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ABSTRACT

In this paper, we study the impact of exploiting the spectral

phase information to further improve the speech quality of the
single-channel speech enhancement algorithms. In particular,

we focus on the two required steps in a typical single-channel

speech enhancement system, namely: parameter estimation

solved by a minimum mean square error (MMSE) estimator of
the speech spectral amplitude, followed by signal reconstruction

stage, where the observed noisy phase is often used. For the

parameter estimation stage, in contrast to conventional Wiener

filter, a new MMSE estimator is derived which takes into account
the clean phase information as a prior information. In our exper-

iments, we show that by including the phase information in the

two steps, it is possible to improve the perceived signal quality

of the enhanced signal significantly with respect to the methods
that do not employ the phase information.

Index Terms— Single-channel speech enhancement, phase
prior, Wiener filter.

1. INTRODUCTION

Enhancing a target speech signal from its noise corrupted obser-
vation had long been addressed as a challenging topic with appli-

cations in hearing aids, mobile telephony and robust automatic

speech recognition systems in adverse noise scenarios. While

previous methods have already shown successful approaches in
speech enhancement, ongoing research is dedicated to further

push the limits for the achievable performance especially in ad-

verse non-stationary noise conditions.

Figure 1 shows the two steps required in a single-channel
speech enhancement algorithm: i) parameter estimation (mag-

nitude estimation) where the goal is to estimate the speech spec-

tral amplitude DFT coefficients given its noisy observation, and ii)

signal reconstruction, where given the modulus of the enhanced
speech spectrum, the aim is to recover the time-domain represen-

tation of the enhanced signal.

For parameter estimation stage, Wiener filter has been ex-

tensively used as the gain function in different domain represen-
tation for speech signal, as some examples, the short-time Fourier

transformation (STFT) [1, 2], log STFT [3], Karhunen Loeve

transform [4], autoregressive modeling [5, 6], cepstral [7] and
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Fig. 1. Showing the two stages required in single-channel speech
enhancement methods: 1) magnitude estimation, and 2) signal

reconstruction. Top panel shows conventional methods using

noisy phase and estimating speech amplitude without any prior

on clean phase, and bottom panel shows the proposed approach
where speech amplitude is estimated using prior on clean phase.

sinusoidal parameters [8]. All these methods have in common

that they aim to estimate the clean speech amplitude without ex-

ploiting any prior about the phase of the speech signal (Fig. 1a).

In the signal reconstruction stage, given an estimate of the
speech amplitude spectrum, noisy phase is often directly passed

to reconstruct the enhanced signal. The STFT phase estimation is

more difficult than STFT magnitude estimation due to the diffi-

culty of characterizing the phase spectrum at low-energy regions
as well as the fact that the noise reduction algorithms mostly only

use second-order statistics in power spectrum estimation for noise

reduction. Previous studies shows that accurate spectral ampli-

tude estimation plays a more important role than improving the
phase spectrum in the sense of the perceived signal quality [9].

Furthermore, [10] showed that phase becomes important when

phase deviation is larger than around π
4

, i.e. when the local

signal-to-noise ratio is lower than 6 decibels, where roughness
is perceived in the reconstructed signal. More recently, [11, 12],

showed that using the phase spectrum leads to increase the intel-

ligibility of the noisy speech signal. Assuming circular symmetric

joint probability density function (pdf) for amplitude and phase
spectra, phase is uniformly distributed and independent of the

amplitude spectrum. Under such assumption, the MMSE opti-

mal estimate of the clean speech phase is equal to the observed

noisy phase [1]. This is justified from the histograms plotted in
[13, 14]. However, the histograms were calculated based on tak-

ing the coefficients with equal SNRs around 20 decibels, ignor-

ing the temporal and spectral information. Taking the temporal

dynamics into account, in [15] the deviation phase group delay
was shown to follow the spectral amplitude behavior, hence phase
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and amplitude spectra are not generally independent. It is shown

than one can estimate the phase spectrum of the original signal

by iteratively performing DFT and inverse DFT, given the spectral
amplitudes only [16].

It is important to emphasize that the gain functions either bi-

nary or soft given by the MMSE amplitude estimators, are derived

based on the fact that the magnitude and phase spectra are inde-
pendent and the posterior of the desired magnitude spectrum is

derived without any dependence on the phase of the clean phase

(Fig. 1a). Here, we derive the optimal estimator which takes the

clean phase prior into account (Fig. 1b). In our study we as-
sume that the clean phase of the desired speech signal is avail-

able. We acknowledge that the pre-knowledge of clean phase

spectrum is unrealistic and needs to be replaced by an estimate

of the clean speech phase using phase estimation algorithms, e.g.
[17, 18, 19]. In our future work, we aim at presenting the general

solution for parameter estimation and phase estimation where we

have no prior assumption for clean phase spectrum. However, in

this work, given the clean phase spectrum, we focus on presenting
the proof of concept that the phase information leads to improved

speech quality in single-channel speech enhancement problem.

This justifies how much phase of the desired signal brings impact

in parameter estimation already. We show that the clean speech
phase spectrum brings additional information that can be success-

fully used to achieve improvement in the parameter estimation

stage. For this, we derive a new MMSE estimator for amplitude

spectrum given the clean phase spectrum. Through experiments,
we show how much improvement is achieved by replacing the

mixture phase with clean phase for oracle and estimated spectral

amplitudes of speech and noise.

2. GAIN FUNCTION FOR MMSE AMPLITUDE SPEECH

ESTIMATION

Let x(n) and v(n) as time domain signals for speech and noise.
Then the noisy signal at the lth frame is yl(n) = xl(n) + vl(n)
where n ∈ [0,N − 1] and N is the window length. The observed

noisy speech STFT is given by

Yc(l, k) = Xc(l,k) + Vc(l,k), (1)

where c super index indicates the complex representation for

STFT spectra and k is the frequency bin index and l is the frame

index. In the complex spectrum domain, we have:

Y(l, k) =
√

X2(l, k) + V2(l, k) + 2X(l, k)V(l,k) cosθ(l, k),

(2)

where Y, X and V are the magnitude spectra of noisy, clean and
noise signal spectra, respectively. It is clear that the phase

difference between the underlying individual signal spectra

θ(l, k) = φx(l, k) − φv(l, k) plays an important role in the

estimation of Y(l, k). Because of the dependency of the noisy am-
plitude spectrum to the phase difference θ, the commonly used

Wiener power spectrum estimation of Y2(l,k) is not the optimal

estimate for the complex DFT domain. For example in [20], we

recently justified the importance of this phase spectrum impact in
parameter estimation stage of single-channel speech separation.

The results showed that significant improvement is achievable

when an estimation of the phase difference is included in the

parameter estimation.

Fig. 2. Showing the speech, noise and the resulting noisy com-

plex spectra denoted by X(l,k), V(l,k), and Y(l,k). The phase
difference between the clean speech and noise complex spectra is

marked as θ = φX(k, l)−φY(k, l) which plays role in the derived

mask in Eq. (10)

2.1. Wiener gain function without phase prior

According to Fig. 1a, assuming an oracle estimate of the mag-

nitude spectra of individual signals (X̂ = X), to reconstruct the

enhanced signal we need to associate the magnitude and phase
spectrum and take the inverse discrete Fourier transformation

(DFT). To this end, previous methods apply a mask either binary

or soft (Wiener mask) on the mixture magnitude spectrum, and

directly use the mixture phase unaltered for the inverse transfor-
mation. The Wiener filter has been widely used as the softmask

gain function and is given by:

G(l, k) =
X2(l, k)

X2(l, k) + V2(l, k)
(3)

and the time-domain signal estimate for the ith signal is given by

x̂(n) = DFT−1{G(l, k)Y(l, k)ej∠φy(l,k)}.

2.2. Proposed gain function given prior clean phase spec-

trum

For the rest of this paper we remove the time and frequency sub-

indices for simplicity. The vector representation of the target and

masker speech spectra in the complex domain is illustrated in

Fig. 2. Power spectral subtraction and Wiener filter speech es-
timates are derived by assuming speech and noise as indepen-

dent Gaussian random processes. Here, similar to [21], we as-

sume that speech is represented by a deterministic waveform of

unknown amplitude and phase spectral coefficients denoted by
Xc = Xejφx where X denotes the speech envelope and φx as its

phase. The pdf for the noisy speech spectral amplitude given the

clean speech amplitude and phase spectra at each kth frequency

channel is given by:

p(Y|X,φx) =
1

πσ2
v

exp

[

−
Y2 − 2XRe{Yce−jφx } + X2

σ2
v

]

. (4)

Previous speech amplitude estimators eliminated the speech
phase dependency by averaging the likelihood function for the

spectral envelope, i.e., E{Y|X} =
∫2π

0
p(Y|X, θ)p(θ)dθ assuming

a uniform probability density function for p(θ) on (0, 2π). The

conditional probability in (4) simplifies to:

p(Y|X,Φx) =
1

πσ2
v

exp

(

−
Y2 + X2 − 2XY cosθ

σ2
v

)

, (5)

where E{V2
v} = σ2

v is the PSD for the interfering signal, which
denotes the complex Gaussian distribution for the interference as
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V = Y − X, for the joint distribution for Y and ΦY . From Bayes

rule, we have

p(X|Y) =
p(Y|X)p(X)

p(Y)
=

p(Y|X)P(X)
∫∞

0
p(Y|X)P(X)dX

. (6)

Assuming the independence between the speech amplitude and

phase p(X,φx) = p(X)p(φx), we extend (6) to the MMSE esti-
mator of the magnitude of the clean target speech DFT coefficient

given the clean target phase and mixture magnitude and phase

spectra given by

E(X|Y,φx) =

∫∞

0
Xp(Y|X,φx)p(X,φx)dX

∫∞

0
p(Y|X,Φx)p(X,φx)dX

. (7)

A uniform distribution is considered for phase, i.e., p(φx) =
1

2π
. To further model the speech spectral amplitudes, we utilize

zero-mean Gaussian distribution for the spectral amplitude i.e.

X∼N(0,σ2
x)

p(X) =
1

2πσ2
x

exp

(

−
X2

2σ2
x

)

, (8)

where σ2
x = E{X2}. Plugging Eq.(8) and Eq.(5) in Eq.(7), the

numerator of (7) is given by:

Num =
1

4π2σ2
v

∫∞

0

Xν−1eβ1X
2

e−γXdX, (9)

where β1 = ( 1

σ2
v
+ 1

2σ2
x
) and γ = −

2Y cos(φy−φx)

σ2
v

. The denomi-

nator in Eq.(7) is given by replacing ν = 1 in (7) and we get:

Den =
1

4π2σ2
v

∫∞

0

eβ1X
2

e−γXdX. (10)

Plugging Equations (9),(10) into (7), and using the following in-

tegral equation (Eq. 3.462-1, page 365) from table of integrals

[22]:
∫∞

0

cν−1e−βc2−γcdc = (2β)−
b
2 Γ(ν) exp(

γ2

8β
)D−ν(

ν√
2β

), (11)

if Re {β} > 0 and Re {ν} > 0. For the MMSE estimator we obtain

X̂ = E(X|Y,φx) =
Γ(2) exp( γ2

8β1
)D−ν(

γ√
2β1

)

Γ(1) exp( γ2

8β1
)D−1(

γ√
2β1

)
, (12)

where D−ν(·) is a special function, called the parabolic cylin-

der function of order ν [23]. Calculating the expectation of the

amplitude, E(X|Y,φx), in Eq.(7), speech amplitude spectrum es-

timate is given by

X̂ = 2
D−ν(z)

D−1(z)
, (13)

using β1 = 1

σ2
v
+ 1

2σ2
x

the argument z is given by:

z = −
2Y cos(φy − φx)√

2β1σ2
v

= −

√

2SNRpostSNRpriori

SNRpriori + 0.5
cos(φy − φx), (14)

where SNRpriori =
σ2
x

σ2
v

is the a prior SNR and SNRpost = Y2

σ2
v

is the a posterior SNR. Using the estimated amplitude for the de-
sired speaker used together with mixture phase, we reconstruct

the time domain signal as below:

x̂(n) = DFT−1{X̂(l, k)ej∠φy(l,k)}, (15)

where φy,k is the phase spectrum of the mixed signal. It is clear

that the new mask is phase-aware and depends on the phase

difference between the clean speech and mixed speech complex
spectra, marked in gray color in Fig. 2.

3. EXPERIMENTS

3.1. Experimental setup

In this section, we demonstrate the impact of the proposed phase-
aware MMSE amplitude estimator in a single-channel speech en-

hancement in a realistic scenario. For this, we select 50 utterances

from randomly selected speakers among 34 speakers in the GRID

corpus [24]. We decrease the sampling rate to 8 kHz. The fram-
ing is set to 20 ms as analysis window with a frame shift of 8 ms.

The number of DFT points is equal as the window length. As noise

signal, we select the real life noise recorded in CHiME challenge

dataset [25]. The utterances have a command like structure and

are of length around 1.8 second. The speech and noise signals
are mixed together at signal-to-noise ratios ranging in [0 10] dB

with 1 decibel of step. To quantify the amount of improvement

in the single-channel speech enhancement performance, we use

PESQ (as implemented in [26]) as an estimate of the perceived
signal quality. The results are averaged on 50 speech utterances

at 10 SNR levels.

3.2. Spectrogram analysis

Figure 3 compares the spectrograms for the enhanced speech sig-

nals using Wiener and the proposed approach in this work which
ignore and takes the phase prior, respectively. The spectrograms

of noisy and clean speech are also shown for reference. The pro-

posed MMSE estimator recovers more speech and attenuate more

noise components.

3.3. Phase importance in MMSE amplitude estimation

We consider the following possible scenarios

Scenario I: Both speech and noise are known (oracle): For

the first scenario, Figure 4 shows the PESQ scores obtained by

different MMSE amplitude estimators discussed in this work. To
study the impact of the phase used in reconstruction of the en-

hanced signal, we also include the result obtained by replacing

the mixture phase with clean phase (right panel). The following

observations are made:

• The phase-aware MMSE spectral amplitude estimator con-

sistently improves the PESQ score compared to the Wiener

method. The improvement is well pronounced at signal-
to-noise ratios lower than 6 decibels (zoomed panel).

• When clean phase is used for reconstruction, the im-

provement obtained by the proposed MMSE estimator is

marginal, but still considerable for signal-to-noise ratios

lower than 3 decibels.

• Replacing the mixture phase with the clean phase, results

in large improvement for Wiener mask, and less for the

proposed method.

Scenario II: estimated noise and oracle speech: We relax the

ideal speech spectral amplitude, by replacing it with the speech

amplitude spectrum estimated by improved minima controlled re-
cursive averaging (IMCRA) presented in [27]. The PESQ results
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Fig. 3. Comparing the spectrograms of the enhanced speech using Wiener mask and the proposed one. The noisy and clean speech
spectrograms are also shown for reference. The speech signal is a male speaker (speaker 10 from GRID corpus) saying: place green in

t five again corrupted with noise at SNR = 0 decibels for scenario II: speech estimating but noise is priori known. The higher accuracy

obtained by the proposed method versus Wiener filter is highlighted using black boxes. The proposed approach achieves PESQ of 2.35

compared to 2.03 of standard Wiener filter.

Noisy phase Clean phase

SNR-level (dB) 0 5 10 0 5 10

Noisy 1.95±0.1 2.24±0.07 2.80±0.06 2.16±0.08 2.45±0.06 2.80±0.06

Scenario II

Wiener 2.43±0.07 2.87±0.06 2.4±0.08 2.7±0.08 3.15±0.09 2.59±0.09

proposed 2.66±0.08 3.13±0.07 2.73±0.1 2.72±0.09 3.20±0.08 2.74±0.1
Scenario III

Wiener 2.12±0.08 2.56±0.06 3.16±0.12 2.33±0.09 2.74±0.08 3.23±0.1

proposed 2.32±0.09 2.74±0.08 3.25±0.09 2.37±0.09 2.78±0.08 3.28±0.09

Table 1. Showing the PESQ scores comparing the proposed amplitude MMSE estimator versus typical Wiener filter for three scenar-

ios: 1) oracle spectral speech and noise amplitudes, 2) estimated speech spectral amplitude using IMCRA and oracle noise spectral
amplitude, and 3) estimated speech and noise spectral amplitudes using IMCRA [27].
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Fig. 4. Comparing the PESQ results obtained by speech amplitude

estimators with and without phase prior for two scenarios: (left)
noisy phase signal reconstruction and (right) when clean phase is

used for signal reconstruction.

are shown in Table 1.

Scenario III: estimated speech and noise: As our last scenario,

we relax any prior knowledge about speech or noise signals, and

replace them from the amplitude and noise estimated provided

by IMCRA. From Table 1, the following observations are made

• For the second and third scenarios, significant improve-

ment in PESQ is obtained when using the proposed phase-

aware spectral amplitude estimator rather than typical

wiener gain function.

• The PESQ improvement between Wiener and the proposed
method becomes less when we replace the noisy phase

with the oracle clean phase.
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4. CONCLUSION

Previous techniques for single-channel speech enhancement ne-

glected the phase information in estimating the speech spectral

amplitude, and used the observed noisy phase unaltered directly
in their signal reconstruction stage. In this work, we demon-

strated that the phase information is important in both steps. To

justify this, we conducted experiments on realistic noisy speech

signals at different signal-to-noise ratios, and compared the
perceptual scores obtained by the phase-aware versus previous

phase-independent Wiener masks. The results reveal that it is

possible to achieve significant improvement in the perceived sig-

nal quality.
In this work, we assumed that we have access to the clean

phase information as prior knowledge, and derived the corre-

sponding MMSE mask function for speech spectral amplitude. In

general, however, we are required to estimate the phase spec-
trum of the clean signal. Future work should be dedicated to

estimate the phase of the target speech signal from the noisy sig-

nal (for example by using the recent phase estimation algorithms

[17, 18, 19], and feed it back to combine with the proposed
phase-aware MMSE amplitude estimator presented here.

1At the time that this paper was under review, we found out that a
similar concept was investigated in [28].
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