constant).

KK
Eii‘ (x,9)

< Cibl—1+1/2m lblk/Zm < Clnl—('slfsl)‘(l~(k+1)/2m)
0x - -

which implies (14) for s, > s,.

(B) Let sy <s,, M;={n integer; [a Re(B{(n))]* + [sin(aIm B,(n))]* = K
for j =1,2,...,m. Now, the ratios Sfa — x) S,(¢)[S)(a), Cia — x) S{&)/S{a
are bounded for ne M, x, € (0, a), £ < x.

Then the derivatives 9*K ;/ox*(x, &) of the kernel K (x, &) can be estimated (using
(15)) by C|n|7s2*E27s0E+ DM where C does not depend on j, n.

Let condition (y) be fulfilled and s, <5, n¢N;. As S a — x)S(¢) and
Cfa — x) §,(&) are bounded the following inequalities hold:

h
)

2|S(a)] z a Re p,(n) + [sin (a Im B,(n))| =
= |b(n)|*?™ a|cos (arg B(n))| + |sin (a Im By(n))] =
2 [b(n)l”z”' alsin (arg Bi(n) + =/2 — In)| + Isin (aXIm Bfn) — In)| 2
= |b(n)|*/*™ a min |sin (arg B,(n) + 7/2 — In)| 4+ min |sin (Im a B(n) — In)|=
> 3{[b{n)]" " e By(n) + 72 — 1) 7] + [Im (a ) — ) ]} =
= Cln|™

for [ integer, n large enough, I,(n), I,(n) being integers which minimize the expres-
sions in (y).

By (y) the lower bound of the last term is C|n|™* and hence the derivatives
3K ;ox¥(x, &) of the kernel K (x, &) are estimated by C|By(n)| |b(n)|*/*™ |n|*, where C
does not depend on j, n, x, & k (k =0,1,...,2m — 1). Putting B = 0 in (9) the
estimate of K (x, &) may be obtained for n € N,. Lemma 2 follows from the estim-
ations given above and the following formula

W) = <[] 3 |

x kg
TRi(x, &) p(eyde + (— 1.
ox

=1 0

a-x —)k X
.f L%a~m3ﬂw{ﬂ4,k=&hmjm—L

o 0Ox

Finally, the 2m-th derivatives can be estimated by means of the equation (3a).
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Remark 1. The growth u,(x) (if |n| > +o0) is given by the distance of the set
{B,(n), j = 1,2, ..., m} from the sequence {ilr/a; [ integrer}, where (iln/a)*" are the
eigenvalues of the operator d?"/dx*" with the boundary conditions (3b). Let H,
be the space of 2n-periodic functions v(f) whose derivatives (in the sense of distribu-
tions) up to the order I (I = 0, 1, ...) are square integrable on <0, 2r) with the norm

bl =[5, [woora] ™.

As the system {(27)”'/% exp (int)}, 2", is complete in H, the function v(¢) belongs

to H, if and only if the coefficients

by = (20)7 112 j " u(0) exp (inf) dt
satisfy ’
3 ol < +oo.
Then T
ol = 3 I fuf

Now, denoting

;Lz (+x) = fim u(*, x + hy — u(-, x)

R0 h

in the norm H, we define the spaces C*(€0, a), H,) = {u(t, x); d’u/dx’ is a continuous
function on €0, a) in the norm of H,, 0 £ j £ k} with the norm

jx“ (- x)[\ ,'

'
luj,, = max max
0<j<k xe(0.a)

Proposition 1. The function u(t, x) belongs to C({0, a>, H)) if and only if the

Fourier coefficients u,(x) of the function u(t, x) have continuous derivatives up to
the order k on (0, a) and

S | ()

=

converges uniformly with respect to x € {0,a) for j =0,1,..., k.

Sufficiency of this proposition follows from the definition of H;. Theorem of Dini
and the formula
2n

k
g——u; (t, x)y exp (int) dt
0 X

) = (o |
imply the necessity of the above condition.
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By the imbedding theorems, if u € C¥(€0, a>, H;+ ;) then

d/u du .
—(tx) = —(t x J=0,],...,k)
0 (t, x) ™ (t.x) (

and all derivatives

iy ) L
— (tx) (=01, kj =0.1,...,1)

are continuous on <0, 2n) x <0, a).

Theorem. Let the polynomials P, P, satisfy the assumptions of Lemma 2 and
sy <5, Let feC({0, a), H,), where r is the smallest integer such that r = a +
+ (s — sy)2m + L.

If Ny = 0 then there exists a unique solution u(t, x) of the problem (1),
ue C*™({0, ay, Hy, +,) N C(<0, a), H,.y) .
If Ny == 0 then the solution u(t, x),

ue C2(C0, a3, Hyyer) 0 €0, @), Hiy)

exists if and only if
a (2n R
(16) j f f(t, x) sin (=i By(n) x) exp (int) dt dx = O for every neN,,
0Jo

where p,(n) = i k(n) nfa (see Lemma 1).
The solution u is of the form

u(t, x) = (2n)'1/2":2j°mu,,(x) exp (int)

where u,(x) is obtained from (6) for n ¢ Ny, b(n) + 0, from (9) with B = 0 for n € N,
and from (10) for b(n) = 0 with

2n .
F(x) = [Pi(in)]~* f F(t, %) exp (int)y i, b = —Py(in) [Py(in)] " .
0
Moreover, the following estimate holds:

(17) Y max

kg t,x

T (9| <

0,r>

clr

at'
where

P4+ (s, =s)(k+D2mEr+ 55 —a, te0,2n), xe0,ad.
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Proof. For N; = 0 the existence of the solution follows from Lemmas 1 and 2
and Proposition 1. Let uy, u, be two solutions of (1). u = u; — u, is a solution of (1)
for f = 0 and

ue C*(<0, ay, Hy 4 () 0 C(0, a>, Hy,,4) .

By Proposition 1 u(t, x) is of the form

+ oo

(18) u(t, x) =n:§;m(2n)‘”2 u,(x) exp (int) .

This series and all the series obtained by the formal differentiation of (18) involved
in (1a) converge uniformly on <0, 27> x <0, a). Putting (18) into equation (1a)
we get (due to the completeness of the orthonormal system {(2m)~"/? exp (int)},.2 ,
in the spaces H,, | being positive integer) that u,(x) is a solution of the problem (3)
with f, = 0. By Lemma 1, u,(x) = 0 for n integer. Hence u(?, x) = 0. Let N, # 0
and let the function f(t, x) satisfy (16). Due to the estimates (14) for u,(x) from
Lemma 2 the series of the form (18) and those obtained by the formal differentiation
of (18) involved in (1a) are convergent uniformly on <0, 2n) x <0, a) and hence
u(t, x) solves (1). If u(t, x) is a solution of (1) and

ue sz(<0’ El>, H31+1) a C(<O= (l>, H52+1)

then the n-th Fourier coefficient u,(x) of u(t, x) solves (3). By Lemma 1 (8) holds
for every n e Ny, which implies (16). The estimate (17) follows from those of Lemma 2
and from Proposition 1 and imbedding theorems.

Remark 2. The solution u of the weakly nonlinear problem (2), (1a) may be found
using the theorem given above and either the fixed point theorem for Ny = @ or the
theorem by O. Vejvoda and M. Sova ([1], [2]). Qu is a vector of all derivatives
o' *ulat’ ax*(t, x) of u(t, x) such that I + (s, — s;) (k + 1))2m < s, — .
Examples:

m = 1:

(1) The heat conduction equation

Upy — U, +cut = f
with boundary conditions
(19) u(t,0) = u(t,7) = 0.

In this case Py(&) =1, Py(é) = =&+ ¢, b(n) = in — c. Then N, =0 for ¢, a
satisfying ca?[n® + k* (k integer) and N, = {0} for ¢ = k’z%[a® (k integer). As
1 arg b(n) = % arctg(—nfc) tends to Fr/2 for n — +oo then o from Lemma 2
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is equal to 0 and (17) holds for r = 2, k/2 + I < . The necessary and sufficient
condition for the existence of the solution of this problem is given by the condition

a P2n
(20) J j f(t x)sin(x \Je)dx dt = 0
0J0
(if ca®[n* = k* — k-integer).
(2) The telegraph equation
(21 Uge — Uy +2au, +cu=f, a+0
with the boundary conditions (19).

For ¢ & k*z*la® it is « =0, N, = 0 and (17) holds with r =2, k + I < 3.
If ¢ = k*n[a® then N, = {0} and the condition (16) is again of the form (20).

(3) The equation (21) for a = 0, ¢ = 0 is the wave equation, i.e.
Uy — Uy = f

(the boundary conditions are of the form (19)). As Py(¢) = 1, P,(£) = —&* we have
b(n) = —n?, By(n) = i|n|. Hence

|Si(a)| = 2Jsin (na)| = 4 min |na — Ix|, Ny = {n, na/nis integer} . o« =0
1

for a such that a/r is a rational number and N; = 0, « may be positive for a such
that a/r is an irrational number. (17) holds with r 2 2 + o, k + I < 3.

(4) The equation of vibrations with inner friction
uxx‘utt+aurxx=f’ (14:0

with the boundary conditions (19).

In this case Py(C) = af + 1, Py(&) = —¢&, b(n) = —n’/(1 + ina), N, =0,
« = 0 and (17) holds with r = 2, k[2 + | < 1.

m = 2: The vibrations of the bar of the length a with fixed ends is described
by the equation

uxxxx + utt = f
and by the boundary conditions

u(,0) = u(t, a) = u(1,0) = u(t,a) = 0.

In this case

P(&) =1, Py&)=¢%, bn)=n*, Bi(n)=4/|n|, BaAn)=i|n|,
N, = {n; a |/|n|/n is integer} ,
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o is defined by the growth of min |a \/|n| — Iz| for |n| - 400, (17) holds with
1

r=[oa+ 3]+ 1ifa + $is not integer and r = o + §if o« -+ 3 is integer, k[2 + | <

Sr+3%-a

The author wishes to express her sincere gratitude to Otto Vejvoda for many
helpful suggestions.
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Souhrn

O PERIODICKYCH RESEN{ JEDNOHO TYPU ROVNIC
MATEMATICKE FYZIKY

MARIE KOPACKOVA

Na zakladé prikladu z fyziky, které jsou uvedeny na konci ¢lanku je vySetfovana
uloha najit periodické feSeni obecné rovnice

a\ 9*™u 0
P {— + P, —Ju=f(t,x), xe{0,a), te0,2n
‘(a:) g z(a) f(t,%), xe<0,ay, te 0, 2

s homogennimi okrajovymi podminkami Dirichletova typu.
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