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Abstract. In this paper we prove that a φ-recurrent N(k)-contact met-
ric manifold is an η-Einstein manifold with constant coefficients. Next,
we prove that a 3-dimensional φ-recurrent N(k)-contact metric manifold
is of constant curvature. The existence of a φ-recurrent N(k)-contact
metric manifold is also proved.

1. Introduction

The notion of local symmetry of a Riemannian manifold has been weakend
by many authors in several ways to a different extent. As a weaker version of
local symmetry, T.Takahashi [1] introduced the notion of local φ-symmetry
on a Sasakian manifold. Generalizing the notion of local φ-symmetry, one of
the authors, De, [2] introduced the notion of φ-recurrent Sasakian manifold.
In the context of contact geometry the notion of φ-symmetry is introduced
and studied by Boeckx, Bueken and Vanhecke [3] with several examples.

In the present paper we study φ-recurrent N(k)-contact metric manifold
which generalizes the result of De, Shaikh and Biswas [2]. The paper is
organized as follows:
Section 2 contains necessary details about contact metric manifolds, some
preliminaries and a brief account of (k, µ) manifolds and the basic results.
In Section 3, it is proved that a φ-recurrent N(k)-contact metric manifold
is a special type of η-Einstein manifold. Also it is shown that the charac-
teristic vector field of the N(k)-contact metric manifold and the vector field
associated to the 1-form of recurrence are co-directional. In Section 4, it
is also proved that a 3-dimensional φ-recurrent N(k)-contact metric mani-
fold is of constant curvature. The last section provides the existence of the
φ-recurrent N(k)-contact metric manifold by an example which is neither
symmetric nor locally φ-symmetric.
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2. Contact Metric Manifolds

A (2n+1)-dimensional manifold M 2n+1 is said to admit an almost contact
structure if it admits a tensor field φ of type (1, 1), a vector field ξ and a
1-form η satisfying
(2.1)

(a) φ2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) φξ = 0, (d) η ◦ φ = 0.

An almost contact metric structure is said to be normal if the induced
almost complex structure J on the product manifold M 2n+1 ×R defined by

J(X, f
d

dt
) = (φX − fξ, η(X)

d

dt
)

is integrable, where X is tangent to M , t is the coordinate of R and f is a
smooth function on M ×R. Let g be a compatible Riemannian metric with
almost contact structure (φ, ξ, η), that is,

(2.2) g(φX, φY ) = g(X,Y ) − η(X)η(Y ).

Then M becomes an almost contact metric manifold equipped with an al-
most contact metric structure (φ, ξ, η, g). From (2.1) it can be easily seen
that

(2.3) (a)g(X,φY ) = −g(φX, Y ), (b)g(X, ξ) = η(X),

for all vector fields X, Y . An almost contact metric structure becomes a
contact metric structure if

(2.4) g(X,φY ) = dη(X,Y ),

for all vector fields X, Y . The 1-form η is then a contact form and ξ is its
characterstic vector field. We define a (1, 1) tensor field h by h = 1

2£ξφ,
where £ denotes the Lie-differentiation. Then h is symmetric and satisfies
hφ = −φh. We have Tr.h = Tr.φh = 0 and hξ = 0. Also,

(2.5) ∇Xξ = −φX − φhX,

holds in a contact metric manifold. A normal contact metric manifold is a
Sasakian manifold. An almost contact metric manifold is Sasakian if and
only if

(2.6) (∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X, X, Y ∈ TM,

where ∇ is the Levi-Civita connection of the Riemannian metric g. A contact
metric manifold M 2n+1(φ, ξ, η, g) for which ξ is a Killing vector is said to be
a K-contact manifold. A Sasakian manifold is K-contact but not conversely.
However a 3-dimensional K-contact manifold is Sasakian [4]. It is well known
that the tangent sphere bundle of a flat Riemannian manifold admits a
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contact metric structure satisfying R(X,Y )ξ = 0 ([5]). On the other hand,
on a Sasakian manifold the following holds:

(2.7) R(X,Y )ξ = η(Y )X − η(X)Y.

As a generalization of both R(X,Y )ξ = 0 and the Sasakian case; D. Blair,
T. Koufogiorgos and B. J. Papantoniou [6] considered the (k, µ)-nullity con-
dition on a contact metric manifold and gave several reasons for studying it.
The (k, µ)-nullity distribution N(k, µ) ([6], [7]) of a contact metric manifold
M is defined by

N(k, µ) : p −→ Np(k, µ)
= {W ∈ TpM : R(X,Y )W = (kI + µh)(g(Y,W )X − g(X,W )Y )},

for all X,Y ∈ TM , where (k, µ) ∈ R
2. A contact metric manifold M 2n+1

with ξ ∈ N(k, µ) is called a (k, µ)-manifold. In particular on a (k, µ)-
manifold, we have

(2.8) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ].

On a (k, µ)-manifold k ≤ 1. If k = 1, the structure is Sasakian (h = 0
and µ is indeterminant) and if k < 1, the (k, µ)-nullity condition determines
the curvature of M 2n+1 completely [6]. Infact, for a (k, µ)-manifold, the
condition of being a Sasakian manifold, a K-contact manifold, k = 1 and
h = 0 are all equivalent.

In a (k, µ)-manifold the following relations hold ([6], [8]):

(2.9) h2 = (k − 1)φ2, k ≤ 1,

(2.10) (∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX),

(2.11) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX],

(2.12) S(X, ξ) = 2nkη(X),

S(X,Y ) =[2(n − 1) − nµ]g(X,Y ) + [2(n − 1) + µ]g(hX, Y )(2.13)

+ [2(1 − n) + n(2k + µ)]η(X)η(Y ), n ≥ 1,

(2.14) r = 2n(2n − 2 + k − nµ),

(2.15) S(φX, φY ) = S(X,Y ) − 2nkη(X)η(Y ) − 2(2n − 2 + µ)g(hX, Y ),

where S is the Ricci tensor of type (0, 2), Q is the Ricci-operator, that is,
g(QX,Y ) = S(X,Y ) and r is the scalar curvature of the manifold. From
(2.5), it follows that

(2.16) (∇Xη)(Y ) = g(X + hX, φY ).
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Also in a (k, µ)-manifold

η(R(X,Y )Z) = k[g(Y,Z)η(X) − g(X,Z)η(Y )](2.17)

+µ[g(hY,Z)η(X) − g(hX,Z)η(Y )]

holds.
The k-nullity distribution N(k) of a Riemannian manifold M [9] is defined

by

N(k) : p −→ Np(k) = {Z ∈ TpM : R(X,Y )Z = g(Y,Z)X − g(X,Z)Y },

k being a constant. If the characterstic vector field ξ ∈ N(k), then we call
a contact metric manifold an N(k)-contact metric manifold [10]. If k = 1,
then N(k)-contact metric manifold is Sasakian and if k = 0, then N(k)-
contact metric manifold is locally isometric to the product En+1×Sn(4) for
n > 1 and flat for n = 1. If k < 1, the scalar curvature is r = 2n(2n−2+k).
If µ = 0, then a (k, µ)-contact metric manifold reduces to a N(k)-contact
metric manifold.

In [11], N(k)-contact metric manifold were studied in some detail. For
more details we reffer to [12] [13].

In N(k)-contact metric manifold the following relations hold:

(2.18) h2 = (k − 1)φ2, k ≤ 1,

(2.19) (∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX),

(2.20) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X],

(2.21) S(X, ξ) = 2nkη(X),

S(X,Y ) = 2(n − 1)g(X,Y ) + 2(n − 1)g(hX, Y )(2.22)

+ [2(1 − n) + 2nk]η(X)η(Y ), n ≥ 1,(2.23)

(2.24) r = 2n(2n − 2 + k),

(2.25) S(φX, φY ) = S(X,Y ) − 2nkη(X)η(Y ) − 4(n − 1)g(hX, Y ),

(2.26) (∇Xη)(Y ) = g(X + hX, φY ),

(2.27) R(X,Y )ξ = k[η(Y )X − η(X)Y ],

(2.28) η(R(X,Y )Z) = k[g(Y,Z)η(X) − g(X,Z)η(Y )].
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3. φ-recurrent N(k)-contact metric manifolds

Definition 1. ([1]) A Sasakian manifold is said to be locally φ-symmetric
if the relation

φ2((∇W R)(X,Y )Z) = 0

holds for all vector fields X, Y , Z, W orthogonal to ξ.

Definition 2. ([2]) A N(k)-contact metric manifold is said to be φ-recurrent
if and only if there exists a non-zero 1-form A such that

(3.1) φ2((∇W R)(X,Y )Z) = A(W )R(X,Y )Z,

for all vector fields X, Y , Z, W . Here X, Y , Z, W are arbitary vector fields
which are not necessarily orthogonal to ξ.

If the 1-form A vanishes identically, then the manifold is said to be a
locally φ-symmetric manifold.

Definition 3. ([6]) A contact manifold is said to be η-Einstein if the Ricci
tensor S of type (0, 2) satisfies the condition

(3.2) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth funtions on M 2n+1.

Now we prove the main theorem of the paper.

Theorem 3.1. A φ-recurrent N(k)-contact metric manifold is an η-Einstein
manifold with constant coefficients.

Proof. By virtue of (2.1)(a) and (3.1) we have

(3.3) −(∇WR)(X,Y )Z + η((∇W R)(X,Y )Z)ξ = A(W )R(X,Y )Z,

from which it follows that

−g((∇W R)(X,Y )Z,U) + η((∇W R)(X,Y )Z)η(U)(3.4)

= A(W )g(R(X,Y )Z,U).

Let {ei}, i = 1, 2, 3, ......, 2n + 1, be an orthonormal basis of the tangent
space at any point of the manifold. Putting X = U = {ei} in (3.4) and
taking summation over i, 1 ≤ i ≤ 2n + 1, we get

(3.5) −(∇W S)(Y,Z) +
2n+1
∑

i=1

η((∇W R)(ei, Y )Z)η(ei) = A(W )S(Y,Z).

The second term of (3.5) by putting Z = ξ takes the form
g((∇W R)(ei, Y )ξ, ξ)g(ei, ξ), which is denoted by E. In this case E vanishes.
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Namely we have

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(∇W ei, Y )ξ, ξ)

− g(R(ei,∇W Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ)

at p ∈ M . Using (2.3)(b) and (2.27) we obtain

g(R(ei,∇W Y )ξ, ξ) = g(k[η(∇W Y )ei − η(ei)∇W Y ], ξ)

= k[η(∇W Y )η(ei) − η(ei)η(∇W Y )] = 0.

Thus we obtain

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ).

In virtue of g(R(ei, Y )ξ, ξ) = g(R(ξ, ξ)ei, Y ) = 0, we have

g(∇W R(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0, since (∇W g) = 0,

which implies

g((∇W R)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ) − g(R(ei, Y )∇W ξ, ξ) = 0.

Using (2.5) and applying skew-symmetry of R we get

g((∇W R)(ei, Y )ξ, ξ)

= g(R(ei, Y )ξ, φW + φhW ) + g(R(ei, Y )(φW + φhW ), ξ)

= g(R(φW + φhW, ξ)Y, ei) + g(R(ξ, φW + φhW )Y, ei).

Hence we obtain

E =
2n+1
∑

i=1

[

g(R(φW + φhW, ξ)Y, ei)g(ξ, ei)

+ g(R(ξ, φW + φhW )Y, ei)g(ξ, ei)

]

=g(R(φW + φhW, ξ)Y, ξ) + g(R(ξ, φW + φhW )Y, ξ) = 0.

Replacing Z by ξ in (3.5) and using (2.21) we have

(3.6) −(∇WS)(Y, ξ) = 2nkA(W )η(Y ).

Now we have

(∇WS)(Y, ξ) = ∇WS(Y, ξ) − S(∇W Y, ξ) − S(Y,∇W ξ).

Using (2.21) and (2.5) in the above relation, it follows that

(3.7) (∇W S)(Y, ξ) = 2nk(∇W η)(Y ) + S(Y, φW + φhW ).

In virtue of (3.7), (2.26) and (2.3)(a) we get

(3.8) (∇W S)(Y, ξ) = −2nkg(φW + φhW,Y ) + S(Y, φW + φhW ).
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By (3.6) and (3.8) we have

(3.9) 2nkg(φW + φhW,Y ) − S(Y, φW + φhW ) = 2nkA(W )η(Y ).

Replacing Y by φY in (3.9) and using (2.1)(d), (2.2), (2.25) we get

2nkg(φW + φhW,φY ) − S(φY, φW + φhW ) = 0

or,

2nk[g(W + hW, Y ) − η(W + hW )η(Y )] − S(Y,W + hW )

+2nkη(W + hW )η(Y ) + 4(n − 1)g(hY,W + hW ) = 0

or,

2nkg(Y,W ) + 2nkg(Y, hW ) − S(Y,W ) − S(Y, hW )

+4(n − 1)g(Y, hW ) + 4(n − 1)g(Y, h2W ) = 0

since, g(X,hY ) = g(hX, Y ). Now by (2.23), (2.18) and (2.1)(a) this implies

S(Y,W ) + S(Y, hW ) = 2nkg(Y,W ) + [2nk + 4(n − 1)]g(Y, hW )

+ 4(n − 1)(k − 1)g(Y,−W + η(W )ξ)

or,

S(Y,W ) + 2(n − 1)g(Y, hW ) − 2(n − 1)(k − 1)g(Y,W )
+2(n − 1)(k − 1)η(Y )η(W ) = [2nk − 4(n − 1)(k − 1)]g(Y,W )

+[2nk + 4(n − 1)]g(Y, hW ) + 4(n − 1)(k − 1)η(Y )η(W ),

which implies,

(3.10)
S(Y,W ) = 2(n + k − 1)g(Y,W )

+2(nk + n − 1)g(Y, hW ) + 2(n − 1)(k − 1)η(Y )η(W ).

Replacing W by hW and using (2.23), (2.18) and (2.1)(a) we get from (3.10)

−2kg(Y, hW ) = −2nk(k − 1)g(Y,W ) + 2nk(k − 1)η(Y )η(W ).

Since we may assume that k 6= 0, this implies

(3.11) g(Y, hW ) = n(k − 1)g(Y,W ) − n(k − 1)η(Y )η(W ).

From (3.10) and (3.11) we get

S(Y,W ) = 2[(n + k − 1) + n(k − 1)(nk + n − 1)]g(Y,W )

+ 2[(n − 1)(k − 1) − n(k − 1)(nk + n − 1)]η(Y )η(W )

or,

(3.12) S(Y,W ) = ag(Y,W ) + bη(Y )η(W ),

where a = 2[(n+ k− 1)+n(k− 1)(nk +n− 1)], b = 2[(n− 1)(k − 1)−n(k−
1)(nk+n−1)] are constant. So, the manifold is an η-Einstein manifold with
constant coefficients. Hence the theorem is proved. �
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Now, from (3.3) we have

(3.13) (∇WR)(X,Y )Z = η((∇W R)(X,Y )Z)ξ − A(W )R(X,Y )Z.

From (3.13) and the second Bianchi identity we get

(3.14) A(W )η(R(X,Y )Z) + A(X)η(R(Y,W )Z) + A(Y )η(R(W,X)Z) = 0.

Using (2.28), we get from (3.14)

k[A(W )(g(Y,Z)η(X) − g(X,Z)η(Y )) + A(X)(g(W,Z)η(Y )(3.15)

−g(Y,Z)η(W )) + A(Y )(g(X,Z)η(W ) − g(W,Z)η(X))] = 0.

Putting Y = Z = {ei} in (3.15) and taking summation over i, 1 ≤ i ≤ 2n+1,
we get

k(2n − 1)[A(W )η(X) − A(X)η(W )] = 0,

which implies that

(3.16) A(W )η(X) = A(X)η(W ).

Replacing X by ξ in (3.16), it follows that

(3.17) A(W ) = η(ρ)η(W ),

for any vector field W , where A(ξ) = g(ξ, ρ) = η(ρ), ρ being the vector field
associated to the 1-form A, that is, g(X, ρ) = A(X). Hence we can state
the following theorem:

Theorem 3.2. In a φ-recurrent N(k)-contact metric manifold (M 2n+1, g),
n > 1, the charaterstic vector field ξ and the vector field ρ associated to the
1-form A are co-directional and the 1-form A is given by (3.17).

4. 3-dimensional φ-recurrent N(k)-contact metric manifolds

In a 3-dimensional Riemannian manifold we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X(4.1)

−S(X,Z)Y +
r

2
[g(X,Z)Y − g(Y,Z)X],

where Q is the Ricci-operator, that is, g(QX,Y ) = S(X,Y ) and r is the
scalar curvature of the manifold. Now putting Z = ξ in (4.1) and using
(2.3)(b) and (2.21), we get

R(X,Y )ξ = η(Y )QX − η(X)QY(4.2)

+2k[η(Y )X − η(X)Y ] +
r

2
[η(X)Y − η(Y )X].

Using (2.27) in (4.2), we have

(4.3) (k −
r

2
)[η(Y )X − η(X)Y ] = η(X)QY − η(Y )QX.
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Puting Y = ξ in (4.3) and using (2.21), we get

(4.4) QX = (
r

2
− k)X + (3k −

r

2
)η(X)ξ.

Therefore, it follows from (4.4) that

(4.5) S(X,Y ) = (
r

2
− k)g(X,Y ) + (3k −

r

2
)η(X)η(Y ).

Thus from (4.1), (4.4) and (4.5), we get

R(X,Y )Z = (
r

2
− 2k)[g(Y,Z)X − g(X,Z)Y ](4.6)

+(3k −
r

2
)[g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y ].

Taking the covariant differentiation to the both sides of the equation (4.6),
we get

(∇W R)(X,Y )Z =
dr(W )

2
[g(Y,Z)X − g(X,Z)Y − g(Y,Z)η(X)ξ(4.7)

+ g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y ]

+ (3k −
r

2
)[g(Y,Z)η(X) − g(X,Z)η(Y )]∇W ξ

+ (3k −
r

2
)[η(Y )X − η(X)Y ](∇W η)(Z)

+ (3k −
r

2
)[g(Y,Z)ξ − η(Z)Y ](∇W η)(X)

− (3k −
r

2
)[g(X,Z)ξ − η(Z)X](∇W η)(Y ).

Noting that we may assume that all vector fields X, Y , Z, W are orthogonal
to ξ and using (2.1)(b), we get

(4.8)
(∇WR)(X,Y )Z = dr(W )

2 [g(Y,Z)X − g(X,Z)Y ]
+(3k − r

2)[g(Y,Z)(∇W η)(X) − g(X,Z)(∇W η)(Y )]ξ.

Applying φ2 to the both sides of (4.8) and using (2.1)(a) and (2.1)(c), we
get

(4.9) φ2(∇W R)(X,Y )Z =
dr(W )

2
[g(X,Z)Y − g(Y,Z)X].

By (3.1) the equation (4.9) reduces to

(4.10) A(W )R(X,Y )Z =
dr(W )

2
[g(X,Z)Y − g(Y,Z)X].
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Putting W = {ei}, where {ei}, i = 1, 2, 3, is an orthonormal basis of the
tangent space at any point of the manifold and taking summation over i,
1 ≤ i ≤ 3, we obtain

(4.11) R(X,Y )Z = λ[g(X,Z)Y − g(Y,Z)X],

where λ = dr(ei)
2A(ei)

is a scalar, since A is a non-zero 1-form. Then by Schur’s

theorem λ will be a constant on the manifold. Therefore, M 3 is of constant
curvature λ. Thus we get the following theorem:

Theorem 4.1. A 3-dimensional φ-recurrent N(k)-contact metric manifold
is of constant curvature.

5. Existence of φ-recurrent N(k)-contact metric manifolds

In this section we give an example of φ-recurrent N(k)-contact metric
manifold which is neither symmetric nor locally φ-symmetric. We take the
3-dimensional manifold M = {(x, y, z) ∈ R

3 : x 6= 0}, where (x, y, z) are the
standard coordinates in R

3.Let {E1, E2, E3} be linearly independent global
frame on M given by

E1 =
2

x

∂

∂y
, E2 = 2

∂

∂x
−

4z

x

∂

∂y
+ xy

∂

∂z
, E3 =

∂

∂z
.

Let g be the Riemannian metric defined by

g(E1, E3) = g(E2, E3) = g(E1, E2) = 0,

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1.

Let η be the 1-form defined by η(U) = g(U,E3) for any U ∈ χ(M).Let φ be
the (1, 1) tensor field defined by φE1 = E2, φE2 = −E1, φE3 = 0. Then
using the linearity of φ and g we have η(E3) = 1, φ2U = −U + η(U)E3

and g(φU, φW ) = g(U,W ) − η(U)η(W ) for any U,W ∈ χ(M). Moreover
hE1 = −E1, hE2 = E2 and hE3 = 0. Thus for E3 = ξ, (φ, ξ, η, g) defines
a contact metric structure on M . Hence we have [E1, E2] = 2E3 + 2

x
E1,

[E1, E3] = 0, [E2, E3] = 2E1.
The Riemannian connection ∇ of the metric g is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X) − Zg(X,Y )

−g(X, [Y,Z]) − g(Y, [X,Z]) + g(Z, [X,Y ]).

Taking E3 = ξ and using the above formula for Riemannian metric g, it can
be easily calculated that

∇E1
E3 = 0, ∇E2

E3 = 2E1, ∇E3
E3 = 0, ∇E3

E1 = 0, ∇E1
E2 =

2

x
E1,

∇E2
E1 = −2E3, ∇E2

E2 = 0, ∇E3
E2 = 0, ∇E1

E1 = −
2

x
E2.
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From the above it can be easily seen that (φ, ξ, η, g) is a N(k)-contact metric
manifold with k = − 4

x
6= 0.

Using the above relations, we can easily calculate the non-vanishing com-
ponents of the curvature tensor as follows:

R(E2, E3)E2 = −
4

x
E1, R(E2, E3)E1 =

4

x
E2,

and the components which can be obtained from these by symmetry prop-
erty. We shall now show that in such a N(k)-contact metric manifold the
curvature tensor R is φ-recurrent. Since {E1, E2, E3} form a basis of M 3,
any vector field X ∈ χ(M) can be taken as

X = a1E1 + a2E2 + a3E3

where ai ∈ R
+ (= the set of all positive real numbers),i = 1, 2, 3. Thus the

covariant derivatives of the curvature tensor are given by

(∇XR)(E2, E3)E1 = −
8a2

x2
E2,

(∇XR)(E2, E3)E2 =
8a2

x2
E1.

Let us now consider the non-vanishing 1-form A(X) = 2a2

x
, at any point

p ∈ M . In our M 3, (2.1) reduces with the 1-form to the following equations:

(5.1) φ2((∇XR)(E2, E3)E1) = A(X)R(E2, E3)E1,

(5.2) φ2((∇XR)(E2, E3)E2) = A(X)R(E2, E3)E2.

This implies that the manifold under consideration is a φ-recurrent N(k)-
contact metric manifold, which is neither symmetric nor locally φ-symmetric.
So, we can state the following:

Theorem 5.1. There exists a φ-recurrent N(k)-contact metric manifold,
which is neither symmetric nor locally φ-symmetric.
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