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Abstract

This work motivates the need for more flexible structural

similarity measures between time-series sequences, which

are based on the extraction of important periodic features.

Specifically, we present non-parametric methods for accurate

periodicity detection and we introduce new periodic distance

measures for time-series sequences. The goal of these tools

and techniques are to assist in detecting, monitoring and

visualizing structural periodic changes. It is our belief that

these methods can be directly applicable in the manufacturing

industry for preventive maintenance and in the medical sci-

ences for accurate classification and anomaly detection.

1 Introduction

In spite of the fact that in the past decade we have
experienced a profusion of time-series distance measures
and representations [9], the majority of them attempt
to characterize the similarity between sequences based
solely on shape. However, it is becoming increasingly
apparent that structural similarities can provide more
intuitive sequence characterizations that adhere more
tightly to human perception of similarity.

While shape-based similarity methods seek to iden-
tify homomorphic sequences using the original raw data,
structure-based methodologies are designed to find la-
tent similarities, possibly by transforming the sequences
into a new domain, where the resemblance can be more
apparent. For example, in [6] the authors use change-
point-detection signatures for identifying sequences that
exhibit similar structural changes. In [7] Kalpakis, et
al., use the cepstrum for clustering sequences that share
a similar underlying ARIMA generative process. Keogh,
et al. [10], employ a compression-based dissimilarity
measure that is effectively used for clustering and anom-
aly detection. Finally, Vlachos, et al. [15] consider
structural similarities that are based on burst features
of time-series sequences.

In this work we consider methods for efficiently cap-
turing and characterizing the periodicity and periodic
similarity of time-series. Such techniques can be ap-
plicable in a variety of disciplines, such as manufactur-
ing, natural sciences and medicine, which acquire and

record large amounts of periodic data. For the analysis
of such data, first there is a need for accurate periodic-
ity estimation, which can be utilized either for anomaly
detection or for prediction purposes. Then, a structural
distance measure should be deployed that can effectively
incorporate the periodicity for quantifying the degree of
similarity between sequences. A periodic measure can
allow for more meaningful and accurate clustering and
classification, and can also be used for interactive explo-
ration (and visualization) of massive periodic datasets.
Let us consider areas where periodic measures can be
applicable:

In natural sciences, many processes manifest
strong or weak periodic behavior, such as tidal pat-
terns (oceanography), sunspots (astronomy), tempera-
ture changes (meteorology), etc. Periodic analysis and
periodicity estimation is an important aspect in these
disciplines, because they can suggest potential anom-
alies or help understand the causal relationship between
different processes. For example, it is well established
that solar variability greatly affects the climate change.
In fact the solar cycle (sunspot numbers) presents strik-
ing resemblance to the northern hemisphere land tem-
peratures [4].

In medicine, where many biometric measures
(e.g., heartbeats) exhibit strong periodicities, there
is a great interest in detecting periodic anomalies.
Disturbances of similar periodic patterns can be noted
in many degenerative diseases; for example, it has
been noted that Tourette’s syndrome patients exhibit
elevated eyeblink rate [14], while people affected by
Parkison’s disease show symptoms of gait disturbances
[1]. The tools that we provide here, can significantly
enhance the early detection of such changes.

Finally, periodic analysis is an indispensable tool
in automotive, aviation and manufacturing industries
for machine monitoring and diagnostics [12]. Predic-
tive maintenance can be possible by examination of the
vibration spectrum caused by its rotating parts. There-
fore, a change in the periodic structure of machine vi-
brations can be a good indicator of machine wear and/or
of an incipient failure.



This work targets similar applications and provides
tools that can significantly ease the “mining” of useful
information. Specifically, this paper makes the following
contributions:

1. We present a novel automatic method for accurate
periodicity detection in time-series data. Our algorithm
is the first one that exploits the information in both
periodogram and autocorrelation to provide accurate
periodic estimates without upsampling.

2. We introduce new periodic distance measures that
exploit the power of the dominant periods, as provided
by the Fourier Transform. By ignoring the phase infor-
mation we can provide more compact representations,
that also capture similarities under time-shift transfor-
mations.

3. Finally, we present comprehensive experiments
demonstrating the applicability and efficiency of the
proposed methods, on a variety of real world datasets
(online query logs, manufacturing diagnostics, medical
data, etc.).

2 Background

We provide a brief introduction to harmonic analysis
using the discrete Fourier Transform, because we will
use these tools as the building blocks of our algorithms.

2.1 Discrete Fourier Transform. The normalized
Discrete Fourier Transform of a sequence x(n), n =
0, 1 . . . N − 1 is a sequence of complex numbers X(f):

X(fk/N ) = 1√
N

N−1�

n=0

x(n)e−
j2πkn

N , k = 0, 1 . . . N − 1

where the subscript k/N denotes the frequency that
each coefficient captures. Throughout the text we will
also utilize the notation F(x) to describe the Fourier
Transform. Since we are dealing with real signals, the
Fourier coefficients are symmetric around the middle
one (or to be more exact, they will be the complex
conjugate of their symmetric). The Fourier transform
represents the original signal as a linear combination of

the complex sinusoids sf (n) = ej2πfn/N
√

N
. Therefore, the

Fourier coefficients record the amplitude and phase of
these sinusoids, after signal x is projected on them.

We can return from the frequency domain back to
the time domain, using the inverse Fourier transform
F−1(x) ≡ x(n):

x(n) = 1√
N

N−1�

k=0

X(fk/N )e
j2πkn

N , n = 0, 1 . . . N − 1

Note that if during this reverse transformation we
discard some of the coefficients (e.g., the last k), then
the outcome will be an approximation of the original
sequence (Figure 1). By carefully selecting which

coefficients to record, we can perform a variety of tasks
such as compression, denoising, etc.
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Figure 1: Reconstruction of a signal from its first 5
Fourier coefficients

2.2 Power Spectral Density Estimation. In or-
der to discover potential periodicities of a time-series,
one needs to examine its power spectral density (PSD
or power spectrum). The PSD essentially tells us how
much is the expected signal power at each frequency
of the signal. Since period is the inverse of frequency,
by identifying the frequencies that carry most of the
energy, we can also discover the most dominant peri-
ods. There are two well known estimators of the PSD;
the periodogram and the circular autocorrelation. Both
of these methods can be computed using the DFT of
a sequence (and can therefore exploit the Fast Fourier
Transform for execution in O(N log N) time).

2.2.1 Periodogram Suppose that X is the DFT of
a sequence x. The periodogram P is provided by the
squared length of each Fourier coefficient:

P(fk/N ) = ‖X(fk/N )‖2 k = 0, 1 . . . dN−1

2
e

Notice that we can only detect frequencies that are at
most half of the maximum signal frequency, due to the
Nyquist fundamental theorem. In order to find the k
dominant periods, we need to pick the k largest values
of the periodogram. 1

1Due to the assumption of the Fourier Transform that the data

is periodic, proper windowing of the data might be necessary for
achieving a more accurate harmonic analysis. In this work we will

sidestep this issue, since it goes beyond the scope of this paper.

However, the interested reader is directed to [5] for an excellent

review of data windowing techniques.



Each element of the periodogram provides the
power at frequency k/N or, equivalently, at period N/k.
Being more precise, each DFT ‘bin’ corresponds to a
range of periods (or frequencies). That is, coefficient
X(fk/N ) corresponds to periods [N

k . . . N
k−1 ). It is easy

to see that the resolution of the periodogram becomes
very coarse for longer periods. For example, for a se-
quence of length N = 256, the DFT bin margins will be
N/1, N/2, N/3, . . . = 256, 128, 64 etc.

Essentially, the accuracy of the discovered periods,
deteriorates for large periods, due to the increasing
width of the DFT bins (N/k). Another related issue is
spectral leakage, which causes frequencies that are not
integer multiples of the DFT bin width, to disperse over
the entire spectrum. This can lead to ‘false alarms’
in the periodogram. However, the periodogram can
still provide an accurate indicator of important short
(to medium) length periods. Additionally, through the
periodogram it is easy to automate the extraction of
important periods (peaks) by examining the statistical
properties of the Fourier coefficients (such as in [15]).

2.2.2 Circular Autocorrelation. The second way
to estimate the dominant periods of a time-series x, is
to calculate the circular AutoCorrelation Function (or
ACF), which examines how similar a sequence is to its
previous values for different τ lags:

ACF (τ) = 1

N

N−1�

n=0

x(τ) · x(n + τ)

Therefore, the autocorrelation is formally a convo-
lution, and we can avoid the quadratic calculation in
the time domain by computing it efficiently as a dot
product in the frequency domain using the normalized
Fourier transform:

ACF = F−1 < X, X∗ >

The star (∗) symbol denotes complex conjugation.
The ACF provides a more fine-grained periodicity

detector than the periodogram, hence it can pinpoint
with greater accuracy even larger periods. However,
it is not sufficient by itself for automatic periodicity
discovery for the following reasons:

1. Automated discovery of important peaks is
more difficult than in the periodogram. Approaches
that utilize forms of autocorrelation require the user
to manually set the significance threshold (such as in
[2, 3]).

2. Even if the user picks the level of significance,
multiples of the same basic period also appear as peaks.
Therefore, the method introduces many false alarms
that need to be eliminated in a post-processing phase.

3. Low amplitude events of high frequency may
appear less important (i.e., have lower peaks) than high

amplitude patterns, which nonetheless appear more
scarcely (see example in fig. 2).
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Figure 2: The 7 day period is latent in the autocorrela-
tion graph, because it has lower amplitude (even though
it happens with higher frequency). However, the 7 day
peak is very obvious in the Periodogram.

The advantages and shortcomings of the peri-
odogram and the ACF are summarized in Table 1.

From the above discussion one can realize that al-
though the periodogram and the autocorrelation cannot
provide sufficient spectral information separately, there
is a lot of potential when both methods are combined.
We delineate our approach in the following section.

3 Our Approach

We utilize a two-tier approach, by considering the in-
formation in both the autocorrelation and the peri-
odogram. We call this method AUTOPERIOD. Since the
discovery of important periods is more difficult on the
autocorrelation, we can use the periodogram for extract-
ing period candidates. Let’s call the period candidates
‘hints’. These ‘hints’ may be false (due to spectral leak-
age), or provide a coarse estimate of the period (remem-
ber that DFT bins increase gradually in size); there-
fore a verification phase using the autocorrelation is re-
quired, since it provides a more fine-grained estimation
of potential periodicities. The intuition is that if the
candidate period from the periodogram lies on a hill of
the ACF then we can consider it as a valid period, oth-
erwise we discard it as false alarm. For the periods that
reside on a hill, further refinement may be required if
the periodicity hint refers to a large period.

Figure 3 summarizes our methodology and Figure
4 depicts the visual intuition behind our approach with
a working example. The sequence is obtained from the
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Method Easy to threshold Accurate short periods Accurate large periods Complexity

Periodogram yes yes no O(NlogN)
Autocorrelation no yes yes O(NlogN)
Combination yes yes yes O(NlogN)

Table 1: Concise comparison of approaches for periodicity detection.

Sequence Autocorrelation

hill

valley

Periodogram
Refine Period

Candidate
         
Periods  

False Alarm 

Dismiss     

Period

Figure 3: Diagram of our methodology (AUTOPERIOD method)

MSN query request logs and represents the aggregate
demand for the query ‘Easter’ for 1000 days after the
beginning of 2002. The demand for the specific query
peaks during Easter time and we can observe one
yearly peak. Our intuition is that periodicity should be
approximately 365 (although not exactly, since Easter
is not celebrated at the same date every year). Indeed
the most dominant periodogram estimate is 333.33 =
(1000/3), which is located on a hill of the ACF, with a
peak at 357 (the correct periodicity -at least for this
3 year span). The remaining periodic hints can be
discarded upon verification with the autocorrelation.
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Figure 4: Visual demonstration of our method. Candi-
date periods from the periodogram are verified against
the autocorrelation. Valid periods are further refined
utilizing the autocorrelation information.

Essentially, we have leveraged the information of
both metrics for providing an accurate periodicity de-
tector. In addition, our method is computationally effi-

cient, because both the periodogram and the ACF can
be directly computed through the Fast Fourier Trans-
form of the examined sequence in O(N log N) time.

3.1 Discussion. First, we need to clarify succinctly
that the use of the combined periodogram and auto-
correlation does not carry additional information than
each metric separately. This perhaps surprising state-
ment can be verified by noting that:

< X, X∗ >= ‖X‖2

Therefore, the autocorrelation is the inverse Fourier
transform of the periodogram, which means that the
ACF can be considered as the dual of the periodogram,
from the time into the frequency domain. In essence,
our intention is to solve each problem in its proper
domain; (i) the period significance in the frequency
domain, and (ii) the identification of the exact period
in the time domain.

Another issue that we would like to clarify is the
reason that we are not considering a (seemingly) simpler
approach for accurate periodicity estimation.

Looking at the problem from a signal processing
perspective, one could argue that the inability to dis-
cover the correct period is due to the ‘coarse’ sampling
of the series. If we would like to increase the resolution
of the DFT, we could ‘sample’ our dataset at a finer res-
olution (upsampling). Higher sampling rate essentially
translates into padding the time-series with zeros, and
calculating the DFT of the longer time-series. Indeed, if
we increase the size of the example sequence from 1000
to 16000, we will be able to discover the correct period-
icity which is 357 (instead of the incorrect 333, given in
the original estimate).

However, upsampling also imposes a significant
performance overhead. If we are interested in obtaining
online periodicity estimates from a data stream, this
alternative method may result in a serious system



bottleneck. We can see this analytically; the time
required to compute the FFT of a sequence with length
2x is in the order of 2xlog2x = x2x. Now let’s assume
that we pad the sequence with zeros increasing its length
16 times (just like in our working example). The FFT
now requires time in the order of (x + 4)2x+4, which
after algebraic calculations translates into 2 orders of
magnitude additional time.

Using our methodology, we do not require higher
sampling rates for the FFT calculation, hence keeping
a low computational profile.

3.2 Discovery of Candidate Periods. For extract-
ing a set of candidate periodicities from the peri-
odogram, one needs to determine an appropriate power
threshold that should distinguish only the dominant fre-
quencies (or inversely the dominant periods). If none of
the sequence frequencies exceeds the specific threshold
(i.e., the set of periodicity ‘hints’ is empty), then we can
regard the sequence as non-periodic.

In order to specify which periods are important, we
first need to identify how much of the signal energy is
attributed to random mechanisms, that is, everything
that could not have been attributed to a random process
should be of interest.

Let us assume that we examine a sequence x. The
outcome of a permutation on the elements of x is a
sequence x̃. The new sequence will retain the first order
statistics of the original sequence, but will not exhibit
any pattern or periodicities, because of the ’scrambling’
process (even though such characteristics may have
existed in sequence x). Anything that has the structure
of x̃ is not interesting and should be discarded, therefore
at this step we can record the maximum power (pmax)
that x̃ exhibits, at any frequency f .

pmax = arg max
f

‖X̃(f)‖2

Only if a frequency of x has more power than pmax can
be considered interesting. If we would like to provide
a 99% confidence interval on what frequencies are
important, we should repeat the above experiment 100
times and record for each one the maximum power of the
permuted sequence x̃. The 99th largest value of these
100 experiments, will provide a sufficient estimator of
the power threshold pT that we are seeking. Periods
(in the original sequence periodogram) whose power is
more than the derived threshold will be considered:

phint = {N/k : P(fk/N ) > pT }

Finally, an additional period ‘trimming’ should be per-
formed for discarding periods that are either too large
or too small and therefore cannot be considered reli-

able. In this phase any periodic hint greater than N/2
or smaller than 2 is removed.

Figure 5 captures a pseudo-code of the algorithm
for identifying periodic hints.

1 periods = getPeriodHints(Q)

2 {
3 k = 100; // number of permutations

4 maxPower = {}; // empty set

5 periods = {};

6
7 for i = 1 to k
8 {
9 Qp = permute(Q);

10 P = getPeriodogram(Qp);

11
12 power = max(P.power);

13 maxPower.add(power);

14 }
15
16 percentile = 99;

17 maxPower.sort; // ascending

18 P_threshold = maxPower(maxPower.length*(percentile/100));

19
20 P = getPeriodogram(Qp);

21
22 for i = 1 to P.length

23 {
24 if (P[i].power > P_threshold)

25 periods.add(P); // new candidate period

26 }
27
28 // period trimming

29 N = Q.length;

30 for i = 1 to periods.length

31 {
32 if (periods[i].hint >= N/2 || periods[i].hint <= 2)

33 periods[i].erase();

34 }
35
36 return periods;

37 }

Figure 5: Algorithm getPeriodHints

In [15] another algorithm for detection of impor-
tant periods was proposed, which follows a different
concept for estimating the periodogram threshold. The
assumption there was that the periodogram of non-
periodic time-series will follow an exponential distribu-
tion, which returned very intuitive period estimates for
real world datasets. In our experiments, we have found
the two algorithms to return very comparable thresh-
old values. However, because the new method does not
make any assumptions about the underlying distribu-
tion, we expect it to be applicable for a wider variety of
time-series processes.

Examples: We use sequences from the MSN query logs
(yearly span) to demonstrate the usefulness of the dis-
covered periodic hints. In Figure 6(a) we present the
demand of the query ‘stock market’, where we can dis-
tinguish a strong weekly component in the periodogram.
Figure 6(b) depicts the query ‘weekend’ which does
not contain any obvious periodicities. Our method can
set the threshold high enough, therefore avoiding false
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alarms.
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Figure 6: (a) Query ’stock market’ (2002): Weekly
periodic hint is identified. (b) Query ’weekend’ (2002):
No significant periodicities are spotted.

3.3 Verification of Candidate Periods. After the
periodogram peaks have been identified, we have ob-
tained a candidate set of periodicities for the examined
sequence. The validity of these periods will be verified
against the autocorrelation. An indication that a period
is important, can be the fact that the corresponding pe-
riod lies on a hill of the autocorrelation. If the period
resides on a valley then it can be considered spurious
and therefore safely discarded.

After we discover that a periodicity ‘hint’ resides on
a hill of the autocorrelation, we can refine it even further
by identifying the closest peak (i.e., local maximum).
This is a necessary step, because the correct periodicity
(i.e., peak of the hill) might not have been discovered
by the periodogram, if it was derived from a ‘wide’ DFT
bin. This is generally true for larger periods, where the
resolution of the DFT bins drops significantly. We will
explicate further, how to address the above issues:

3.3.1 Validity of Periodicity Hint. The signifi-
cance of a candidate period ideally can be determined
by examining the curvature of the ACF around the can-
didate period p. The autocorrelation is concave down-
ward, if the second derivative is negative in an open
interval (a . . . b):

∂2ACF (x)
∂x2 < 0, for all x ∈ (a . . . b), a < p < b

Nevertheless, small perturbations of the ACF due to
the existence of noise, may invalidate the above require-
ment. Will will seek a more robust estimator of the
curvature by approximating the ACF in the proxim-
ity of the candidate period with two linear segments.
Then it is sufficient to examine if the approximating
segments exhibit an upward-downward trend, for iden-
tifying a concave downward pattern (i.e., a hill).

The segmentation of a sequence of length N into
k linear segments can be computed optimally using a
dynamic programming algorithm in O(N2k) time, while
a greedy merge algorithm achieves results very close
to optimal in O(N log N) time [8]. For this problem
instance, however, one can employ a simpler algorithm,
because we require only a two segment approximation
for a specific portion of the ACF.

Let Ŝb
a be the linear regression of a sequence x

between the positions [a . . . b] and ε(Ŝb
a) be the error

introduced by the approximating segment. The best
split position tsplit is derived from the configuration that
minimizes the total approximation error:

tsplit = arg min
t

ε(Ŝt
1) + ε(Ŝn

t+1)

10 20 30 40 50 60

P1=17 P2=35 

Figure 7: Segmentation of two autocorrelation intervals
into two linear segments. The left region indicates a
concave upward trend (‘valley’) while the right part
consists of a concave downward trend (’hill’). Only the
candidate period 35 can be considered valid, since it is
located on a hill.

There is still the issue of the width of the search
interval on the ACF, that is how much should we extend
our search for a hill around the candidate period. Since
the periodicity hint might have leaked from adjacent
DFT bins (if it was located near the margin of the
bin) we also examine half of the adjacent bins as well.
Therefore, for a hint at period N/k, we examine the
range RN/k of the ACF for the existence of a hill:



RN/k = [ 1
2
( N

k+1
+ N

k
) − 1, . . . , 1

2
(N

k
+ N

k−1
) + 1]

3.3.2 Identification of closest Peak. After we
have ascertained that a candidate period belongs on a
hill and not on a valley of the ACF, we need to discover
the closest peak which will return a more accurate es-
timate of the periodicity hint (particularly for larger
periods). We can proceed in two ways; the first one
would be to perform any hill-climbing technique, such
as gradient ascent, for discovering the local maximum.
In this manner the local search will be directed toward
the positive direction of the first derivative. Alterna-
tively, we could derive the peak position directly from
the linear segmentation of the ACF, which is already
computed in the hill detection phase. The peak should
be located either at the end of the first segment or at
the beginning of the second segment.

We have implemented both methods for the pur-
poses of our experiments and we found both of them to
report accurate results.

4 Extension for Streaming Data.

Even though we have presented the AUTOPERIOD algo-
rithm for static time-series, it can be easily extended for
a streaming scenario, by adapting an incremental cal-
culation of the Fourier Transform. Incremental Fourier
computation has been a topic of interest since the late
70s and it was introduced by Papoulis [13] under the
term ‘Momentary Fourier Transform’ (MFT). MFT cov-
ered the aggregate (or growing) window case, however
recent implementations also deal with the sliding win-
dow case, such as in [16, 11]. Incremental AUTOPERIOD
requires only constant update time per DFT coefficient,
and linear space for recording the window data.

5 Accuracy of Results

We use several sequences from the MSN query logs to
perform convincing experiments regarding the accuracy
of our 2-tier methodology. The specific dataset is ideal
for our purposes because we can detect a number of
different periodicities according to the demand pattern
of each query.

The examples in Figure 8 demonstrate a variety
of situations that might occur when using both the
periodogram and autocorrelation.

Query ‘Easter’(MSN): Examining the demand for
a period of 1000 days, we can discover several periodic
hints above the power threshold in the periodogram.
In this example, the autocorrelation information refines
the original periodogram hint (from 333 → 357). Ad-
ditional hints are rejected because they reside on ACF
valleys (in the figure only the top 3 candidate periods
are displayed for reasons of clarity).

Query ‘Harry Potter’(MSN): For the specific
query although there are no observed periodicities (du-
ration 365 days), the periodogram returns 3 periodic
hints, which are mostly attributed to the burst pattern
during November when the movie was released. The
hints are classified as spurious upon verification with
ACF.

Query ‘Fourier’(MSN): This is an example where
the periodogram threshold effectively does not return
candidate periods. Notice that if we had utilized only
the autocorrelation information, it would have been
more troublesome to discover which (if any) periods
were important. This represents another validation that
our choice to perform the period thresholding in the
frequency space was correct.

Economic Index (Stock Market): Finally, this last
sequence from a stock market index illustrates a case
where both the periodogram and autocorrelation infor-
mation concur on the single (albeit weak) periodicity.

Through this experimental testbed we have demon-
strated that AUTOPERIOD can provide very accurate pe-
riodicity estimates without upsampling the original se-
quence. In the sections that follow, we will show how
it can be used in conjunction with periodic similarity
measures, for interactive exploration of sequence data-
bases.

6 Structure-Based Similarity and Periodic
Measures

We introduce structural measures that are based on
periodic features extracted from sequences. Periodic
distance measures can be used for providing more
meaningful structural clustering and visualization of
sequences (whether they are periodic or not). After
sequences are grouped in ‘periodic’ clusters, using a
‘drill-down’ process the user can selectively apply the
AUTOPERIOD method for periodicity estimation on the
sequences or clusters of interest. In the experimental
section we provide examples of this methodology using
hierarchical clustering trees.

Let us consider first the utility of periodic distance
measures with an example. Suppose that one is examin-
ing the similarity between the two time-series of Figure
9. When sequence A exhibits an upward trend, sequence
B displays a downward drift. Obviously, the Euclidean
distance (or inner product) between sequences A and
B, will characterize them as very different. However, if
we exploit the frequency content of the sequences and
evaluate their periodogram, we will discover that it is
almost identical. In this new space, the Euclidean dis-
tance can easily identify the sequence similarities. Even
though this specific example could have been addressed
in the original space using the Dynamic Time Warping
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Figure 8: Periodicity detection results of the AUTOPERIOD method.

(DTW) distance, we have to note that our method is
significantly more efficient (in terms of both time and
space) than DTW. Additionally, periodic measures can
address more subtle similarities that DTW cannot cap-
ture, such as different patterns/shapes occurring at pe-
riodic (possibly non-aligned) intervals. We will examine
cases where the DTW fails in the sections that follow.

20 40 60 80

Sequence A

0.1 0.2 0.3 0.4 0.5

Periodogram

20 40 60 80

Sequence B

0.1 0.2 0.3 0.4 0.5

Periodogram

Figure 9: Sequences A and B are very distant in a
Euclidean sense in the time domain. A transforma-
tion in the frequency domain (using a view of the peri-
odogram) reveals the structural similarities.

The new measure of structural similarity that we

present, exploits the power content of only the most
dominant periods/frequencies. By considering the most
powerful frequencies, our method concentrates on the
most important structural characteristics, effectively fil-
tering out the negative influence of noise, and eventually
allowing for expedited distance computation. Addition-
ally, the omission of the phase information renders the
new similarity measure shift invariant in the time do-
main. We can therefore discover time-series with simi-
lar patterns, which may occur at different chronological
instants.

6.1 Power Distance (pDist). For comparing the
periodic structure of two sequences, we need to examine
how different is their harmonic content. We achieve
this by utilizing the periodogram and specifically the
frequencies with the highest energy.

Suppose that X is the Fourier transform of a
sequence x with length n. We can discover the k
largest coefficients of X by computing its periodogram
P(X) and recording the position of the k frequencies
with the highest power content (parameter k depends



on the desired compression factor). Let us denote the
vector holding the positions of the coefficients with the
largest power p+ (so p+ ⊂ [1 . . . n]). To compare x
with any other sequence q, one needs to examine how
similar energies they carry in the dominant periods of
x. Therefore, we evaluate P(Q(p+)), that describes
a sequence holding the equivalent coefficients as the
vector P(X(p+)). The distance pDist between these
two vectors captures the periodic similarity between
sequences x and q:

pDist = ‖P(Q(p+)) − P(X(p+))‖

Example: Let x and q be two sequences and let their
respective Fourier Transforms be X = {(1 + 2i), (2 +
2i), (1+ i), (5+ i)} and Q = {(2+2i), (1+ i), (3+ i), (1+
2i)}. The periodogram vector of X is: P(X) = ‖X‖2 =
(5, 8, 2, 26). The vector holding the positions of X with
highest energy is p+ = (2, 4) and therefore P(X(p+)) =
(0, 8, 0, 26). Finally, since P(Q) = (8, 2, 10, 5) we have
that: P(Q(p+)) = (0, 2, 0, 5) 2.

In order to meaningfully compare the power content
of two sequences we need to normalize them, so that
they contain the same amount of total energy. We can
assign to any sequence x(n) unit power, by performing
the following normalization:

x̂(n) =
x(n)− 1

N

N�
i=1

x(i)�
N�

i=1

(x(n)− 1

N

N�
i=1

x(i))2

, n = 1, . . . , N

The above transformation will lead to zero mean value
and sum of squared values equal to 1. Parseval’s
theorem dictates that the energy in the time domain
equals the energy in the frequency domain, therefore
the total energy in the frequency domain should also be
unit:

‖x̂‖2 = ‖F(x̂)‖2 = 1

After this normalization, we can more meaningfully
compare the periodogram energies.

Indexability: Although in this work we are not going
to discuss now to index the pDist, we would like to note
that this is possible. The representation that we are
proposing, utilizes a different set of coefficients for every
sequence. While indexing might appear problematic
using space partitioning indices such as R-trees (because
they operate on a fixed set of dimensions/coefficients),
such representations can be easily indexed using metric
tree structures, such as VP-Tree or M-Tree (more details
can be found in [15]).

2The zeros are placed in the vectors for clarity reasons. In the

actual calculations they can be omitted.

7 Periodic Measure Results

We present extensive experiments that show the use-
fulness of the new periodic measures and we compare
them with widely used shape based measures or newly
introduced structural distance measures.

7.1 MSN query logs. Using 16 sequences which
record the yearly demand of several keywords at the
MSN search engine, we perform the hierarchical clus-
tering which is shown in Figure 10. In the dendro-
gram derived using the pDist as the distance func-
tion, we can notice a distinct separation of the se-
quences/keywords into 3 classes. The first class con-
tains no clear periodicities (no specific pattern in the
demand of the query), while the second one exhibits
only bursty seasonal trends (e.g., during Christmas).
The final category of queries are requested with high
frequency (weekly period) and here we can find key-
words such as ‘cinema’, ‘bank’, ‘Bush’ etc.

We utilize an extended portion of the same dataset
for exploring the visualization power of periodic dis-
tance measures. Using the pairwise distance matrix be-
tween a set of MSN keyword demand sequences (365
values, year 2002), we evaluate a 2D mapping of the
keywords using Multidimensional Scaling (Figure 11).
The derived mapping shows the high discriminatory ef-
ficacy of the pDist measure; seasonal trends (low fre-
quencies) are disjoint from periodic patterns (high fre-
quencies), allowing for a more structural sequence ex-
ploration. Keywords like ‘fall’, ‘Christmas’, ‘lord of
the rings’, ‘Elvis’, etc, manifest mainly seasonal bursts,
which need not be aligned in the time axis. On the con-
trary, queries like ‘dry cleaners’ or ‘Friday’ indicate a
natural weekly repeated demand. Finally, some queries
do not exhibit any obvious periodicities within a year’s
time (e.g., ‘icdm’, ‘kdd’, etc).

bank

cinema

amazon

berlin

ballet

bush

bach

atari

amd

christmas

casino

bargains

bestbuy

ati

athens 2004

coburn

no period 

seasonal  

(low fre
q)

periodic    

(high fre
q) 

Figure 10: Dendrogram based on periodic features
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Figure 11: Mapping on 2D of pairwise distances between several sequences. The similarity measure utilized was
the power based similarity. We can clearly distinguish a separation between periodic and seasonal trends.

7.2 Structured + Random Mixture. For our sec-
ond experiment we use a combination of periodic time-
series that are collected from natural sciences, medicine
and manufacturing, augmented by pairs of random noise
and random walk data.

All datasets come in pairs, hence, when performing
a hierarchical clustering algorithm on this dataset, we
expect to find a direct linkage of each sequence pair at
the lower level of the dendrogram. If this happens we
consider the clustering correct. The dataset consists of
12 pairs, therefore a measure of the clustering accuracy
can be the number of correct pair linkages, over twelve,
the number of total pairs.

Figure 12 displays the resulting dendrogram for
the pDist measure, which achieves a perfect cluster-
ing. We can also observe that pairs derived from the
same source/process are clustered together as well, in
the higher dendrogram level (Power Demand, ECG, Mo-
torCurrent etc). After the clustering, we can execute
the AUTOPERIOD method and annotate the dendrogram
with the important periods of every sequence. Some se-
quences, like the random walk or the random data, do
not contain any periodicities, which we indicate with an
empty set {}. When both sequences at the lower level
display the same periodicity, a single set is displayed on
the bifurcation for clarity.

For many datasets that came into 2 pairs (power
demand, video surveillance, motor current), all 4 in-
stances instances demonstrated the same basic period
(as suggested by the AUTOPERIOD). However, the pe-
riodic measure can effectively separate them into two
pairs, because the power content of the respective fre-
quencies was different.

For example, in the video surveillance dataset, both
actors display a periodic movement every 30 units

(drawing a gun from a holster). However, because the
male person performs the movement with wider ‘arches’
(because of different body structure), the periodic mea-
sure can distinguish his movement, due to the higher
energy content. The above example indicates that anal-
ogous periodic measures could be effectively used for
biometric characterization, since every individual tends
to have a distinct intrinsic rhythm (e.g., when typing
on the keyboard, performing repetitive moves, speak-
ing, etc).

On the sunspot sequence set the AUTOPERIOD esti-
mates of 89 and 84 units may appear erroneous at first
glance, because of our knowledge that the solar cycles
range from 10 to 12 years. However, this is not the case
because the 1000 sequence points record sunspot mea-
surements of approximately 120 years. After the proper
rescaling the estimates of 89 and 84 yield periodicities
close to 11 and 10 years respectively.

Euclidean DTW Cepstrum CDM pDist
0.16 0.66 0.75 1 1

Table 2: Clustering accuracy for the dataset of fig. 12

On the same dataset the accuracy results for Euclid-
ean, DTW, Cepstrum and CDM compression based
measure [10] are given in table 2. CDM is the only
one that also achieves perfect clustering. However, it
should be noted that while all other methods operate
on the original dimensional space (using 1000 points),
pDist works on a very lower dimensional space, using
only 50 numbers to describe each sequence, after a 20x
compression of the data.

7.3 ECG datasets. Our last experiment is per-
formed on the MIT-BIH Arrhythmia dataset. We use
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Figure 12: The pDist measure produces an accurate dendrogram based on the periodic structural characteristics
of a dataset. The lower dendrogram levels are also annotated by the periods discovered as important, by a
subsequent run of the AUTOPERIOD method.

two sets of sequences; one with 2 classes of heartbeats
and another one with three (figures 13, 14). We present
the dendrogram of the pDist measure and the DTW,
which represents possibly one of the best shape based
distance measures. To tune the single parameter of the
DTW (corresponding to the maximum warping length)
we probed several values and here we report the one
that returned the best clustering.

For both dataset instances, pDist again returns
an accurate clustering, while DTW seems to perform
badly on the high level dendrogram aggregations, hence
not leading to perfect class separation. The Euclidean
distance reported worse results. The CDM measure is
accurate on the 2 class separation test but does not
provide a perfect separation for the 3 class problem (see
the original paper [10] for respective results).

7.4 Distance Measures Overview. The experi-
ments have testified to the utility of periodic measures
for exploration of sequence databases. The only real
contender to the pDist measure is the compression-
based CDM measure. However, compared to CDM our
approach presents some favorable advantages: (i) it does
not require any discretization phase (we operate on the
original data), (ii) it is meaningful for both long and
short sequences (CDM performs better on longer se-
quences) (iii) it can be easily extended for streaming

sequences, using incremental Fourier Transform compu-
tation (iv) it provides additional sequence information
in the form of periodic estimates.

8 Conclusion

We have presented methods for accurate periodicity es-
timation and for characterization of structural periodic
similarity between sequences. It is our belief that these
methods will find many applications for interactive ex-
ploration of time-series databases and for classification
or anomaly detection of periodic sequences (e.g., in auto
manufacturing, biometrics and medical diagnosis).
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