ON Φ -RECURRENT N(k)-CONTACT METRIC MANIFOLDS

Dedicated to PROFESSOR DAVID E. BLAIR

UDAY CHAND DE AND ABOUL KALAM GAZI

ABSTRACT. In this paper we prove that a ϕ -recurrent N(k)-contact metric manifold is an η -Einstein manifold with constant coefficients. Next, we prove that a 3-dimensional ϕ -recurrent N(k)-contact metric manifold is of constant curvature. The existence of a ϕ -recurrent N(k)-contact metric manifold is also proved.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakend by many authors in several ways to a different extent. As a weaker version of local symmetry, T.Takahashi [1] introduced the notion of local ϕ -symmetry on a Sasakian manifold. Generalizing the notion of local ϕ -symmetry, one of the authors, De, [2] introduced the notion of ϕ -recurrent Sasakian manifold. In the context of contact geometry the notion of ϕ -symmetry is introduced and studied by Boeckx, Bueken and Vanhecke [3] with several examples.

In the present paper we study ϕ -recurrent N(k)-contact metric manifold which generalizes the result of De, Shaikh and Biswas [2]. The paper is organized as follows:

Section 2 contains necessary details about contact metric manifolds, some preliminaries and a brief account of (k, μ) manifolds and the basic results. In Section 3, it is proved that a ϕ -recurrent N(k)-contact metric manifold is a special type of η -Einstein manifold. Also it is shown that the characteristic vector field of the N(k)-contact metric manifold and the vector field associated to the 1-form of recurrence are co-directional. In Section 4, it is also proved that a 3-dimensional ϕ -recurrent N(k)-contact metric manifold is of constant curvature. The last section provides the existence of the ϕ -recurrent N(k)-contact metric manifold by an example which is neither symmetric nor locally ϕ -symmetric.

Mathematics Subject Classification. Primary 53C15; Secondary 53C40.

Key words and phrases. N(k)-contact metric manifolds, η -Einstein manifold, ϕ -recurrent N(k)-contact metric manifolds.

The authors are thankful to the referee for valuable suggestions towards the improvement of this paper.

U. C. DE AND A. K. GAZI

2. Contact Metric Manifolds

A (2n+1)-dimensional manifold M^{2n+1} is said to admit an almost contact structure if it admits a tensor field ϕ of type (1,1), a vector field ξ and a 1-form η satisfying

- (2.1)
 - (a) $\phi^2 = -I + \eta \otimes \xi$, (b) $\eta(\xi) = 1$, (c) $\phi \xi = 0$, (d) $\eta \circ \phi = 0$.

An almost contact metric structure is said to be normal if the induced almost complex structure J on the product manifold $M^{2n+1} \times \mathbf{R}$ defined by

$$J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$$

is integrable, where X is tangent to M, t is the coordinate of **R** and f is a smooth function on $M \times \mathbf{R}$. Let g be a compatible Riemannian metric with almost contact structure (ϕ, ξ, η) , that is,

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$

Then M becomes an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g) . From (2.1) it can be easily seen that

(2.3)
$$(a)g(X,\phi Y) = -g(\phi X,Y), (b)g(X,\xi) = \eta(X),$$

for all vector fields X, Y. An almost contact metric structure becomes a contact metric structure if

(2.4)
$$g(X,\phi Y) = d\eta(X,Y),$$

for all vector fields X, Y. The 1-form η is then a contact form and ξ is its characteristic vector field. We define a (1,1) tensor field h by $h = \frac{1}{2}\pounds_{\xi}\phi$, where \pounds denotes the Lie-differentiation. Then h is symmetric and satisfies $h\phi = -\phi h$. We have $Tr.h = Tr.\phi h = 0$ and $h\xi = 0$. Also,

(2.5)
$$\nabla_X \xi = -\phi X - \phi h X,$$

holds in a contact metric manifold. A normal contact metric manifold is a Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

(2.6)
$$(\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X, \quad X, Y \in TM,$$

where ∇ is the Levi-Civita connection of the Riemannian metric g. A contact metric manifold $M^{2n+1}(\phi,\xi,\eta,g)$ for which ξ is a Killing vector is said to be a K-contact manifold. A Sasakian manifold is K-contact but not conversely. However a 3-dimensional K-contact manifold is Sasakian [4]. It is well known that the tangent sphere bundle of a flat Riemannian manifold admits a contact metric structure satisfying $R(X, Y)\xi = 0$ ([5]). On the other hand, on a Sasakian manifold the following holds:

(2.7)
$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y.$$

As a generalization of both $R(X, Y)\xi = 0$ and the Sasakian case; D. Blair, T. Koufogiorgos and B. J. Papantoniou [6] considered the (k, μ) -nullity condition on a contact metric manifold and gave several reasons for studying it. The (k, μ) -nullity distribution $N(k, \mu)$ ([6], [7]) of a contact metric manifold M is defined by

$$N(k,\mu): p \longrightarrow N_p(k,\mu)$$

= { $W \in T_pM: R(X,Y)W = (kI + \mu h)(g(Y,W)X - g(X,W)Y)$ },

for all $X, Y \in TM$, where $(k, \mu) \in \mathbb{R}^2$. A contact metric manifold M^{2n+1} with $\xi \in N(k, \mu)$ is called a (k, μ) -manifold. In particular on a (k, μ) -manifold, we have

(2.8)
$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY].$$

On a (k,μ) -manifold $k \leq 1$. If k = 1, the structure is Sasakian (h = 0 and μ is indeterminant) and if k < 1, the (k,μ) -nullity condition determines the curvature of M^{2n+1} completely [6]. Infact, for a (k,μ) -manifold, the condition of being a Sasakian manifold, a K-contact manifold, k = 1 and h = 0 are all equivalent.

In a (k, μ) -manifold the following relations hold ([6], [8]):

(2.9)
$$h^2 = (k-1)\phi^2, \quad k \le 1,$$

(2.10)
$$(\nabla_X \phi)(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX),$$

(2.11)
$$R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X] + \mu[g(hX, Y)\xi - \eta(Y)hX],$$

$$(2.12) S(X,\xi) = 2nk\eta(X),$$

(2.13)
$$S(X,Y) = [2(n-1) - n\mu]g(X,Y) + [2(n-1) + \mu]g(hX,Y) + [2(1-n) + n(2k + \mu)]\eta(X)\eta(Y), \quad n \ge 1,$$

(2.14)
$$r = 2n(2n - 2 + k - n\mu),$$

(2.15)
$$S(\phi X, \phi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 2(2n - 2 + \mu)g(hX, Y),$$

where S is the Ricci tensor of type (0,2), Q is the Ricci-operator, that is, g(QX,Y) = S(X,Y) and r is the scalar curvature of the manifold. From (2.5), it follows that

(2.16)
$$(\nabla_X \eta)(Y) = g(X + hX, \phi Y).$$

Also in a (k, μ) -manifold

(2.17)
$$\eta(R(X,Y)Z) = k[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] + \mu[g(hY,Z)\eta(X) - g(hX,Z)\eta(Y)]$$

holds.

The k-nullity distribution N(k) of a Riemannian manifold M [9] is defined by

$$N(k): p \longrightarrow N_p(k) = \{ Z \in T_p M : R(X, Y)Z = g(Y, Z)X - g(X, Z)Y \},\$$

k being a constant. If the characteristic vector field $\xi \in N(k)$, then we call a contact metric manifold an N(k)-contact metric manifold [10]. If k = 1, then N(k)-contact metric manifold is Sasakian and if k = 0, then N(k)contact metric manifold is locally isometric to the product $E^{n+1} \times S^n(4)$ for n > 1 and flat for n = 1. If k < 1, the scalar curvature is r = 2n(2n-2+k). If $\mu = 0$, then a (k, μ) -contact metric manifold reduces to a N(k)-contact metric manifold.

In [11], N(k)-contact metric manifold were studied in some detail. For more details we reffer to [12] [13].

In N(k)-contact metric manifold the following relations hold:

(2.18)
$$h^2 = (k-1)\phi^2, \quad k \le 1,$$

(2.19)
$$(\nabla_X \phi)(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX),$$

(2.20)
$$R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X],$$

(2.21)
$$S(X,\xi) = 2nk\eta(X),$$

(2.22)
$$S(X,Y) = 2(n-1)g(X,Y) + 2(n-1)g(hX,Y)$$

(2.23)
$$+ [2(1-n) + 2nk]\eta(X)\eta(Y), \quad n \ge 1,$$

(2.24)
$$r = 2n(2n - 2 + k),$$

(2.25)
$$S(\phi X, \phi Y) = S(X, Y) - 2nk\eta(X)\eta(Y) - 4(n-1)g(hX, Y),$$

(2.26)
$$(\nabla_X \eta)(Y) = g(X + hX, \phi Y),$$

(2.27)
$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y],$$

(2.28)
$$\eta(R(X,Y)Z) = k[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)].$$

3. ϕ -recurrent N(k)-contact metric manifolds

Definition 1. ([1]) A Sasakian manifold is said to be locally ϕ -symmetric if the relation

$$\phi^2((\nabla_W R)(X,Y)Z) = 0$$

holds for all vector fields X, Y, Z, W orthogonal to ξ .

Definition 2. ([2]) A N(k)-contact metric manifold is said to be ϕ -recurrent if and only if there exists a non-zero 1-form A such that

(3.1)
$$\phi^2((\nabla_W R)(X,Y)Z) = A(W)R(X,Y)Z,$$

for all vector fields X, Y, Z, W. Here X, Y, Z, W are arbitrary vector fields which are not necessarily orthogonal to ξ .

If the 1-form A vanishes identically, then the manifold is said to be a locally ϕ -symmetric manifold.

Definition 3. ([6]) A contact manifold is said to be η -Einstein if the Ricci tensor S of type (0, 2) satisfies the condition

(3.2)
$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where a and b are smooth functions on M^{2n+1} .

Now we prove the main theorem of the paper.

Theorem 3.1. A ϕ -recurrent N(k)-contact metric manifold is an η -Einstein manifold with constant coefficients.

Proof. By virtue of (2.1)(a) and (3.1) we have

$$(3.3) \qquad -(\nabla_W R)(X,Y)Z + \eta((\nabla_W R)(X,Y)Z)\xi = A(W)R(X,Y)Z,$$

from which it follows that

(3.4)
$$-g((\nabla_W R)(X,Y)Z,U) + \eta((\nabla_W R)(X,Y)Z)\eta(U)$$
$$= A(W)g(R(X,Y)Z,U).$$

Let $\{e_i\}$, $i = 1, 2, 3, \dots, 2n + 1$, be an orthonormal basis of the tangent space at any point of the manifold. Putting $X = U = \{e_i\}$ in (3.4) and taking summation over $i, 1 \le i \le 2n + 1$, we get

(3.5)
$$-(\nabla_W S)(Y,Z) + \sum_{i=1}^{2n+1} \eta((\nabla_W R)(e_i,Y)Z)\eta(e_i) = A(W)S(Y,Z).$$

The second term of (3.5) by putting $Z = \xi$ takes the form $g((\nabla_W R)(e_i, Y)\xi, \xi)g(e_i, \xi)$, which is denoted by E. In this case E vanishes.

Namely we have

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(\nabla_W e_i, Y)\xi, \xi) - g(R(e_i, \nabla_W Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi))$$

at $p \in M$. Using (2.3)(b) and (2.27) we obtain

$$g(R(e_i, \nabla_W Y)\xi, \xi) = g(k[\eta(\nabla_W Y)e_i - \eta(e_i)\nabla_W Y], \xi)$$

= $k[\eta(\nabla_W Y)\eta(e_i) - \eta(e_i)\eta(\nabla_W Y)] = 0.$

Thus we obtain

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi).$$

In virtue of $g(R(e_i, Y)\xi, \xi) = g(R(\xi, \xi)e_i, Y) = 0$, we have

 $g(\nabla_W R(e_i,Y)\xi,\xi) + g(R(e_i,Y)\xi,\nabla_W\xi) = 0, \quad \text{since } (\nabla_W g) = 0,$ which implies

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = -g(R(e_i, Y)\xi, \nabla_W \xi) - g(R(e_i, Y)\nabla_W \xi, \xi) = 0.$$

Using (2.5) and applying skew-symmetry of R we get

$$g((\nabla_W R)(e_i, Y)\xi, \xi)$$

= $g(R(e_i, Y)\xi, \phi W + \phi hW) + g(R(e_i, Y)(\phi W + \phi hW), \xi)$
= $g(R(\phi W + \phi hW, \xi)Y, e_i) + g(R(\xi, \phi W + \phi hW)Y, e_i).$

Hence we obtain

$$E = \sum_{i=1}^{2n+1} \left[g(R(\phi W + \phi hW, \xi)Y, e_i)g(\xi, e_i) + g(R(\xi, \phi W + \phi hW)Y, e_i)g(\xi, e_i) \right]$$

= $g(R(\phi W + \phi hW, \xi)Y, \xi) + g(R(\xi, \phi W + \phi hW)Y, \xi) = 0.$

Replacing Z by ξ in (3.5) and using (2.21) we have

(3.6)
$$-(\nabla_W S)(Y,\xi) = 2nkA(W)\eta(Y).$$

Now we have

$$(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi).$$

Using (2.21) and (2.5) in the above relation, it follows that

(3.7)
$$(\nabla_W S)(Y,\xi) = 2nk(\nabla_W \eta)(Y) + S(Y,\phi W + \phi hW).$$

In virtue of (3.7), (2.26) and (2.3)(a) we get

(3.8)
$$(\nabla_W S)(Y,\xi) = -2nkg(\phi W + \phi hW,Y) + S(Y,\phi W + \phi hW).$$

106

(3.9) $2nkg(\phi W + \phi hW, Y) - S(Y, \phi W + \phi hW) = 2nkA(W)\eta(Y).$

Replacing Y by ϕY in (3.9) and using (2.1)(d), (2.2), (2.25) we get

$$2nkg(\phi W + \phi hW, \phi Y) - S(\phi Y, \phi W + \phi hW) = 0$$

or,

$$2nk[g(W + hW, Y) - \eta(W + hW)\eta(Y)] - S(Y, W + hW) +2nk\eta(W + hW)\eta(Y) + 4(n-1)g(hY, W + hW) = 0$$

or,

$$2nkg(Y,W) + 2nkg(Y,hW) - S(Y,W) - S(Y,hW) + 4(n-1)g(Y,hW) + 4(n-1)g(Y,h^2W) = 0$$

since, g(X, hY) = g(hX, Y). Now by (2.23), (2.18) and (2.1)(a) this implies $S(Y, W) + S(Y, hW) = 2nkg(Y, W) + [2nk + 4(n-1)]g(Y, hW) + 4(n-1)(k-1)g(Y, -W + \eta(W)\xi)$

or,

$$S(Y,W) + 2(n-1)g(Y,hW) - 2(n-1)(k-1)g(Y,W) +2(n-1)(k-1)\eta(Y)\eta(W) = [2nk - 4(n-1)(k-1)]g(Y,W) +[2nk + 4(n-1)]g(Y,hW) + 4(n-1)(k-1)\eta(Y)\eta(W),$$

which implies,

(3.10)
$$S(Y,W) = 2(n+k-1)g(Y,W) + 2(nk+n-1)g(Y,hW) + 2(n-1)(k-1)\eta(Y)\eta(W).$$

Replacing W by hW and using (2.23), (2.18) and (2.1)(a) we get from (3.10)

$$-2kg(Y, hW) = -2nk(k-1)g(Y, W) + 2nk(k-1)\eta(Y)\eta(W)$$

Since we may assume that $k \neq 0$, this implies

(3.11)
$$g(Y,hW) = n(k-1)g(Y,W) - n(k-1)\eta(Y)\eta(W).$$

From (3.10) and (3.11) we get

$$\begin{array}{lll} S(Y,W) &=& 2[(n+k-1)+n(k-1)(nk+n-1)]g(Y,W) \\ &+& 2[(n-1)(k-1)-n(k-1)(nk+n-1)]\eta(Y)\eta(W) \end{array}$$

or,

(3.12)
$$S(Y,W) = ag(Y,W) + b\eta(Y)\eta(W),$$

where a = 2[(n+k-1) + n(k-1)(nk+n-1)], b = 2[(n-1)(k-1) - n(k-1)(nk+n-1)] are constant. So, the manifold is an η -Einstein manifold with constant coefficients. Hence the theorem is proved.

Now, from (3.3) we have

$$\begin{array}{ll} (3.13) & (\nabla_W R)(X,Y)Z = \eta((\nabla_W R)(X,Y)Z)\xi - A(W)R(X,Y)Z.\\ \text{From (3.13) and the second Bianchi identity we get}\\ (3.14) & A(W)\eta(R(X,Y)Z) + A(X)\eta(R(Y,W)Z) + A(Y)\eta(R(W,X)Z) = 0.\\ \text{Using (2.28), we get from (3.14)}\\ (3.15) & k[A(W)(g(Y,Z)\eta(X) - g(X,Z)\eta(Y)) + A(X)(g(W,Z)\eta(Y)) \\ & -g(Y,Z)\eta(W)) + A(Y)(g(X,Z)\eta(W) - g(W,Z)\eta(X))] = 0. \end{array}$$

Putting $Y = Z = \{e_i\}$ in (3.15) and taking summation over $i, 1 \le i \le 2n+1$, we get

$$k(2n-1)[A(W)\eta(X) - A(X)\eta(W)] = 0,$$

which implies that

(3.16)
$$A(W)\eta(X) = A(X)\eta(W).$$

Replacing X by ξ in (3.16), it follows that

(3.17)
$$A(W) = \eta(\rho)\eta(W),$$

for any vector field W, where $A(\xi) = g(\xi, \rho) = \eta(\rho)$, ρ being the vector field associated to the 1-form A, that is, $g(X, \rho) = A(X)$. Hence we can state the following theorem:

Theorem 3.2. In a ϕ -recurrent N(k)-contact metric manifold (M^{2n+1}, g) , n > 1, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by (3.17).

4. 3-dimensional ϕ -recurrent N(k)-contact metric manifolds

In a 3-dimensional Riemannian manifold we have

(4.1)
$$R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y + \frac{r}{2}[g(X,Z)Y - g(Y,Z)X],$$

where Q is the Ricci-operator, that is, g(QX, Y) = S(X, Y) and r is the scalar curvature of the manifold. Now putting $Z = \xi$ in (4.1) and using (2.3)(b) and (2.21), we get

(4.2)
$$R(X,Y)\xi = \eta(Y)QX - \eta(X)QY + 2k[\eta(Y)X - \eta(X)Y] + \frac{r}{2}[\eta(X)Y - \eta(Y)X].$$

Using (2.27) in (4.2), we have

(4.3)
$$(k - \frac{r}{2})[\eta(Y)X - \eta(X)Y] = \eta(X)QY - \eta(Y)QX.$$

108

Puting $Y = \xi$ in (4.3) and using (2.21), we get

(4.4)
$$QX = (\frac{r}{2} - k)X + (3k - \frac{r}{2})\eta(X)\xi$$

Therefore, it follows from (4.4) that

(4.5)
$$S(X,Y) = (\frac{r}{2} - k)g(X,Y) + (3k - \frac{r}{2})\eta(X)\eta(Y).$$

Thus from (4.1), (4.4) and (4.5), we get

(4.6)
$$R(X,Y)Z = (\frac{r}{2} - 2k)[g(Y,Z)X - g(X,Z)Y] + (3k - \frac{r}{2})[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y].$$

Taking the covariant differentiation to the both sides of the equation (4.6), we get

$$(4.7) \quad (\nabla_W R)(X,Y)Z = \frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y - g(Y,Z)\eta(X)\xi + g(X,Z)\eta(Y)\xi - \eta(Y)\eta(Z)X + \eta(X)\eta(Z)Y] + (3k - \frac{r}{2})[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\nabla_W \xi + (3k - \frac{r}{2})[\eta(Y)X - \eta(X)Y](\nabla_W \eta)(Z) + (3k - \frac{r}{2})[g(Y,Z)\xi - \eta(Z)Y](\nabla_W \eta)(X) - (3k - \frac{r}{2})[g(X,Z)\xi - \eta(Z)X](\nabla_W \eta)(Y).$$

Noting that we may assume that all vector fields X, Y, Z, W are orthogonal to ξ and using (2.1)(b), we get

(4.8)
$$(\nabla_W R)(X,Y)Z = \frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y] + (3k - \frac{r}{2})[g(Y,Z)(\nabla_W \eta)(X) - g(X,Z)(\nabla_W \eta)(Y)]\xi$$

Applying ϕ^2 to the both sides of (4.8) and using (2.1)(*a*) and (2.1)(*c*), we get

(4.9)
$$\phi^2(\nabla_W R)(X,Y)Z = \frac{dr(W)}{2}[g(X,Z)Y - g(Y,Z)X].$$

By (3.1) the equation (4.9) reduces to

(4.10)
$$A(W)R(X,Y)Z = \frac{dr(W)}{2}[g(X,Z)Y - g(Y,Z)X].$$

Putting $W = \{e_i\}$, where $\{e_i\}$, i = 1, 2, 3, is an orthonormal basis of the tangent space at any point of the manifold and taking summation over i, $1 \le i \le 3$, we obtain

(4.11)
$$R(X,Y)Z = \lambda[g(X,Z)Y - g(Y,Z)X],$$

where $\lambda = \frac{dr(e_i)}{2A(e_i)}$ is a scalar, since A is a non-zero 1-form. Then by Schur's theorem λ will be a constant on the manifold. Therefore, M^3 is of constant curvature λ . Thus we get the following theorem:

Theorem 4.1. A 3-dimensional ϕ -recurrent N(k)-contact metric manifold is of constant curvature.

5. Existence of ϕ -recurrent N(k)-contact metric manifolds

In this section we give an example of ϕ -recurrent N(k)-contact metric manifold which is neither symmetric nor locally ϕ -symmetric. We take the 3-dimensional manifold $M = \{(x, y, z) \in \mathbf{R}^3 : x \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbf{R}^3 .Let $\{E_1, E_2, E_3\}$ be linearly independent global frame on M given by

$$E_1 = \frac{2}{x}\frac{\partial}{\partial y}, \quad E_2 = 2\frac{\partial}{\partial x} - \frac{4z}{x}\frac{\partial}{\partial y} + xy\frac{\partial}{\partial z}, \quad E_3 = \frac{\partial}{\partial z}.$$

Let q be the Riemannian metric defined by

$$g(E_1, E_3) = g(E_2, E_3) = g(E_1, E_2) = 0,$$

$$g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1.$$

Let η be the 1-form defined by $\eta(U) = g(U, E_3)$ for any $U \in \chi(M)$.Let ϕ be the (1, 1) tensor field defined by $\phi E_1 = E_2$, $\phi E_2 = -E_1$, $\phi E_3 = 0$. Then using the linearity of ϕ and g we have $\eta(E_3) = 1$, $\phi^2 U = -U + \eta(U)E_3$ and $g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W)$ for any $U, W \in \chi(M)$. Moreover $hE_1 = -E_1$, $hE_2 = E_2$ and $hE_3 = 0$. Thus for $E_3 = \xi$, (ϕ, ξ, η, g) defines a contact metric structure on M. Hence we have $[E_1, E_2] = 2E_3 + \frac{2}{x}E_1$, $[E_1, E_3] = 0$, $[E_2, E_3] = 2E_1$.

The Riemannian connection ∇ of the metric g is given by

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) -g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).$$

Taking $E_3 = \xi$ and using the above formula for Riemannian metric g, it can be easily calculated that

$$\nabla_{E_1} E_3 = 0, \quad \nabla_{E_2} E_3 = 2E_1, \quad \nabla_{E_3} E_3 = 0, \quad \nabla_{E_3} E_1 = 0, \quad \nabla_{E_1} E_2 = \frac{2}{x} E_1,$$
$$\nabla_{E_2} E_1 = -2E_3, \quad \nabla_{E_2} E_2 = 0, \quad \nabla_{E_3} E_2 = 0, \quad \nabla_{E_1} E_1 = -\frac{2}{x} E_2.$$

110

From the above it can be easily seen that (ϕ, ξ, η, g) is a N(k)-contact metric manifold with $k = -\frac{4}{x} \neq 0$.

Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:

$$R(E_2, E_3)E_2 = -\frac{4}{x}E_1, \quad R(E_2, E_3)E_1 = \frac{4}{x}E_2,$$

and the components which can be obtained from these by symmetry property. We shall now show that in such a N(k)-contact metric manifold the curvature tensor R is ϕ -recurrent. Since $\{E_1, E_2, E_3\}$ form a basis of M^3 , any vector field $X \in \chi(M)$ can be taken as

$$X = a_1 E_1 + a_2 E_2 + a_3 E_3$$

where $a_i \in \mathbf{R}^+$ (= the set of all positive real numbers), i = 1, 2, 3. Thus the covariant derivatives of the curvature tensor are given by

$$(\nabla_X R)(E_2, E_3)E_1 = -\frac{8a_2}{x^2}E_2,$$

 $(\nabla_X R)(E_2, E_3)E_2 = \frac{8a_2}{x^2}E_1.$

Let us now consider the non-vanishing 1-form $A(X) = \frac{2a_2}{x}$, at any point $p \in M$. In our M^3 , (2.1) reduces with the 1-form to the following equations:

(5.1)
$$\phi^2((\nabla_X R)(E_2, E_3)E_1) = A(X)R(E_2, E_3)E_1,$$

(5.2)
$$\phi^2((\nabla_X R)(E_2, E_3)E_2) = A(X)R(E_2, E_3)E_2.$$

This implies that the manifold under consideration is a ϕ -recurrent N(k)contact metric manifold, which is neither symmetric nor locally ϕ -symmetric. So, we can state the following:

Theorem 5.1. There exists a ϕ -recurrent N(k)-contact metric manifold, which is neither symmetric nor locally ϕ -symmetric.

References

- [1] T. Takahashi, Sasakian ϕ -symmetric spaces, Tohoku Math. J., 29(1977), 91-113.
- [2] U. C. De, A. A. shaikh, S. Biswas, On φ-recurrent Sasakian manifolds, Novi Sad J.Math., 33(2003), 13-48.
- [3] E. Boeckx, P. Buecken and L.Vanhecke, φ-symmetric contact metric spaces, Glasgow Math. J. 41(1999), 409-416.
- [4] Jae-Bok Jun and Un Kyu Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34(1994), 293-301.
- [5] D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29(1977), 319-324.
- [6] D. E. Blair, Th. Koufogiorgors, B. J. papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91(1995), 189-214.

- [7] B. J. Papantoniou, Contact Riemannian manifolds satisfying $R(\xi, X).R = 0$ and $\xi \in (k, \mu)$ -nullity distribution, Yokohama Math. J., 40(1993), 149-161.
- [8] E. Boeckx, A full classification of contact metric (k, μ) -spees, Illinois J. Math. 44(2000), 212-219.
- [9] S. Tano, Ricci curvatures of contact Riemannian manifolds, The Tohoku Mathematical Journal 40(1988), 441-448.
- [10] D. E. Blair, J. S. Kim and M. M. Tripathi, On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42(5)2005, 883-892.
- [11] Ch. Baikoussis, D. E. Blair and Th. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying $R(X,Y)\xi = k(\eta(Y)X \eta(X)Y)$, Mathematics Technical Report, University of Ioanniana, 1992.
- [12] D. E. Blair, Th. koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, Kodai Mathetical Journal 13(1990), 391-401.
- [13] D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, *II*, Bulletin of the Institute of Mathematics Academia Sinica 20(1992), 379-383.

Uday Chand De Department of Mathematics University of Kalyani Kalyani, 741235, West Bengal, India *e-mail address*: uc_de@yahoo.com

Aboul Kalam Gazi Department of Mathematics University of Kalyani Kalyani, 741235, West Bengal, India

> (Received November 26, 2006) (Revised April 13, 2007)