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On Perturbing Lyapunov Functions

1. Introduction: It is kndwn [2,3] that in proving uniform bounded-

ness of a differential system by means of Lyapunov functions, it is
sufficient to impose conditions in the complement of a compact set in
R", whereas, in the case of equiboundedness, the proofs demand that
the assumptions hold everywhere in rR",

We wish to present, in this paper, a new idea which permits us
to discuss nonuniform properties of solutions of differential equations
under weaker assumptions. Our results will show that the equibounded-
ness can be proved without assuming conditions everywhere in R" (as in
the case of unifcrmiboundedness), provided we appropriately perturb
the Lyapunov functions. Our results also imply that in those situations
when the Lyapunov function found does not satisfy all the desired con-
ditions, it is fruitful to perturb that Lyapunov function rather than
discard it. We also discuss the corresponding situation relative to
equistability.

We feel that the idea of perturbing Lyapunov functions introduced
in this paper is a useful and important tool in the study of nonuniform
properties of solutions as well as the preservation of those properties
under constantly acting perturbations and therefore deserves further

investigation.



2. Equiboundedness. We consider the differential system

x' = f(t,x}, x(tc) = Xg (2.1)

where f e C[R+ x R7, Rn]. Here R* denotes the nonnegative real line,
R" the euclidean space and C[R+ X Rn, an the class of continuous
functions from R+ «R" to R'. For any set E C=Rn, we denote by
E, E¢ and E, the closure, the complement and the boundary of E res-
|

being any convenient norm in g, For the stability and boundedness

pectively. For any p > 0, let S{p) =[x e R": | IxI] < o1, |l

definitions, see [2].
Theorem 1.  Assume that

(1) EcR" is compact, V, e C[R" x E¢, R'1, V,(t,x) is Tlocally

Lipschitzian in x , bounded for (t,x) R x oE, and

+ Ca 1 [,
D Vl(t,x) = ;lg+sup-ﬁ {Yl(t+h, x+hf{t,x)}) - Vl(t,x{}

i

g, (t, V,(t.x)) » (t:x) e R = E%, (2.2)

IA

RY, Rl

*

where g, e C[R%

(11) v, e C[R" x 5%p), R'1, V,(t,x) is Tocally Lipschitzian in x,

X

b(l x| 1) s v (t.x) < a(llxi]), (t.x) e R" x 5%(p), (2.3)

where a, b € C[[o.x}, R+] such that b{u) >« as u == (p may be



sufficiently large) and for (t,x) e RY x (o),

D'V, (t.x) + D'V, (.x) £ g, (tsV,(£,x) + V,(t,x)) (2.4)

LS

where g, € clrt x R, R}

(ii1) the scalar differential equations

i

g1<t!u)3 u(to) = UG z Qs (2«5)

and

i

vio= g (tyv), vity) = vy, 20 (2.6)

are equibounded and uniformly bounded respectively. Then, the system

{2.1)} is equibounded.

Proof. Since E is compact, there exists a o (may be sufficiently
jarge) such that S(p) :’S(E,po) for some Py ” 0. Here S(E,po) =

[x e RM:d(x,E) < QQ}, where d{x,E) = inf ||x-y||. Let tO e RY and
yekt
a2 p begiven. lLet «

= “1(to’“) = max(ao,a*) where o = max[Vl(to,xo):

1 0
Xy € g%a) n“EEj and ao* 2 Vl(t,x) for (t,x) e RY x 3E. Since the

equation (2.5) is equibounded, given a, > 0 and t, e R+, there exists

a By = Bo(tc,alﬁ such that
u(toty,ug) < By, T2 tg, (2.7}

provided u, < a,, where u{t, tgsug) is any solution of (2.5) Also,

0
uniform boundedness of the equation (2.6) yields that

vt tyavy) < Bylay)s tz iy, (2.8)



provided v, < a, , where Vv(t,to,vo) is any solution of (2.6). We

0

set u, = Vl(to’xo) and o, = a(a) + B,. As b(u) » « with u » =,

we can choose a B = B(to,m) such that
b(g) > 51(“2)' (2.9)

We now claim that x, e S{a} 1implies that any solution x(t,to,xn)

satisfies x(t,tg,xo) e S(8), for tzt,. If this is not true, there
exists a solution x(t,tg,xo) of (2.1) with x, & S{a) such that for
some t* > t,, ]lx(t*,to,xo)l§ = g. Since S{E,p ) =5(a), there are

two possibilities to consider:
(i) x(t,tg,xoj e E¢ for te [to.t%] &

(i) there exists a t z t;, such that x(t, tyux,) e o8E and x{tstyxy) €

EC for te [E,t*].

In case (i)} holds, we can find t; > t; such that

x(tl,tg,xﬂ) e 35(a),
x(t*,t .x,) e 35(8), (2.10)
and x(t, to’xo) e S%a), te [tl,t*]. }

Setting m(t) = Vv, (t, x(t,t )} + v, (t.x(t.t .x,)) for te [t t*],
it is easy to obtain, from (2.4), using standard arguments [see 1,21,

the differential inequality

pm(t) < g, (tm(t)), te [t t*].




5
Consequently, the theory of differential inequalities [Th. 1.4.1,2] gives
m(t) < rz(t,tl,m(t)), te [tl,t*] R

where rz(t,tl,vo) is the maximal solution of (2.6) such that rz(tx'tl’vo) =V,
Thus,
v, (e, x(t*,ty.x )} + v, (t* x(t*,t, %)) 2.1
< rz(t*,tl,vl(tl,x(tl,to,xo)] + Vz(tl’x(t1*to’xo))) .
Similarly, because of (2.2), we also have

Vl(tl,x(tl,to,xé)) s v {t)st.Y, (g%,)) (2.12)

where rl(t,to,uo) is the maximal solution of (2.5). In view of the

fact that uj = Vl(to’xo) <o, (2.7) yields

, rl(tl,to,vl(tc,xo)) s By -

Furthermore, Vz[tx’x(tl’to’xo)) < ala) because of (2.3) and (2.10).

Consequently, we have

vy = V[t x(tt sx )] + V, (t,x(t;5tg%,))

(2.13)

<8, t ala) = a,

Hence, the inequality (2.11) gives, because of the relations (2.3), (2.8),
(2.9), (2.10), (2.13) and the fact that Vl z 0,

b(s) < &,(a,} < b(g) ~ (2.14)

which is a contradiction.



4
In case (i1) holds, we again arrive at the inequality (2.11), where

t, > t satisfies (2.10). We now have, in place of (2.12), the relation
Vl(tl,x(tl,to,xo)] < rl{tl,%,vl(f,x(%,to,xo))} .

Since x{E,t;.x,) e 3E and Vl[i,x(%,to,xo)] s a* 5 o, arguing as before,
we arrive at the contradiction (2.14). This proves that if x, e S{a),
oz ps X(t,ty,x,) € S(B), for t iz t,. For o < p, we set B(to,m) =

B{t,.e) and hence the proof is complete.

Remarks: Theorem 1 improves significantly the equiboundedness result

in [Th. 3.13.1,2]. Consider the special case g, =g, = 0 which improves
a similar result in [3] and Corollary 3.13.1 in [2]. The hypothesis (i)
together with D+Vl-s 0 s not enough to apply Corollary 3.13.1 because

we will not have D+v2 < 0. Also, hypothesis (i) is not sufficient to

imply the stated result. We may be tempted to conclude, at a first glance,
that by setting V=V, +V,, all the assumptions of Corollary 3.13.1 in
[2] are satisfied. This is not true because the right estimate in (2.3),
namely V(t.x) < a{||x||), does not hold. As a result, the proof of
Corollary 3.13.1 in [2] breaks down. Thus, our results demonstrate the

advantage of perturbing Lyapunov functions.

3. Equistability: For the purpose of this section, it is enough to

suppose that f e C[R+ x S(p), R"], for some o > O.



Theorem 2.  Assume that

(i) Vv, e C[R+ x ${p), R+], Vl(t,x) is locally Lipschitzian in x,

Vl(t,o) 0 and

i

D+V1(t,}() < gl(tsvl(t9x)}s (t,}() € R+ x S(p);
4 + _
where g, € ¢[R" xR ,R] and gl(t,o) =z 03

(i1} for every n > 0, there exists a V, o © C[R+ x S{p) N s%(n), R+],

Vz . is locally Lipschitzian in X,

-4

b(]1xI1) v, (t.x) < a({lx]]), (t.x) e R" % S(0) n S(n),

where a, b e C[(o,p),R+J, alu), b(u) 1increasing in u and a(u) ~ 0

as u -+ 0 and
D+V1(t,x) + D+V2(t,x) s g, (v, (tx) + v, (t,x})
+ e v+
for (t,x) e R x S(p) N $%(n), where g, e C[R" x R",R], g,(t,0) = 03

(ii1) the trivial solution is equistable with respect to the equation
u' =g (twu), uft)) = uy 20, _ (3.1)
and uniformly stable with respect to the eguation

A gzit,v), v(tc) =V, z 0. (3.2}

Then, the trivial seolution of the system (2.1} is equistable.



Proof. Let O0.<e <p and to e R+ be given. Since the trivial solution
is uniformly stable relative to the equation (3.2), given b(e) > 0 and

t0 e R+, there exists a '50 = 5053) > 0 such that
v(t,to,vo) <ble)s, tzt) (3.3)

provided v, < §., where v(t,to,vo) is any solution of (3.2). In view

0
of the hypothesis on a{u), there isa §, = 62(6) > 0 such that

a(sz) < %Q_ ) (3.4)

Also, since the trivial solution of equation (3.1) is equistable, given
fQ_ >0 and to € R+, there exists a 8% = 6*(t0,s) such that
2

’ §
U(t,tO,UO) < "‘"O‘ . t z 't

5 (3.5)

03

whenever u, < §*, u(t,to,uo) being any solution of (3.1).
Choose wu, = Vv, (tys xo). Since V,(t,x) is continuous and Vl(t,o) z 0,

there exists a 51 > 0 such that
|Ix,I1 < ¢, and V,(t,.x,) < 6* (3.6)

hold simultanecusly. We set & = min (8,,8,). Then, we claim that
lxgl] < 6 implies [x(tstyox )] < e for tzt,. If this were false,
there would exist a solution x(t,t,.x;} of (2.1) with |1x, Il < 6 and

tl,t2 > to such that



-

x(tl,to,xo) € 85(62),
x(t,,ty.x,) € 3S(e) (3.7)
and x(t, tysx,) € S(e) M S{8,), te [t,.t,].

We Tet §, =n SO that the existence of a Vz . satisfying hypothesis (11)
is assured. Hence, setting m(t) = Vl(t,x(t,to,xg)] + Vz,n(t,x(t,to,xo)),

te [tl,tZ], we obtain the differential inequality
+ 5
p'm(t) < g, (t.m(t)), telt;,t, ]

which yields
V, (t,sx{tytgaxg)) + Vz’n(tz,x(tz,tc,xo))
s rz{tz,tl,vl(tlex(tlstg,xo)} + stn[tl,x(tl,to,xo))},

“2<t’t1*Vo) being the maximal solution of (3.2} such that rz(tl,tl,vo) = V.

We also have

V[t sx(tyatyaxg)) s r (t stV (tgax )]s

where rlft, to,uo} is the maximal solution of {3.1). By (3.5) and (3.6),
we get
Sp
V[ sx(tstgexg)) <5 (3.8)
Also, by (3.4), (3.7) and the assumptions on V, e have

8
Vz,n{tz’x(tl’to“xo)) s als,) < Tg" (3.9)




The inequalities (3.8), (3.9) together with (3.3), (3.7), V.20 and
V, . 2 b(||x]|) lead to the contradiction b(e) < b{e). Hence, the

proof of the theorem is complete.

Remarks: Known results [1,2] on equistability require that the assump-

tions hold everywhere in 5{p)}. Here, in Theorem 2, we have relaxed this
requirement considerably. One can make comments similar to those in

section 2 for this situation also. We shall not repeat them.
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