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Abstract. A perturbation theory for determinants of differential operators
regularized through the (-function technique is presented. The application of
this approach to the study of chiral changes in the fermionic path-integral
variables is discussed.

1. Introduction

In the Feynman path-integral approach to quantum theory one is naturally led to
the computation of determinants of differential operators. These determinants
clearly diverge because the eigenvalues λ increase without bound. Therefore, it is
necessary to adopt some regularization procedure. One technique which has
proved to be very useful is the (-function regularization [1]. When A is an elliptic
invertible operator of order m>0, defined on some compact manifold M without
boundary of dimension n, one forms a generalized (-function from the eigenvalues

This series converges only for Res > n/m, but ((s, A) can be analytically extended to
a meromorphic function of s in the whole complex plane [2]. In particular it is
regular at 5 = 0. The derivative of the (-function at s = 0 is formally equal to
— ^logλy. One can therefore define the regularized determinant of A, Det(4), to

7

be e\p( — dζ/ds)\5 = 0.

The purpose of this paper is to study the behavior of Det(y4) when the operator
A is perturbed by another operator of smaller order. To be more precise, we are
going to prove in Sect. 2 that

(1.2)
j = ι
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when ordf/l^ordiX) j =1,2,..., p. The coefficients cj can, in principle, be
computed in terms of the operators A and A .

In Sect. 3 we generalize the definition of ΌQt(A) to noninvertible operators.
Finally, in Sect. 4 we apply our method to the computation of anomalous
Jacobians arising from chiral transformations in the path-integral formulation of
fermions coupled to SU(π) gauge fields.

2. Invertible Operators

Given an elliptic invertible operator A, of order m>0 defined on a compact
manifold M without boundary, following Seeley [2], we define

- ,
2πr

where Γ is a curve beginning at oo, passing along the ray of minimal growth to a
small circle about the origin, then clockwise about the circle, and back to oo along
the ray.

We shall denote by K(x, y, B) the kernel of an operator B, and K(x, B) this
kernel for x = y. It can be shown that the generalized C-function associated to A
(1.1), can be also written as

ζ(s9A)=$ττK_s(x9A)dμx, (2.1)
M

where Ks(x, A) = K(x9 As) [2]. (We suppose the volume element dμx smooth in each
coordinate system.) This alternative definition also applies to non-diagonalizable
operators. #(M) will denote the space of continuous functions on M with norm
II I I oo -sup |/|.

The main result of this section is the following Theorem :

Theorem. Let ̂  be a finite- dimensional vector bundle over M (M a compact
manifold without boundary of dimension n)9 and let Γ(^} be the space of its global
sections. Let A be an invertible elliptic pseudo-differential operator of order m > 0,
defined on Γ(3?} and A19...9Ap differential operators on Γ(^) such that
orά(Aj)^m— 1 for j=!9...9p.

If the principal symbol of A, σm(A)9 satisfies Seeley s hypothesis [2] then

Ks \x,A + £ έA\ = Ks(x, A) + Σ εTjfo s) + sr+ lK(x, R(ε, s)) , (2.2)
V i = l / i = l

where

i) For -- <Res< — , K J x 9 A ) 9 F, (x9 s} (ί = l, ..., rp) are ^(M}-υalued analyt-
m m

ic functions of s.
ii) F^(x9s) is the analytic extension in s of
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— K(x,R(ε9s))
as

are bounded foriii) For Res<l/ra, ^KfaRfas))^ and

sufficiently small ε.

By integration on M Eq. (2.2) and its derivative with respect to s, one gets:

Corollary 1.

(
P \ rP

s,A+ Σε'X }=ζ(s,A) + Σ
ί=ι I ί=ι

where

i) /.(s) /or i = 1,.. .,p, and /(s, ε) are analytic functions of s if < Re(5) < —.
m m

M

iii) |/(s, ε)| and

subset of Res> .
m

are bounded for sufficiently small ε and s in a compact

Corollary 2.

= /ι'(s)

o/ ί/ze Theorem. We shall denote by U', /eR, the Sobolev spaces of global
sections of ̂  , and by | |£| |/j the norm of the operator B:Hl-^Hj. We set

4= Σ^
i = l

For small ε, the operator A + A'ε is also invertible and elliptic, and its principal
symbol coincides with σm(A). Then

We shall expand this operator in powers of ε. Then we write

(2.3)

This expansion holds for AeΓ and ε|^ε0, with sufficiently small ε0 such that
— A)~1A'ε\\lJ<l. Note that ε0 can be chosen independently of λ, for λ on Γ,
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because

k=l

P

k=l

Now, for O^prgra, there exists (see [2]) a positive constant Cp such that

if λ is large enough, say \λ\ > C for suitable positive constant C. Hence, taking
p — m— 1

\\(λl — ̂ 4)~1τ4J.||M^C ί |/l|~1/m for |λ|>C.

On the other hand, \\(λl — A)~l\\jJ+p is continuous in λ for λφSp(A\ then it is
uniformly bounded for λ on Γ and \λ\ ̂  C.

Now, we write

where
1 n np

The operators B"(/l) are sums of finite products of the (λl — A)~ 1A and therefore
bounded operators from Hl to Hl.

Hence

(A+Ay=~ίλs(λi-AΓ1dλ+ t ^ί
2π r w = 1 2π Γ

2π Γ

+ εr+1— \λ*\(λI-AΓl(Σ &

2π f L \_yfi

where each C (λ) is a sum of operators B"(λ).
We have that

is a well defined operator for Res<0, because
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for sufficiently large λ. By (2.4) for p = 0, | |Cj(A)| | / ( / is uniformly bounded if λ on Γ
since so is \\(λI — A ) ~ 1 A i \ \ l f ι . Also TJ(s) are Calderόn-Zygmund operators (as

they are considered by Seeley in [2]). Thus, if Res< - , 7}(s) is an integral
m

operator whose kernel K(x9 y, 7}(s)) is continuous for x = y, since
Re(ordT/s))< Re(ms- 1).

In the last term of (2.5)

(2.6)

By (2.4) taking p — m, p = m—l, and p = 0, we see that

1,1+ r

<cμ\ - 1/m

and

for sufficiently small ε (the constants Cl depend only on /, r, A, A. and not on ε).
\\ιtt+r of the integrand inFrom the above estimates we deduce that the norm

(2.6) is bounded by C\λ\ ~l~llm t

. Hence R(s9ε) is a bounded operator from Hl to

Hl + r and it is well defined for Res< — . If one chooses r>n, R(s,ε) has continuous
m

kernel because oxeH~(n/2)~a(tt>Q) (where δx is the Dirac ^-function at the point x
in M), so R(s,ε)δyeH~(n/2}~a + rCH(nl2}+a, and then K(x9y,R(s,ε)) = (δχ9R(s,ε)δyy

verifies: 1) is a well defined continuous function of x, y; 2) is a ^ί(MxM)-
valued analytic function of 5; 3) it is bounded function for small ε since

' 4) — K(X9 R(S9&)) = κlx9 — R(s9ε)\
f°Γ 'ds

1
R(s7ε) is an analytic function of s for Res< — valued in the space of continuous

m

operator from Hl to Hl + r and; 5) — R(s,ε)
as

is uniformly bounded

for small ε.
We have then the estimates iii) of the theorem.
From the above discussion and (2.5) we have

( n / 2 ) - Λ , ( n / 2 ) + Λ

This equation has been proved for Res< , since (A + Af

ε)
s, As and 7}(s) have

continuous kernels for these values of s. Moreover, K(x,A + Ar) and K(x,A)
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admit meromorphic extensions to the whole complex plane with poles only at

5= 5J
eN, unless they are non-negative integers, and K(x, R(s, ε)) is analytic

m

in s for Res< —. These continuations will be denoted by Ff(x,s).
m J

Finally, it is easy to see that

2π r

Thus ii) follows. Q.E.D.

Remark. We don't know if the hypothesis ordAj<m can be dropped.
Summarizing, our main result is

Detμ + A'ε) = Det(A) exp- [ε/^O) + ε2/2'(°) + ... + εrfr'(0) + 0(er + x)] , (2.7)

where

fj(s)= JTr(F/x, -s))dμx,
M

with / z

7 ' 7 \ '2π f

7

«= 1

/Ό = Σ 5"(^)' anc^ B"W tne coefficient of εj' in the expansion of

Remark. If Res is large enough to have βs = Re[m( — s— l)] + ord^41 < — w,
A~S~1A1 is an integral operator with continuous kernel, and then of trace class,
since it is pseudo-differential of order βs. So, for these values of s

fί(s)=-sΎτ(A-s-1A1) (2.8)

[if s is such that βs> — n, f^s) is the analytic continuation of the right hand term in
(2.8)].

Analogously, if AV...,A commute with A, the function f^s) can also be
considered as a trace. For instance, if Av AΊ commute with A,

if

Re[m( — s— l)] + ord/l9< —n,
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and

Re[m( — s — 2)] + 2ord^L1 < — n.

Example. For M = Sί, A= — —-^ +P, being P the orthogonal projection on the

constants, p=l and A1=i—. We have that ζ(s,A) = l+2ζ(2s) [((2s) is the

numerical Riemann (-function], and then Det(A) = (2π)2.
We obtain

snce
r 0 if k is odd

-((/c) if fe is even,
/c

It can be proved that P,.^0 , and then
r-> JO

(2π)2

Γ(l-ε)Γ(l+ε)'

3. Non-Invertible Operators

The above definitions and proofs hold only for an invertible operator A.
Otherwise, i.e. when A admits λ = 0 as eigenvalue, any natural definition for
determinant of A should vanish. However, it is interesting to keep the "product" of
the other eigenvalues. This fact leads us to introduce the following generalized
definition

Det'^lim06^/^, (3.1)
α->0 Oί

where α is a real positive parameter, and ΛΓ = dimKer^ (i.e. the dimension of the
null set of A). We are going to prove that (3.1) is an adequate definition: we shall
see that Det'(yl) coincides with Det(^) if A is invertible, and in general, it coincides
with Όet(A-\-PkerA), where PkeτA is the orthogonal projection on KerA Det'(y4)
can also be thought of as the regularized determinant of the operator

Proposition. Let A be as in the theorem in the previous section, but not necessary
invertible; if A admits a complete orthogonal set of eigenf unctions, then the limit
(3.1) exists and

Proof. If Λ/" = 0, the result follows from Corollary 2, taking p = l and Aί=I.
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If JV>0, note that for sufficiently small α, A + uI is invertible and then

Det(v4 + α/) is well defined. On the other hand, we know that for Res> —
m

and

λj Φ O

then

Since both terms have analytic continuations to a neighbourhood of s = 0, and
from the continuity established in Corollary 2-i) we have

lim C'(0, A + αJ) + N Inα = lim f '(0, 4 + Pker^ + α/) - f '(0, Λ + Pker J . Q.E.D.
<χ-»0 α-»>0

Note that for N = 0 the hypothesis on the existence of a complete orthonor-
mal set of eigenfunctions is unnecessary.

4. An Application of the Method : Chiral Changes in Fermionic Variables

Recently Fujikawa [3] has shown that the Euclidean path-integral measure for
gauge theories with fermions is not invariant under chiral transformations, and
that it gives rise to a Jacobian related to the Adler-Bell-Jackiw anomaly [4]. In
Fujikawa's work the Jacobian arising from the y 5 -transformation was regularized
by means of some particular procedure, but such a choice appears not to be
completely justified. More recently Andrianov, Bonora and one of us [5] have
stressed the role played by the gauge invariance in Fujikawa's choice of the
regularization procedure.

In this section we are going to apply the approach we developed in the
preceding sections in order to give a more rigorous derivation of Fujikawa's result
and to clarify some related points.

We are going to assume that the fields behave at the infinite so that it is
possible to compactify to Sn by stereographic projection (see for example [6]).

Let us consider the "partition function" for Dirac fields coupled to an external
SU(ΛΓ) gauge field Aμ

Z(|>) =l9Ψ®Ψexp{-$Ψ(0- im) Ψdx} , (4. 1)

where the Euclidean Dirac operator is 0 = — i yμ(dμ + Aμ) = $*, with Aμ = TaAa

μ and
y* = γμ, (Ta are the N2 — 1 antihermitian generators of the gauge group). We shall
denote by Dm the invertible operator Dm = β — im.

According to Berezin's integration rules [7], the path-integral in Eq. (4.1) is
formally the determinant of the operator Dm. But, as it is well known, it diverges.
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Then, it must be regularized preserving the gauge invariance of the theory. Under a
gauge transformation Ω, we have

Ψ->ΩΨ and

Then we have to demand that

We can adopt the ζ function regularization technique [1] :

Zreg(An) = [Det (DmD*)] 1/2 = exp( - #'(0, $2 + ™2/)) , (4.2)

since if we take into account that the eigenvalues of QDmQ~l and Dm coincide, it
follows immediately from the series (1.1) that

If we perform the infinitesimal linear change of variables :

Ψ = Ω5χ and Ψ = χΩ5, (4.3)

where Ω5 = l+εy5φ(x), in the path integral defining Z(Dm) of Eq. (4.1), we shall
obtain

Όet(DmD*) = J2Όel(Ω5DmΩ2

5D*Ω5) , (4.4)

where J is the "Jacobian" associated to the linear transformation (4.3). If the
operators were finite-dimensional, the usual properties of determinants would lead
to

log J - - 2 log det(Ω5) - - 2εΎr(y5φ) , (4.5)

and the Jacobian would depend on nothing but Ω5. This will not necessarily occur
in the oo -dimensional case: through the regularization the Jacobian can depend on
]fi too. That is the reason we call them anomalous Jacobians. Note that in our
approach J is finite from the beginning, since it is the quotient of two regularized
determinants, as opposed to Fujikawa's method where it must be regularized.

Under the transformation (4.3), the operator Dm transforms as

Dm-+Ω5DmΩ5 = Dm + ε(y5φDm + Dmφy5

Then

Ω5DmΩ2

5D*Ω5 = DmD* + ε(2Dmγ5φD* + DmD*y5φ + γsφDmD*)

+ 0(ε2) = $)2 + m2I + εAl + 0(ε2). (4.6)

Therefore, from (4.2), (4.4), and (4.6), we obtain
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Using now the results of the corollaries of Sect. 2, we obtain

0. (4.7)

Tr{...} can be written as

M

where tr stands for the trace of the color and y-matrices. Since K_s is analytic in a

neighbourhood of 5 = 0, s—-Tr{...} — — >0. Then, (4.7) reads
as s^°

Γsγ5φ}\s = o. (4.8)

Now, it is clear what is going on. The naive limit would lead to Eq. (4.5) as in the
finite-dimensional case. But the trace of y5φ(x) does not exist, so (4.8) must be
evaluated for sufficiently large Re s, and then analytically extended to 5 = 0.
Roughly speaking, one can say that the operator (ft2 + m2I)~s regularizes the
trace. In this process some dependence on this operator could, and it will, remain
after the limit. It is important to notice that, in our evaluation of J, the regularizing
operator has appeared naturally by adopting from the beginning the gauge
invariant ζ-function regularization procedure.

If we write

(4.8) gives

logJ= -2fi f IKQ(D~D + +m2)-K0(D + D~ + m2}]φ(x)dμx . (4.9)
M

The KQ'S can be evaluated after a rather lengthy but straightforward com-
putation by means of Seeley's [2] formulae, taking into account that

Then, we finally reobtain Fujikawa's result for QCD4 :

^φdx. (4.10)

In the case of QED2 the anomalous Jacobian satisfies

(4.11)

Note that (4.10) and (4.11) could also have been obtained from (4.8) as an
application of Atiyah, Bott, and Patodi results [8].
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Note added in proof: After we sent this paper for publication, one of us (M.A.M.) has proved that
if {At} is a family of pseudodifferential operators depending analytically on the parameter ε and
ordΛ t .^ord/4 0 = m for small c, then Ks(x, x, /4J is an analytic function of ε, in a neighbourhood of

ε = 0, for Res< —. Nevertheless, in this case, a formula such as (2.8) has not been found [9].




