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Introduction. In this paper we investigate nonlinear oscillations in the nonlinear 
suspension bridge equation, in (- ~, ~) x IR, of the type 

- K1Uxxtt + Utt + K2Uxxxx + K3u+ = 1 + k COSX + Eh(x, t), 
(0.1) 

The first term in (0.1), due to L. Rayleigh, represents the effect of rotary inertia, 
as can be traced from the derivation. In many applications, its effect is small. 

McKenna and Walter [6] studied nonlinear oscillations in a nonlinear suspension 
bridge equation without the first term in (0.1): 

7r 7r 
Utt + Uxxxx + bu+ = 1 + Eh(x, t) in ( -2, 2) X lR 

7r 7r 
u(±2, t) = Uxx(±2, t) = 0. 

(0.2) 

This equation represented a bending beam supported by cables under a constant 
load w = 1. The constant b represented the restoring force if the cables were 
stretched. The nonlinearity u+ models the fact that cables resist expansion but 
do not resist compression. They proved a counterintuitive result: if the cables were 
weak; that is, b is small, then there was only a unique solution. However, if b was 
large (that is, the cables were strengthened), then large scale oscillatory periodic 
solutions existed. 

In this paper we improve this result in two ways. First, we generalize the beam 
equation to include the effect of rotary inertia. Second, we allow b to vary with x, 
as indeed it must be suspension bridges. 

In Sections 1 and 2 we shall deal with the nonlinear bridge equation with constant 
coefficients, in (- ~, ~) X lR 

- iuxxtt + Utt + Uxxxx + bu+ = 1 + k cos X+ ~;h(x, t) 
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where 4 < b < 19. The effect of the first term in (0.1) is small. So we took the 
small coefficient-~ in (0.3). We shall assume that h in (0.3) is even in x and t and 
periodic with period 71" 1 and we shall look for 7r-perodic solutions of (0.3). 

In Section 3, we shall prove the existence of a positive solution of the nonlinear 
equation with a variable coefficient, in (- ~, ~) 

y<4> + b(x)y+ = 1, y(±~) = y"(±~) = 0. 
2 2 

In Section 4, we shall deal with the nonlinear suspension bridge equation with a 
variable coeffcient 

7r 7r 
Utt + Uxxxx + b(x)u+ = 1, u(±2, t) = u.,.,(±2, t) = 0. (0.4) 

1. A priori bound. Let L be the differential operator 

Lu = -~Uxxtt + Utt + Uxxxx• 

The eigenvalue problem for u(x, t) 

Lu=Au in (-~ ~)xlR 
2' 2 ' 

7r 7r 
u(±2 , t) = u.,.,(±2 , t) = 0, 

u(x, t) = u( -x, t) = u(x, -t) = u(x, t + 1r) 

(1.1) 

has infinitely many eigenvalues Amn and corresponding eigenfunctions 4>mn ( m, n 2:: 
0) given by 

Amn = (2n + 1)4 - m 2 ((2n + 1)2 + 4), 

4>mn =cos 2mtcos(2n + 1)x, (m, n = 0, 1, 2, · · · ). 

We remark that all eigenvalues in the interval ( -36, 29) are given by 

A2o = -19 < Aw = -4 < Aoo = 1. 

The normalized eigenfunctions are denoted by 

() 4>mn 
mn = ll4>mnll' 

where ll4>mnll = ~for (m > 0), ll4>onll = )2· Let Q be the square[-~,~] X[-~,~] 
and lHl be the Hilbert space defined by 

lHl = {u E L2(Q): u is even in x and t}. 

Then the set of {Omn} is an orthonormal base in ll:ll. 
We consider weak solutions of problems of the type 

Lu = f(u,x,t) in (-i, i) X lR, (1.2) 

7r 7r u(±2 , t) = u.,.,(±2 , t) = 0, 

where u is even and 1r-periodic in t and even in x. 
A weak solution of (1.2), which is also called a solution in ll:ll, is of the form 

U = L CmnOmn with Lu E ll:ll; 

i.e., L: A~mc~,m is finite. Our function will be such that u E lHl implies f(u, x, t) E ll:ll. 
The following symmetry theorem was proved in [3]. 
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Theorem 1.1. Let H = L2 (D). Assume that L : D(L) c H ---+ H is a linear, 
selfadjoint operator which possesses two closed invariant subspaces H 1 and H 2 = 
H[-. Let u denote the spectrum of L and ui the spectrum of LIH, (i = 1, 2; 
u = u 1 Uu2). Let ~(u,x) = fu be piecewise smooth and assume that fu E [a,b] 
for u E lR and X E n. If [a, b] n u2 = ¢> and if the Nemytzki operator u f---t Fu = 
f(u(x),x) maps H 1 into itself, then every solution of 

Lu = f(u,x) in lHI 

Lemma 1.1. For -1 < b < 19 the problem 

Lu + bu + = 0 m lHI 

has only the trivial solution u = 0. 

(1.3) 

Proof: The space H 1 = span {cos x cos 2mt : m 2 0} is invariant under L and 
the map u f---> bu+. The spectrum u1 of LIH1 in (-19,1) is only .\10 = -4. The 
spectrum u2 of L restricted to H 2 = H [- does not intersect the interval ( -19, 1). 
From Theorem 1.1 we see that any solution of (1.3) belongs to H1 ; i.e., it is of the 
form y( t) cos x, where y satisfies 

h" +by+ + y = 0. 

Any nontrivial periodic solution of this equation is periodic with period 
1T 1T 

--r=== + - > 1T 

v~(b+1) li , 
which shows that there is no nontrivial solution of (1.3). I 

We establish an a priori bound for solutions of (0.3), namely, 

Lu + bu+ = 1 + kcosx + Eh, (k 2 0) in lHI. (1.4) 

Lemma 1.2. Let k 2 0 be fixed. Let h E lHI with llhll = 1 and a > 0 be given. 
Then there exists R0 > 0 (depending only on h and a) such that for all b with 
-1 +a~ b ~ 19- a and all E E [-1, 1] the solutions of(1.4) satisfy llull < R0 • 

Proof: We shall apply Lemma 1.1. Assume Lemma 1.2 does not hold. Then there 
is a sequence (bn, En, un) with bn E [a- 1,19- a], lEn I ~ 1, llunll---+ oo such that 

Un = L- 1 (1 + kcosx + Enh- bnu~). 

Put wn = II~~ II . Then 

_ -1 1 k En + 
Wn- L ( llunll + llunll cosx + llunll h- bnwn ). 

The operator L - 1 is compact. Therefore we may assume that Wn ---+ w0 and bn ---+ 
bo E (-1, 19). Since llwnll = 1 for all n, llwoll = 1 and wo satisfies 

wo = L - 1 ( -bwci) or Lwo + bwci = 0 in lHI. 

This contradicts Lemma 1.1 and proves Lemma 1.2. 

2. Existence of solutions of a nonlinear suspension bridge equation 
with a constant coefficient. Our main result in this section is the following: 
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Theorem 2.1. LethE lHI with llhll = 1 and 4 < b < 19. Then there is Eo> 0 such 
that if lEI < Eo equation (1.4) has at least two solutions. 

In other words, equation (0.3) has at least two 1r-periodic solutions. The proof of 
Theorem 2.1 requires several lemmas. First we discuss the Leray-Schauder degree 
dLS· 

Lemma 2.1. Under the assumptions and with the notation of Lemma 1.2, 

dLs(u- L-1(1 + kcosx- bu+ + Eh),BR,O) = 1 

for all R ~ Ro. 

Proof: Let b = 0. Then we have 

dLs(u- L-1 (1 + kcosx + Eh),BR,O) = 1, 

since the map is simply a translation of the identity and since IIL-1 (1 + kcosx + 
Eh)ll < Ro by Lemma 1.2. 

In case b -1- 0 ( -1 < b < 19), the result follows in the usual way by invariance 
under homotopy, since all solutions are in the open ball BRo. I 

The following lemma was proved by McKenna and Walter [5]. 

Lemma 2.2. For -1 < b the boundary value problem 

y(4) +by= 1 in ( -i, i ), y(±i) = y"(±i) = 0 (2.1) 

has a unique solution y, which is even in x and positive, and satisfies 

Y1(-i) > 0 and y1(i) < 0. 

We can obtain an easy consequence of Lemma 2.2. 

Lemma 2.3. Let k ~ 0 be fixed. For -1 < b the boundary value problem 

y(4)+by=1+kcosx in (-i·i), y(±i)=y"(±i)=O (2.2) 

has a unique solution y, which is even and positive. Also the solution y satisfies 

y 1(-i) > 0 and y 1(i) < 0. 

Proof: The function 

satisfies 

k 
Y1 = y(x)- --b cosx 1+ 

(2.3) 

By Lemma 2.2, we see that the solution Y1 is unique, even in x, positive, and satisfies 

I ( 1f) I 
Y1 -2 > 0 and y1 < 0. 

So the solution y is unique, even in x, positive, and satisfies 
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Lemma 2.4. For -1 < b the boundary value problem 

(4) + · ( 7r 7r ) ( 7r II 7r y +by =1+kcosx m -2'2, y±2)=y (±2)=0 (2.4) 

has a unique solution. 

Proof: The solution y of (2.2) is positive, hence it is also a solution of (2.4). 
Uniqueness follows from the contraction principle in the following familliar way. 
The eigenvalues of My = >.y, where M = D4 , with the boundary conditions as 
given in (2.2), are all ~ 1. Hence for any c < 1, 

II(M- c)- 1 11 = - 1-. 
1-c 

Any problem My= f(y, x) with c ::=; fy ::::; 1-E has a unique solution, since solutions 
y are characterized by 

y = (M- c)- 1[f(y,x)- cy], 

where the right-hand side is Lipschitz continuous with a Lipschitz constant ::=; (1 -
E- c)/(1- c)< 1. 

The following lemma was first used in [4]. 

Lemma 2.5. Let K be a compact set in £ 2 = L2 (fl), and let ¢ E £ 2 be positive 
almost everywhere. Then there exists a modulus of continuity 8 depending only on 
K and ¢ such that 

ll(rJ I~ I -¢)+11 ::=; ry8(ry) for rJ > 0 and ~ E K. 

The following lemma is the final step in the proof of Theorem 2.1. 

Lemma 2.6. Let 4 < b < 19. Then there exist 1 > 0, Eo > 0 such that 

for I E I< Eo, where k ~ 0 andy is the unique solution of (2.4). 

Proof: Let K be the closure of L - 1 (B), where B is the closed unit ball in JHI. 
Clearly K is compact. Let 8(ry) be the modulus of continuity corresponding to K 
andy as in Lemma 2.5. We note that 11£- 1 11 = 1. Let u be a solution of (1.4). If 
u = y +¢and 11¢11 = ry, we see that 

(2.5) 

since Ly +by= 1 + k cos x. Here we used the identity u = u+- u-. It follows that 

¢ E (Eo+ 2b1)K for IE I< Eo. (2.6) 

We assume that Eo ::::; I· Then~= ~has the properties II~ II = 1 and~ E (2b+ 1)K. 
Since~ is in a compact set and different from zero and since -b is not an eigenvalue 
of L, we get 

inf II~+ L - 1 b~ll = a > 0. 

"' 
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Hence II</>+ L - 1 b</>ll ~ a-y. It follows from (2.5) that 

</> + L-1b</> = L-1(Eh- b(y + </>)-). 

Since wE K satisfies II(7Jw- y)+ii ::; 7Jh(7J), we get from (2.6) 

11(</>+y)-11 = 11(-</>-y)+ll::; (Eo+2b-y)h(Eo+2b-y). 

(2.7) 

Denoting the two sides of equation (2.7) by LS and RS, and keeping in mind that 
IIL- 1 11 = 1, we get, for Eo::; -ymin(1, ~), 

1 1 1 
IILSII ~ a-y and IIRSII ::; 2a-y + (2b-y + 2a-y)h(2b-y + 2a-y). 

Now we choose 'Y > 0 so small that the right-hand side is < a-y. It follows that for 
this value of 'Y there is no solution of (1.4) of the form u = y +</>with 11</>11 = 'Y· 

The same conclusion holds for solutions u = y + </> of the equation 

Lu + bu = 1 + kcosx + >-.(Eh- bu-), 

where 0 ::; ).. ::; 1. Here ).. = 1 gives the equation (1.4), while for arbitrary ).. the 
function</>= u- y satisfies (2.7) with a factor).. on the right-hand side. Hence we 
have the same conclusion: There is no solution u = y +</>with 11</>11 = 'Y· Since the 
degree is invariant under homotopy, we get 

dLs(u-L - 1 (1+k cosx-bu+ +Eh), B-y(O), 0) =dLs(u-L-1(1+kcos x-bu), H.1(y), 0). 

The equation u- L - 1 (1 + k cos x- bu) = 0 has the unique solution u =yin B'Y(y), 
and hence the degree on the right-hand side is equal to 

dLs( u + L - 1bu, B-y(O), 0). 

The eigenvalues p of the operator u + L - 1bu are related to the eigenvalues ).. of L, 
namely, 

b 
u + L-1bu = pu {:} Lu = --u 

p-1 

or p = 1 + (bjp). It follows from (1.2) that there is just one negative eigenvalue p 
which corresponds to >-.w = -4. Thus the usual method of approximating on finite
dimensional subspaces spanned by eigenvectors with dimension going to infinity (see 
[7)) shows that the desired degree is -1. 

Proof of Theorem 2.1: Equation (1.4) can be written in the form 

Su := u- L- 1 (1 + kcosx- bu+ + Eh) = 0. 

The degree of Su on a large ball of radius R > Ro is +1 by Lemma 2.1. We know 
from Lemma 2.6 that the degree on the ball B'Y(y) is -1. Choosing R > Ro so large 
that BR :J B'Y(y), we can conclude that 

dLs(Su,BR- B'Y(y),O) = 2. 

Therefore, equation (1.4) has at least two solutions, one in B'Y(y) and the other one 
in BR- B-y(y). This concludes the proof of Theorem 2.1. I 

In the rest of this section, we generalize Theorem 2.1, replacing 1 + k cos x(k ~ 0) 
by k1 + k2 cos x (k1 > 0, k2 ~ 0) in the right-hand side of (1.4); namely, 

Lu + bu+ = k1 + k2 cosx + Eh in IHl, (2.8) 

where k1 > 0, k2 ~ 0. This equation is more nonsteady state than equation (1.4). 
To do that we need several lemmas. First we make a generalization of Lemma 2.2 
with replacing 1 by k1 (k1 > 0) in the right-hand side of (2.1). 
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Lemma 2. 7. Let k1 > 0 and b > -1. Then the boundary value problem 

(4) · ( 7r 7r ) ( 7r ) II ( 7r y + by = k1 m -- - y ±- = y ±-) = 0 2 2 , 2 2 (2.9) 

has a unique solution y, which is even in x, positive, and satisfies 

y'(-~) > 0 andy'(~)< 0. 

Proof: We consider only for b 2 4 (cf. Theorem B of [6] or [8; p. 100]). It IS 

convenient to write b = 4,84, a= i,B and to introduce a function 

k X 
z(x) = 4,84 - y(r)· 

The solution y is a solution of (2.9) if and only if z satisfies 

) 4l + 4z = 0 in I xIs; a, z(±a) = 4~4 , z"(±a) = 0, 

andy> 0 in (-i, i) if and only if z(x) < z(±a) in I xI< a. Also 

y'(-~) > 0 andy'(~)< 0 iff z'(-a) < 0 and z'(a) > 0. 

(2.10) 

On the other hand, the solution z of (2.10) is explicitly determinded (up to a 
positive constant) by 

z(x) = C1 sin X sinh X+ C2 COS X cosh X, 

where C1 = sin a sinh a, C2 = cos a cosh a. This z satisfies the above conditions. For 
the detailed proof of this lemma we refer to [6; p. 172]. 

With Lemma 2.7 and several other lemmas we can obtain the generalization of 
Theorem 2 .1. 

Theorem 2.2. LethE IHI with llhll = 1 and 4 < b < 19. Then there is Eo > 0 such 
that if I E I< Eo equation (2.8) has at least two solutions. 

Proof: We can prove Lemmas 3, 5, 6, and 8 with replacing 1 + kcosx (k;::: 0) by 
k1 + k2 cos x (k1 > 0, k2 ~ 0), respectively. Finally the proof of Theorem 2.2 is 
similar to that of Theorem 2.1. 

3. Nonlinear equations with a variable coefficient. In this section we 
investigate the solutions of the equation 

y<4l + b(x)y+ = 1, y(±~) = y"(±~) = 0. 
2 2 

(3.1) 

Uniqueness results for a class of equations similar to this have also been obtained by 
Aftabizadeh [1] and Yang [9]. To deal with the equation (3.1) we need the foiiowing 
powerful result of Schroder [8; p. 100]. 
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Theorem 3.1. For any positive right-hand side f the Green's fuction for the 
boundary value problem 

y<4) +by= f(x), y(±~) = y"(±~) = 0, (3.2) 

in (- ~, ~), is nonnegative if and only if -1 < b < co = 4K4 / 1r\ where K is the 
smallest positive zero of the function tanx- tanhx. We have K = 3.9266 and 
co= 9.762. 

Lemma 3.1. Let b(x) be even and 0 < b(x) < 9.7 for all x in(-~,~). Then the 
boundary value problem 

y<4) + b(x)y = 1, y(±~) = y"(±~) = 0 (3.3) 
2 2 

has a positive solution y, which is even. 

Proof: Let P be the differential operator 

Py = y<4l + 9.7y. 

Let y0 = 0 and yn+l (n = 0, 1, 2, ···)be the solution of the boundary value problem 

Pyn+l = 1 + (9.7- b(x))yn, y(±~) = y"(±~) = 0. 

It follows from Theorem 3.1 that each yn (n > 0) is even and positive. Now yn 
(n = 0, 1, 2, · · ·) is an increasing sequence of functions, since this sequence satisfies 
the following equations with the boundary conditions 

P(yn+2- yn+l) = {9.7- b(x))(yn+l- yn), n?: 0. 

On the other hand, the sequence {yn(x)} is bounded. In fact, let fj solve Yxxxx = 1 
with the boundary condition. Then Yo:::; fj. Since 

P(fj- yn+l) = 9.7(jj- yn) + b(x)yn, 

yn :::; fj implies yn+l :::; fj for all n = 0, 1, 2, · · · . Hence yn converges toy, which is a 
solution of (3.3). I 

The eigenvalue problem for y(x), in(-~,~) 

y(4) = >.y, y(±~) = y"(±~) = 0, y(x) = y( -x) 

has infinitely many eigenvalues >.i and corresponding eigenfunctions <Pi 
(j = 0, 1, 2, · · ·) given by 

>.i = (2j + 1)4 ,</Jj{x) = cos(2j + 1)x. 

The normalized eigenfunctions are denoted by 

</Jj 
(}j = /1</Jill' 

where 11</Ji/1 = v;ti for j = 0, 1, · · · . Let Q1 be the interval [-~, ~] and H the 
Hilbert space defined by 

H = {y E L2(Q1): y is even}. 

Then the set of functions { (} j} is an orthonormal base in !HI. 
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Lemma 3.2. Let b > -1. If f(x) is even and belongs to L2 (Ql), then the Green's 
function for equation (3.2) can be exactly determined as follows 

00 
1 J y= ~CjOj, Cj = (2j+1)4+b JOj. (3.4) 

Proof: Let y = L:;:o cjOj and define the inner product in H 

(u, v) = /_: uv. 
2 

Then we can obtain from (3.2) that 

\y(4l,oj) + b(y,Oj) = (f,Oj). 

Hence we have, for all j = 0, 1, 2, · · · , 

Lemma 3.3. Let f(x) be even and 0:::; f(x):::; 1 in[-~,~]. Ify is a solution of 
the following equation 

y(4 ) + 9.7y = f(x), y(±%) = y"(±%) = 0, 

then y is even and 0:::; y(x) < ~-
Proof: In the formula (3.4) the solution of (3.5) is given by 

00 

y = ~ cj</>j, Cj = ((2j + 1): + 9_7)7r J f¢j dx. 

Let us estimate Cj (j ~ 0) : 

2 ~~ 1 icol = -- f(x)cosxdx < -, 
10.77r -~ 8 

2 !71"2 1 lc1i = 1-- f(x)cos3xdxl < -, 
90.77r _1!:. 100 

2 

2 r' 1 lczl = 1(54 + 9.7)7r }_JI. f(x)cos5xdxl < 100 , 
2 

00 00 2 2j + 2 1 
{; lcjl :::; {; ((2j + 1)4 + 9.7)7r 2j + 1 < 750 · 

Hence we have 
00 1 
Llcjl < -. 
j=O 7 

(3.5) 

On the other handy is nonnegative by Theorem 3.1. Therefore 0:::; y(x) < ~ for 
all X E (-~, ~). 
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Corollary. If y is a solution of the boundary equation, in (- ~, ~), 

4 ( 7r) II 7r y +9.7y=1, y±2 =y (±2)=0, 

then y( x) is even and 0 < y( x) < ~ in (- ~, ~). 

Lemma 3.4. Let b(x) be even and 9.7 < b(x) < 16.7 for all x in(-~,~). Then 
there is a solution y of the boundary value equation, in (- ~, ~), 

y(4) + b(x)y = 1, y(±%) = y"(±%) = 0, (3.6) 

which is even and nonnegative. 

Proof: Let P be the differential operator for y( x) 

Py = y(4) + 9.7y. 

Put Yo = 0 and let Yj+l (j = 0, 1, 2, · · ·) be the solution of the boundary value 
problem 

Py = 1 + (9.7- b(x))y1(x), y(±%) = y"(±%) = 0. (3. 7) 

Then 0::; Yj(x) < ~ for all j = 0, 1, 2, .. · and all x in ( -~, ~ ). On the other hand 

P(YJ+1- Yj) = (9.7- b(x))(Y1- Y1-d· 

Since Y1 -Yo > 0, Y2 - Y1 :S:: 0 by Theorem 3.1. By induction, we have 

Y2J+1 - Y2j 2: 0 (j = 0, 1, · · · ), Y2j - Y2j-1 :S:: 0 (j = 1, 2, · · · ). 

We claim that, in ( -~, ~), 

Y2J+2- Y2j 2: 0, j = 0, 1, 2, · · · , 

Y2j+l - Y21-1 :S:: 0, j = 1, 2, · · · . 

In fact, Y2 - Yo 2: 0. From 

P(y3- y!) = (9.7- b(x))(Y2- Yo) 

we have Y3 - Y1 ::; 0. From 

P(y4- Y2) = (9.7- b(x))(y3- y!) 

(3.8) 

(3.9) 

we have Y4 - Y2 2: 0. Continuing this method, we can obtain (3.8) and (3.9). The 
sequence {Y2j} is increasing and 0 ::; Y2j < ~. Also {Y2j-1} is decreasing and 
0 :S:: Y2j -1 < ~. Hence { Y2j} and { Y2j _I} converge. Let Y2j ----> Yo and Y2j -1 ----> Y1. 
From (3.7), 

Y2J = p-1(1 + (9.7- b(x))Y2J-d, Y2J+1 = p-1(1 + (9.7- b(x))Y2J). 

Letting j ----> oo, we obtain 

Yo= p-1(1 + (9.7- b(x))Y!), Y1 = p-1(1 + (9.7- b(x))Yo). 

Hence 

P(Y0 + Y!) = 2 + (9.7- b(x))(Yo + Y!). 

Therefore ~(Yo+ Y!) is a solution of (3.6) and nonnegative. 1 

With the method similar to the proof of Lemma 3.4, we can also prove the 
following lemma. 
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Lemma 3.5. Let 0 < bo :::; 9.7. Suppose that for any even function f(x) with 
0 :::; f ( x) :::; 1 in (- ~, ~), the boundary value problem 

y(4) +boy= j, y(±~) = y"(±~) = 0 
2 2 

has a solution y, which is even and satisfies 0 :::; y(x) :::; fa- for some c0 • If bo < 
b(x) :::; b0 + c0 , then the boundary value problem 

y(4 ) + b(x)y = 1, y(±~) = y"(±~) = 0 
2 2 

has a solution y, which is even and positive in (- ~, ~). 

The proof of the following uniqueness theorem is similar to that of Lemma 2.4. 

Theorem 3.2. Assume that bo and co are the same as in Lemma 3.5. Let bo < 
b(x) < bo + c0 . Then the nonlinear equation 

y(4 ) + b(x)y+ = 1, y(±~) = y"(±~) = 0 
2 2 

has a unique solution y, which is even and positive in(-~,~). 

4. Nonlinear suspension bridge equation with a variable coefficient. In 
this section we investigate nonlinear oscillations in a differential equation with a 
variable coefficient 

Utt + Uxxxx + b(x)u+ = 1 in !HI, (4.1) 

where the Hilbert space !HI was defined in Section 1. We note that the set { Bmn : 
m, n = 0, 1, · · ·} is an orthonormal base in !HI. 

In earlier sections and in [6], the fact that b is constant is crucial to the proof of 
an a priori bound. Here we show that if b depends on x, we can still get an a priori 
bound, although with more restrictions on b(x). 

From now on, let L be the differential operator 

Lu(t, X) = Utt + Uxxxx· 

Then the eigenvalue problem for u( t, x) 

Lu =Au m !HI 

has infinitely many eigenvalues 

Amn = (2n + 1)4 - 4m2 (m, n = 0, 1, 2, · · ·) 

and corresponding eigenfunctions Bmn, which were defined in Section 1. We note 
that all eigenvalues in the interval ( -19, 45) are given by 

A2o = -15 < Aw = -3 < Aoo = 0 < A41 = 17. 

We consider the problem 

( 4.2) 

Let H1 =span {Ow} and H2 = Hf-. Let P denote the orthogonal projection on H1. 
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Theorem 4.1. Let b(x) be even and 1.65 ~ b(x) ~ 3.35 in[-~,~). Then equation 
( 4.2) has only the trivial solution. 

Proof: Let c = 1.65. Then 

Let us rewrite ( 4.2) as follows 

(L + c)u + (b(x)- c)u+ + cu- = 0 m IH!. 

Let g(x) = b(x)u+ + cu- for all u E IH!. Then we have 

0 ~ (b(x)- c)lul ~ g(x) ~ L7lul 

and IIYII ~ L7llull· Decompose gas g = v + w, v = Pg, w =(I- P)g. Then there 
exists 6 (0 ~ 6 ~ 1) such that 

(4.3) 

We note that v = acos2tcosx for some a E Rand hence llv+ll 2 = ~llvll 2 . Thus we 
get 

llvll 2 = J gv = J gv+- J gv- ~ 1.7 J lulv+ ~ ~llullllvll, 
from which 

llull ~ (1.2
2

llull 2· ( 4.4) 

From (4.3) and (4.4) we obtain 0 ~ 62 ~ ~·Summing up, we get 

II( -1 ( 2 2 )2( 62 1-62 ) 
L +c) g x)ll ~ llull (1.7 (1.35)2 + (2.65)2 

I )21 ( 1 1 ) 2 
~ luii(L7 2 (1.35)2 + (2.65)2 < llull , 

since 0 ~ 62 ~ ~. Thus the equation 

u+(L+c)-1g(x)=O in lHl 

has a unique solution, which is the trivial solution. That is, ( 4.2) has only the trivial 
solution. 

We establish a priori bounds for solutions of ( 4.1). 

Lemma 4.1. There exists Ro > 0 such that for all b(x) with 1.65 ~ b(x) ~ 3.35 
the solutions u o£(4.1) satisfy llull < Ro. 

Proof: If not, there exists a sequence (bn(x),un) with 1.65 ~ bn(x) ~ 3.35 such 
that llunll ---+ oo and 
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The functions Wn = Un/llunll satisfy 

- -1 ( 1 ( +) Wn- L llunll - bn x)wn . 

Since the operator L - 1 is compact, we may assume that Wn --> w0 and bn(x) --> bo(x) 
with 1.65:::; bo(x) :::; 3.35. We note that llwnll = 1 and hence llwoll = 1. Therefore 
we have 

wo=L- 1(-bo(x)w;j) or Lwo+bo(x)w;i=O in lHl. 

This contradicts Theorem 4.1 and hence proves the lemma. I 

In [6] a priori bounds for solutions of 

Lu + bu + = 1 m lHl 

were established for a constant coefficient b. That is, 

(4.5) 

Lemma 4.2. There exists R 1 > 0 such that for all b with 0:::; b:::; 14 the solutions 
u of (4.5) satisfy llull < R1. 

Lemma 4.3. Let R 2 = max{Ro, RI}. Under the assumptions and with the nota
tion of Lemmas 4.1, 4.2, 

for all R ~ R2. 

Proof: We consider the homotopy 

u- L- 1(1- (3(1- t) + tb(x))u+) = 0 m lHl. ( 4.6) 

If 1.65 :::; b(x) :::; 3.35, then 1.65 :::; 3(1- t) + tb(x) :::; 3.35. From Lemma 4.1 we 
know that (4.6) has no solution on llull = R ~ R2. Hence for R ~ R2 

Applying Lemma 4.3 and the invariance under homotopy, we have 

We know from Lemma 2.6 that for 3 < b(x)::; 3.35 equation (4.1) has a positive 
solution y( x). 

Lemma 4.4. Let b(x) be even and 3 < b(x):::; 3.35. Then there exists 'Y > 0 such 
that 

where y is the positive solution of ( 4.1). 

Proof: If we follow the method of the proof of Lemma 2.6, then we can obtain 
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for some small 'Y > 0. We consider the homotopy, 0 ~ t ~ 1, 

u + L- 1(3.3(1- t)u + tb(x)u) = 0 in lHI. (4.8) 

Since 3 < 3.3(1- t) + tb(x) ~ 3.35 for all 0 ~ t ~ 1, (4.8) has only the trivial 
solution and no solution on llull = 'Y· Therefore 

For the last equality in the above equation we can refer to the end of the proof of 
Lemma 2.6. I 

When 3 < b(x) ~ 3.35, in Lemma 4.3 

and in Lemma 4.4 

Thus we can see that if we takeR> 0 such that BR ::J Ry(y), then 

Therefore ( 4.1) has at least two solutions, one in B7 (y) and the other one in BR(O) \ 
B7 (y). From this fact we obtain our main result in this section. 

Theorem 4.2. Let 3 < b(x) ~ 3.35 be even. Then (4.1) has at least two solutions. 

This work was done when both authors were at the University of Connecticut, 
from February 1988 to January 1989. We wish to thank Professor P.J. McKenna 
for his suggestions and helpful conversations. 
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